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Abstract - 1dentifying highly-potential athletes
is a critical yet inherently challenging process that
requires comprehensive analysis of diverse fagtors,
including physiological attributes, deme@graphic
characteristics, and social influences. This multifaceted
process requires meticulous evaluationdof extensive
datasets to ensure both accuracy nd fairness in
talent identification protocols. The complexity stems
from the interconnected nature of thetdeterminants
of athletic performance, where physical ‘¢apabilities
intersect with  psychological, resilience,”” social
support systems, and environthental factors. In
recent years, machine leamifigg(ML algorithms have
gained prominene®, in “decision-making processes,
offering unprecedented opportunities to uncover
subtle patterns and relationships within athlete data
that might otherwise remain hidden. This study
systematically benchmarks the performance of several
state-of-the-art ML classifiers using a novel, self-
collected dataset of athlete candidates. Further, an
explainable Al (XAI) technique, Shapley Additive
Explanations (SHAP), is applied to interpret model
decisions and provide meaningful insights into key
predictive factors. Experimental results demonstrate
that Gradient Boosting achieves superior predictive
performance (F1) across the 10-fold sets, with a mean
of 0.46. SHAP analysis reveals the critical importance
of anthropometric measurements and social group
features in influencing prediction outcomes. These
findings collectively underscore ML's substantial
potential to revolutionize talent identification in sports
while emphasizing the paramount importance of
model interpretability in fostering trust and acceptance
of Al-driven decision-making processes.

*Corresponding Author

Keywords: omachine learning, sports science,
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I. INTRODUCTION

The global sports industry’s growing emphasis
on evidence-based decision-making transforms talent
identification and development. This transformation is
particularly evident in the rapid adoption of advanced
analytics and sophisticated data collection methods,
which revolutionize how sporting organizations
evaluate, develop, and value sports talent (Harde et al.,
2025; Wrangetal., 2022; Zhang & Cao, 2025). Modern
approaches now incorporate a broader spectrum of
characteristics that extend well beyond sports fields,
such as demographic, social, and economic factors,
to assist athlete evaluation (Lu et al., 2023; Sofro
et al., 2024). These factors contribute to an indirect
influence on health conditions such as hypertension
and diabetes (Dey et al., 2022; Kabanda et al., 2022;
Riddell et al., 2020; Schweiger et al., 2021), which
impact an athlete’s development trajectory, training
adherence, and long-term performance sustainability
(Alpsoy, 2020). The ability to systematically analyze
these diverse factors alongside traditional athletic
metrics represents a significant advancement in talent
identification methodology.

Building on this multifaceted approach,
machine learning (ML) applications in sports science
demonstrate remarkable potential for processing
complex, interconnected data and identifying subtle
relationships among various athlete characteristics
(Sharma et al., 2023). ML algorithms are successfully
applied to performance analysis, injury prevention,



and training optimization (Cesanelli et al., 2024
Wrang et al., 2022), and they show strong promise
for understanding how socioeconomic and health
factors interact with athletic development (Sofro et al.,
2024). This capability to process and analyze multiple
dimensions of athlete data simultaneously represents
a significant advance beyond traditional statistical
approaches.

Despite these technological advances, there
remains a critical need for transparent and interpretable
ML models in athlete selection processes. Current
approaches often function as “black boxes” (Bodria et
al., 2023; Hassija et al., 2024), making it challenging
for sports practitioners to understand and trust the
decision-making process. This limitation is particularly
significant in highly critical applications (Bodria et al.,
2023), especially when evaluating prospective athletes
with complex health considerations (Sharma et al.,
2023), as organizations need to clearly understand how
various factors contribute to the model’s predictions.
The lack of interpretability poses a substantial barrier
to the widespread adoption of ML tools in practical
talent identification settings.

This research addresses these challenges by
introducing a rigorous methodology that combines
robust classifiers with an XAl technique for post-

training (post-hoc) analyses of prospective athletes.
To the best of our knowledge, no prior study conducts
evaluations over ensemble classifiers to provide
interpretation and recommendations to non-specialists.
Our approach is applied to a comprehensive dataset of
prospective athletes that uniquely combines traditional
athletic metrics with broader socioeconomic and
health metrics. The proposed pipeline leverages the
superior predictive capabilities of ensemble methods
while maintaining transparency through an XAl tool,
thereby enabling practitioners to understand how
different factors influence athlete selection decisions.

II. METHODS

The dataset used in this study is collected
through activities that record comprehensive
measurements of 200 prespective athletes (Sofro et
al., 2024). These rea@ings cover human physiology,
socio-demographic,and health‘agpects, as described in
Table 1. Descriptionsdf@r'coded features are provided
in Table 2. THe anthropometriefsection of the dataset
includes phiysical measurements such as height, weight,
waist circumferénce, and Body Mass Index (BMI).
Meanwhile, the sociosdemographic portion captures
afombination @fysocial and demographic attributes

Table 1 DatasetSamples

#ID B BB IMT Wt A G EA ET JA JI SA SI F Db Hp Atlet
R1 0 0 0 0 0 0 0 0 1 0 1 0 1 0
R2 0 1 0 0 1 1 1 0 0 0 0 0 0 0
R3 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0
Table 2 Features and Their Brief Description

Code Description Categorization

TB Height [<170 cm, > 170 cm]

BB Weight [<60 kg, > 60 kg]

IMT BMI [<25,>25]

Waist circumference (Wt) Waist length [< 85 cm, > 85 cm]

Age (A) Age [<21,>21]

Gender (G) Gender [male, female]

Edu_Father (EA)
Edu_ Mother (EI)
Job_Father (JA)
Job_Mother (JI)
Salary 1 (SA)
Salary 2 (SI)
Finance (F)
Diabetes (Db)
Hypertension (Hp)
Atlet

Father’s Education Level
Mother’s Education Level
Father’s Occupation Sector
Mother’s Occupation Sector
Father’s salary level
Mother’s salary level

Family’s overall financial level

Diabetes status
Hypertension Status

Screening result (success/failure)

[school. college]

[formal, informal]

[<3,3 - 6,> 6] million IDR

[low, middle, high]

[yes, no]
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of respondents, including age, gender, parents’
education, occupation, and salary. The final segment
of the dataset records respondents’ hypertension and
diabetes test results.

In-person measurement and questionnaire
sessions are conducted to record respondents’ data.
Each team member surveys the participants, ensuring
that the process yields complete data. No further
preprocessing is performed aside from transforming
the data into categorical variables. This categorization
is a standard process in which items are grouped based
on common criteria.

Several dataset samples are provided in Table 1,
and the categorization criteria are outlined in Table 2.
As shown in Table 2, standard athlete anthropometric
measurements are used for respondents’ physiological
measurements, while general metrics are applied for
socioeconomic measurements. Overall, 51 of the 200
respondents successfully become athletes, indicating
a class imbalance within the dataset. This imbalance
is quantified at a level (Buda et al., 2018) of p = 3.92
and p=0.5.

Next, this study employs a pipeline-based
approach, with special attention given to the data.
The discriminative capability of learning algorithms,
including ML, is often sensitive to the data that are fed
and used during their assessment. Different subsets of
data used for training, validation, and testing contribute

produces varying performance outcomes.
Considering the factors mentioned

to bias (Moreno-Torres et al., 2012). Hence, applying
different data splits at each stage of model develeg @

dataset. The development steps (see Figure 1) account
for the dataset’s intrinsic structure and capture the
classifiers’ performance. The pipeline starts from data
collection and proceeds through model development
and analysis. Since the analysis is conducted after
training, it is considered a post-hoc analysis.

In most ML implementations, the datasets used
do not have a strict split between training and testing.
The inherent distribution of the target class poses an
additional challenge, as the dataset is imbalanced.
Training on an imbalanced dataset introduces bias
toward the majority class, which results in lower
overall training and testing performance (Buda et al.,
2018).

This study employs four ensemble learning
algorithms, primarily due to their robust performance
(Khan et al., 2024; Mienye & Sun, 2022). These
algorithms generate tiple models during training

oosting (AdaBoost, A),
Boost (X) algorithms
ategy, while Random
strategy. A summary of
sented in Table 3.

bove, the training and testing
this work is designed to capture

dataset is assigned as test data using a random
process. The remaining portion of the dataset is used
for training with stratified K-fold (SKFold) cross-
validation.

Redundant features

Redundant Feature
analysis via SHAP

affecting the Classifiers'

decision

Development

A

Features influencing
the Classifiers' decision

XAI analysis
via SHAP values

Hyperparameter
Search

Models _

Figure 1 Methodology Used in this Study.

Table 3 Core and Training Mechanism of Ensemble Learning Algorithms

Alg. Type Strat. Learn Process Error Correction
R Bag Par. From a random bootstrap sample -
A Focuses on misclassified samples Reweight
G Boost Seq. Fit residual errors Immediate prediction fit
X Fit gradients loss Gradient fit via Regularization
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This fold arrangement preserves the target
class distribution during cross-validation, ensuring
that each training set contains a sufficient number of
instances from each target class (Moreno-Torres et
al., 2012; Szeghalmy & Fazekas, 2023). This choice
is particularly crucial for the present dataset due to its
imbalanced nature. Next, this study employs a nested
configuration as an additional setup for robust model
development, in which a separate SKFold is prepared
on the training set. This additional setup is used in
cross-validation alongside a hyperparameter search,
and the process is detailed in the subsequent section.

Another component in the training pipeline
is model fine-tuning, or hyperparameter search. All
classifiers” hyperparameters (see Table 4) are optimized
using a grid search with F1 as the primary metric.
This prioritization aims to select the best-performing
classifier that balances precision and recall. Not all
hyperparameters defined in Table 4 apply to every
classifier due to operational differences. For instance,
the Random Forest classifier does not accommodate
the learning rate hyperparameter, while the max
depth configuration does not apply to the AdaBoost
classifier. Hyperparameters with tick (v)) apply to
the corresponding classifiers. Upon completing
the process, the most performant hyperparameter
combination is selected and is used to train the entire
training set. The trained classifier is then evaluated by
obtaining predictions on the predetermined test set.

Finally, a post-training (post-hoc) analysis s
conducted on the trained models using the test sefyto
assess their performance during inference, SHapley
Additive exPlanations (SHAP) (S. Lundbérg & Lee,
2017) are used to obtain insights intoach feature’s
contribution to a classifier’s prediction,)This tool
is grounded in a game-theoretic concept, mamely
Shapley values, which allocate“@yfair contribution to
each feature. SHAP values measuse the difference
between the expected meodel outputiand the actual
prediction attributed to each feature:"SHAP values for
a given model f{x) with the madel’s baseline predictio
¢, are shown in Equation§{l) andi2) below.

fle) = o + Ky (1)
¢o = E[F(X)] )

0= Tugu (G 15 0 6 - 7))

3)

Eq. 3 computes the marginal effect of adding
i to S. Then, the weighted average of these marginal
effects yields ¢i, the SHAP value for feature i, where N
is the set of features in the dataset, with cardinality M,
and S is a subset of N excluding feature i. The SHAP
values can then be applied to interpret the classifier
locally and globally. The local explanation is obtained
for individual predictions, enabling users to understand
why the classifier produces a decision. This approach is
commonly represented in force plots (S. M. Lundberg
et al., 2018). Meanwhile, the global explanation helps
users observe overall feature importance and patterns
occurring in model-dataset interaction.

III. RESULTS AND DISCUSSIONS

The evaluation process begins with specifying
metrics to measure giow) the classifiers perform.
Standard metrics /stemming, from fundamental
evaluations, such as Truedositive(TP), True Negative
(TN), False Pesitive (FP), and Halse Negative (FN).
These valués are then ugedgin further classification
metrics, such asPfeeision (Prec), Specificity (TNR),
Sensitivity (FPR), and F1. The Prec (Eq. 4) metric
meaSures the proporfion of relevant items among
the retrieved items. Specificity, or TN Rate (Eq.
5).)medsures the ratio of relevant items that are not
returned. SewSttivity or TP Rate (Eq. 6) measures
the ratighof relevant items returned from all relevant
ones. Finally, F1 (Eq. 7) measures the predictive
performance of a classifier, accounting for Prec and
TPR.

Precision (Prec) = TP/(TP + FP) 4
Specificity (TNR) = TN/(TN + FP) ®)
Sensitivity (TPR) = TP/(TP + FN) (6)
F, =2 x Prec x TPR/(Prec + TPR) @)

Table 5 summarizes each classifier’s

performance during testing. All values, formatted
in mean and standard deviation, are obtained from
Stratified-K Fold (K=10). The highest metric achieved
across K is in brackets. The best-performing classifiers
from the training phase are then evaluated on the test
data. The data partition, as described, varies across
scenario sets. In each partition, the indices of training
and test data are randomized and recorded (1) to ensure

Table 4 Hyperparameters and Their Search Space during Fine-Tuning

Classifier
Hyperparameters Search Space A G R X
n_estimators [50, 100, 150, 200, 250] u i i i
learning_rate [0.01, 0.05, 0.1 0.175, 0.2, 0.25] i i a il
max_depth [3,4,5,6,7, 8] a i i i
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each classifier trains and tests the same set of data and
(2) for reproducibility. Several classifiers may perform
best in several scenarios but struggle in others. Such a
condition motivates the use of the data indices shuffle
and tuning process.

According to Table 5, all classifiers show
similar performance across metrics and outperform
the conventional classification approach presented
by Sofro et al. (2024). Most performant classifiers
developed in this study yield 2-3% higher Accuracy,
3-30% higher Precision, and 60% higher Specificity.
These results highlight the superior performance of
the ML algorithms, considering the extensive training
scenarios employed in this study.

Among the classifiers, the smallest difference is
in accuracy, with a gap of 0.02 between the most- and
least-performant classifiers. On average, the Random
Forest classifier produces 0.76, while AdaBoost can
produce 0.74. The former classifier provides a shorter
interquartile range than the latter (see Figure 2). This
indicates that Random Forest models’ accuracy tends
to converge, i.e., the middle quartiles of experimental
results differ slightly. However, this classifier produces
an outlier, showing roughly at 0.68.

Next, there are notable differences in Specificity
compared to accuracy, as the boxes in the plots differ
in length. The highest and lowest mean Specificity
differ by approximately 0.06. Random Forest achieves
the best Specificity, averaging 0.97, while Gradient

Boosting and XGBoost yield 0.87. In contrast to the
Accuracy metric, Random Forest does not have any
outlier results. This high Specificity suggests that
all classifiers correctly classify the negative class.
However, these good True Negative Rate (TNR) results
are not followed by their counterpart, True Positive
Rate (TPR) or Sensitivity. All classifiers struggle to
achieve satisfactory results, with the lowest mean of
0.26 and the highest of 0.42. These exhibits suggest
that class imbalance affects classifiers' performance,
leading them to lean towards one class (Buda et al.,
2018), i.e., prospects failing to become athletes.

The F, metric produced by all classifiers shows
a noticeable gap. As seen in Table 5, the XGBoost
classifier achieves the highest score across the 10-fold
with 0.67, comparable to Gradient Boosting with 0.64.
Despite the XGBoost’s performance, it is preferable
to choose Gradient Beesting as the most-performing
classifier due to it§"higher mean F'| score. The higher
the mean F| scote, thegiofe likely the classifier is
to produce consistéfit Tesults, leading to dependable
performante.

Eurther, the, Gradient Boosting achievement
reflects \its dnherent| strategy, in which weak learners
aré sequentially combined to form a strong learner
through, an itesative process. The algorithm utilizes
an additive approximation. Therein, a weighting
mechanismdis employed to obtain more accurate
generalization (Mienye & Sun, 2022).

Table 5 Niimerical Classifiers’ Performance Over Test Sets.

Metrics
Classifier
Accuracy Specificity Sensitivity Precision F,
AdaBoost (A) 0.74+£0:03 (0.80) 0.89+0.05(0.97) 0.30+0.13(0.6) 0.49+0.15(0.75) 0.36+0.12 (0.57)
GradientBoosting (G075 + 0.07.(0.82)  0.87+0.08 (1.0) 0.42+0.16 (0.7) 0.56 +£0.23 (1.0)  0.46 +0.15 (0.64)
Random Forest (R) 0.76 + 0.04(0.80)  0.93 +0.04 (1.0) 0.26 +£0.13 (0.6) 0.56 + 0.2 (1.0) 0.34 +0.13 (0.60)
XGBoost X), 0.75<+0.05(0.85) 0.87+0.05(0.93) 0.40+0.18(0.7) 0.49+0.13(0.75) 0.43+0.15(0.67)
Acouracy Specificity Sensitivity Precision Fa
0.85 1.0 1 1.0 4 [w]
il 0.6 o
0.80 0.6 o] 0.5 -
0.9
ﬂ?!j T ul4 - {Jf‘.l N H 0.4 -
0.70 4 0.8 4 0.4
. a2 0.2 1 0.2
(L5 0.2 4 O
0.7 1 ' o
AGRX AGR AGRX AGRX AGRZX

Investigating Prospective Athletic.....

Figure 2 Boxplots for the Performance of Classifiers, i.e., AdaBoost (A),
Gradient Boosting (G), Random Forest (R), and XGBoost (X).
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Moving on to the models’ interpretability, this
study employs local explanation activity using SHAP.
As seen in Figure 3, a pair of SHAP values on the
trained Random Forest classifier. This illustration
compares the classifier’s decision for a record in the
test set and indicates whether the predicted target
class is 0 (prospect failed to become an athlete) or
1 (otherwise). To obtain this level of detail, a pair of
force plots showing the contribution of all features to
the decision to target class 0 (see Figure 3a) and class
1 (see Figure 3b) is presented. The ground truth for
this instance is 0.

As seen in Figure 3a, f{x) = 0.95, indicating a
push from the base value = 0.72. Therein, the arrow
from left to right indicates increments to the base
value. Likewise, the opposite direction in Figure 3b
shows decrements made to the base value. The
base value (E[f(x)]) represents the classifier’s
average (expected) output across the dataset for the
corresponding record. Since the ground-truth label
for the testing data in Figure 3a is 1, the force plot
illustrates the features’ contributions, leading to a
prediction close to the label (1).

It is also worth noticing in Figure 3a that
all features are mirrored to those in Figure 3b. For
instance, the feature contributing the highest SHAP
value, i.e., Waist length (Wt), is placed between
Weight (BB) and Edu_Mother (EI) feature. Also, the
length of each arrow reflects the impact made by t
corresponding feature, where the bigger the i
the longer the arrow’s length.

base

=] ano

Next, this study conducts Global Explanation
evaluation and feature importance assessment. As
described in the Model Performance Comparison
part, there are several experiments, each with shuffled
training and testing indices. The index setup ensures
that all classifiers receive the same data configuration,
ensuring fair comparisons. Then, the optimal
hyperparameter configuration is applied to classifiers
before conducting evaluation.

During the global explanation assessment,
two models are selected based on their performance,
not solely on the best-performing aspect. XGBoost
is chosen because it achieves the highest F'| score
across 1 of 10 test sets. Meanwhile, Random Forest is
chosen for its performance on Accuracy, Specificity,
and Precision, but it falls short on the mean F, score.
Besides, Random Forest is the only algorithm out of
the four with parallel generation.

Figure 4 ill tes” the global performance
of both the XGBo
on the test data. In

the overall classifier
feature. Hence, the
Figure 4 shows all features
each test data entry. Table 6

t features. The clustering herein is conducted

-

higher = lawer
Nx)
0.95

oEs nag s Las

T
(2)
highar = lower
Hx)
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Figure 3 A Pair of Local Explanation Results Utilizing SHAP Force Plot
on the Random Forest Classifier, Showing How the Trained Classifier Produces f{x)
for Target Class (a) 0 and (b) 1.
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Table 6 Top 5 Features and Their Mean
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Classifier

1 2 4 5
A Wt (0.05) TB (0.05) EI (0.03) Hp (0.02)
G EA (0.12) IMT TB (0.06) SA (0.06)
R G (0.006) TB (0.05 SI(0.04) Wt (0.04)
X G (0.03) TB ( BB (0.06) Wt (0.05)
Table 7 R with Clustering Cut_Off'=0.75
Classifiers Feature
#1 #2
AdaBoost N/A N/A
Finance Gaji_ 2
Gaji_2 Finance
Gaji_ 2 Finance

to reveal inherent structure wia a hierarchical method
provided by the SHAP tool. This evaluation aims to
identify which features in the dataset are relatively
independent. Also, this process investigates any
coupling/relation between features, leading to
redundant contributions.

Alternatively, such a process reveals which
features are closely related. The threshold value called
clustering cut-off, shows pairs or groups of features
with clustering distance up to the threshold value. The
clustering distance ranges from 0 to 1, where 0 means
very close or duplicate, and 1 indicates independent.
The clustering cut-off value herein is 0.75 because no
pairs were found during our evaluations. Such a value
is relatively conservative, since it is close to 1. The
value accommodates leaf clusters with a fairly large
margin. This setup also allows SHAP to reveal more
structure in classifiers.

According to Table 7, tree-based classifiers,
such as Gradient Boosting, Random Forest, and
XGBoost, indicate that a pair of features is labeled as
redundant by SHAP. However, this label is obtained
by setting the clustering cut-off to 0.75, which is
conservative. On the other hand, AdaBoost returns no
redundant features that fall within this threshold. This
implies that the classifier considers all key features
during testing.

IV. CONCLUSIONS

This study examines the performance of several
classifiers in predicting successful athletes based
on social, demographic, and physical measurement
records. Through nested stratified cross-validation,
the study ensures a reliable and unbiased evaluation of
model performance and finds that Gradient Boosting

Investigating Prospective Athletic..... (Ibnu Febry Kurniawan et al.) 7



is the most consistent classifier across the test set,
as indicated by the mean F1 score. This classifier
also shows negligible differences across other key
performance metrics.

Alongside this finding, this work utilizes an
explainable Al tool. The use of SHAP for explainable
Al provides valuable insights into model decisions,
reveals critical factors that influence prediction
outcomes, and enhances the interpretability of
machine learning models. Experimental results
highlight key features that influence predictions,
particularly those dominated by the anthropometric
group, such as Gender, Height, Weight, BMI, and waist
length. Meanwhile, only a few classifiers consider
demographic features, such as parents’ occupation
and salary, to be influential. Furthermore, only one
classifier identifies the hypertension feature as a
key determinant during the prediction phase. These
contributions have practical implications for various
stakeholders, including educational institutions and
the sports industry, which seek data-driven approaches
for talent identification.

Despite these contributions, this work is limited
to data from the pre-selection process. Data collected
during athlete admissions can reveal more valuable
relationships between performance and outcomes. In
addition, physiological measurements obtained during
physical tests are missing, leaving the connections
between athletes’ physical condition and on-fie
performance underexplored.

To build on this work, future studies investig
various combinations of data types,
categorical and numerical features,
additional feature groups to improve

similar sports

integrating secondary data sources
iSSi nd increases

serves as a substitute fo
the overall dataset siz
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