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Abstract - Identifying highly-potential athletes 
is a critical yet inherently challenging process that 
requires comprehensive analysis of diverse factors, 
including physiological attributes, demographic 
characteristics, and social influences. This multifaceted 
process requires meticulous evaluation of extensive 
datasets to ensure both accuracy and fairness in 
talent identification protocols. The complexity stems 
from the interconnected nature of the determinants 
of athletic performance, where physical capabilities 
intersect with psychological resilience, social 
support systems, and environmental factors. In 
recent years, machine learning (ML) algorithms have 
gained prominence in decision-making processes, 
offering unprecedented opportunities to uncover 
subtle patterns and relationships within athlete data 
that might otherwise remain hidden. This study 
systematically benchmarks the performance of several 
state-of-the-art ML classifiers using a novel, self-
collected dataset of athlete candidates. Further, an 
explainable AI (XAI) technique, Shapley Additive 
Explanations (SHAP), is applied to interpret model 
decisions and provide meaningful insights into key 
predictive factors. Experimental results demonstrate 
that Gradient Boosting achieves superior predictive 
performance (F1) across the 10-fold sets, with a mean 
of 0.46. SHAP analysis reveals the critical importance 
of anthropometric measurements and social group 
features in influencing prediction outcomes. These 
findings collectively underscore ML's substantial 
potential to revolutionize talent identification in sports 
while emphasizing the paramount importance of 
model interpretability in fostering trust and acceptance 
of AI-driven decision-making processes.

Keywords: machine learning, sports science, 
explainable AI, Post-Hoc analysis, benchmark

I.	 INTRODUCTION

The global sports industry’s growing emphasis 
on evidence-based decision-making transforms talent 
identification and development. This transformation is 
particularly evident in the rapid adoption of advanced 
analytics and sophisticated data collection methods, 
which revolutionize how sporting organizations 
evaluate, develop, and value sports talent (Harde et al., 
2025; Wrang et al., 2022; Zhang & Cao, 2025). Modern 
approaches now incorporate a broader spectrum of 
characteristics that extend well beyond sports fields, 
such as demographic, social, and economic factors, 
to assist athlete evaluation (Lu et al., 2023; Sofro 
et al., 2024). These factors contribute to an indirect 
influence on health conditions such as hypertension 
and diabetes (Dey et al., 2022; Kabanda et al., 2022; 
Riddell et al., 2020; Schweiger et al., 2021), which 
impact an athlete’s development trajectory, training 
adherence, and long-term performance sustainability 
(Alpsoy, 2020). The ability to systematically analyze 
these diverse factors alongside traditional athletic 
metrics represents a significant advancement in talent 
identification methodology.

Building on this multifaceted approach, 
machine learning (ML) applications in sports science 
demonstrate remarkable potential for processing 
complex, interconnected data and identifying subtle 
relationships among various athlete characteristics 
(Sharma et al., 2023). ML algorithms are successfully 
applied to performance analysis, injury prevention, 
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and training optimization (Cesanelli et al., 2024; 
Wrang et al., 2022), and they show strong promise 
for understanding how socioeconomic and health 
factors interact with athletic development (Sofro et al., 
2024). This capability to process and analyze multiple 
dimensions of athlete data simultaneously represents 
a significant advance beyond traditional statistical 
approaches.

Despite these technological advances, there 
remains a critical need for transparent and interpretable 
ML models in athlete selection processes. Current 
approaches often function as “black boxes” (Bodria et 
al., 2023; Hassija et al., 2024), making it challenging 
for sports practitioners to understand and trust the 
decision-making process. This limitation is particularly 
significant in highly critical applications (Bodria et al., 
2023), especially when evaluating prospective athletes 
with complex health considerations (Sharma et al., 
2023), as organizations need to clearly understand how 
various factors contribute to the model’s predictions. 
The lack of interpretability poses a substantial barrier 
to the widespread adoption of ML tools in practical 
talent identification settings.

This research addresses these challenges by 
introducing a rigorous methodology that combines 
robust classifiers with an XAI technique for post-

training (post-hoc) analyses of prospective athletes. 
To the best of our knowledge, no prior study conducts 
evaluations over ensemble classifiers to provide 
interpretation and recommendations to non-specialists. 
Our approach is applied to a comprehensive dataset of 
prospective athletes that uniquely combines traditional 
athletic metrics with broader socioeconomic and 
health metrics. The proposed pipeline leverages the 
superior predictive capabilities of ensemble methods 
while maintaining transparency through an XAI tool, 
thereby enabling practitioners to understand how 
different factors influence athlete selection decisions.

II.	 METHODS

The dataset used in this study is collected 
through activities that record comprehensive 
measurements of 200 prospective athletes (Sofro et 
al., 2024). These readings cover human physiology, 
socio-demographic, and health aspects, as described in 
Table 1. Descriptions for coded features are provided 
in Table 2. The anthropometric section of the dataset 
includes physical measurements such as height, weight, 
waist circumference, and Body Mass Index (BMI). 
Meanwhile, the socio-demographic portion captures 
a combination of social and demographic attributes 

Table 1 Dataset Samples

#ID TB BB IMT Wt A G EA EI JA JI SA SI F Db Hp Atlet

R1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0

R2 0 1 0 0 1 1 0 0 1 0 0 0 0 0 0 0

R3 1 1 0 0 1 1 1 0 0 0 1 0 1 0 0 0

Table 2 Features and Their Brief Description

Code Description Categorization

TB Height [<170 cm, ≥ 170 cm]
BB Weight [< 60 kg, ≥ 60 kg]
IMT BMI [< 25, ≥ 25]
Waist circumference (Wt) Waist length [< 85 cm, ≥ 85 cm]
Age (A) Age [< 21, ≥ 21]
Gender (G) Gender [male, female]
Edu_Father (EA) Father’s Education Level [school. college]
Edu_Mother (EI) Mother’s Education Level
Job_Father (JA) Father’s Occupation Sector [formal, informal]
Job_Mother (JI) Mother’s Occupation Sector
Salary_1 (SA) Father’s salary level [< 3, 3 – 6, ≥ 6] million IDR
Salary_2 (SI) Mother’s salary level
Finance (F) Family’s overall financial level [low, middle, high]
Diabetes (Db) Diabetes status [yes, no]
Hypertension (Hp) Hypertension Status
Atlet Screening result (success/failure)
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of respondents, including age, gender, parents’ 
education, occupation, and salary. The final segment 
of the dataset records respondents’ hypertension and 
diabetes test results.

In-person measurement and questionnaire 
sessions are conducted to record respondents’ data. 
Each team member surveys the participants, ensuring 
that the process yields complete data. No further 
preprocessing is performed aside from transforming 
the data into categorical variables. This categorization 
is a standard process in which items are grouped based 
on common criteria.

Several dataset samples are provided in Table 1, 
and the categorization criteria are outlined in Table 2. 
As shown in Table 2, standard athlete anthropometric 
measurements are used for respondents’ physiological 
measurements, while general metrics are applied for 
socioeconomic measurements. Overall, 51 of the 200 
respondents successfully become athletes, indicating 
a class imbalance within the dataset. This imbalance 
is quantified at a level (Buda et al., 2018) of ρ = 3.92 
and μ = 0.5.

Next, this study employs a pipeline-based 
approach, with special attention given to the data. 
The discriminative capability of learning algorithms, 
including ML, is often sensitive to the data that are fed 
and used during their assessment. Different subsets of 
data used for training, validation, and testing contribute 
to bias (Moreno-Torres et al., 2012). Hence, applying 
different data splits at each stage of model development 
produces varying performance outcomes.

Considering the factors mentioned above, the 
training mechanism conducted in this study is primarily 
designed to gather classifiers’ performance on the 

dataset. The development steps (see Figure 1) account 
for the dataset’s intrinsic structure and capture the 
classifiers’ performance. The pipeline starts from data 
collection and proceeds through model development 
and analysis. Since the analysis is conducted after 
training, it is considered a post-hoc analysis. 

In most ML implementations, the datasets used 
do not have a strict split between training and testing. 
The inherent distribution of the target class poses an 
additional challenge, as the dataset is imbalanced. 
Training on an imbalanced dataset introduces bias 
toward the majority class, which results in lower 
overall training and testing performance (Buda et al., 
2018).

This study employs four ensemble learning 
algorithms, primarily due to their robust performance 
(Khan et al., 2024; Mienye & Sun, 2022). These 
algorithms generate multiple models during training 
and then select the optimal one based on the model’s 
residual or gradient. Adaptive Boosting (AdaBoost, A), 
Gradient Boosting (G), and XGBoost (X) algorithms 
use a sequential learning strategy, while Random 
Forest (R) adopts a parallel strategy. A summary of 
these algorithms is presented in Table 3.

As described above, the training and testing 
process employed in this work is designed to capture 
classifiers’ performance across different data splits 
and shuffling procedures. To achieve this goal, ten 
sets of experiments with shuffled training–testing 
partitions are prepared. In each experiment set, 20% 
of the dataset is assigned as test data using a random 
process. The remaining portion of the dataset is used 
for training with stratified K-fold (SKFold) cross-
validation.

Figure 1 Methodology Used in this Study.

Table 3 Core and Training Mechanism of Ensemble Learning Algorithms

Alg. Type Strat. Learn Process Error Correction
R Bag Par. From a random bootstrap sample -
A

Boost Seq.
Focuses on misclassified samples Reweight

G Fit residual errors Immediate prediction fit
X Fit gradients loss Gradient fit via Regularization
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This fold arrangement preserves the target 
class distribution during cross-validation, ensuring 
that each training set contains a sufficient number of 
instances from each target class (Moreno-Torres et 
al., 2012; Szeghalmy & Fazekas, 2023). This choice 
is particularly crucial for the present dataset due to its 
imbalanced nature. Next, this study employs a nested 
configuration as an additional setup for robust model 
development, in which a separate SKFold is prepared 
on the training set. This additional setup is used in 
cross-validation alongside a hyperparameter search, 
and the process is detailed in the subsequent section.

Another component in the training pipeline 
is model fine-tuning, or hyperparameter search. All 
classifiers’ hyperparameters (see Table 4) are optimized 
using a grid search with F1 as the primary metric. 
This prioritization aims to select the best-performing 
classifier that balances precision and recall. Not all 
hyperparameters defined in Table 4 apply to every 
classifier due to operational differences. For instance, 
the Random Forest classifier does not accommodate 
the learning rate hyperparameter, while the max 
depth configuration does not apply to the AdaBoost 
classifier. Hyperparameters with tick (ü) apply to 
the corresponding classifiers. Upon completing 
the process, the most performant hyperparameter 
combination is selected and is used to train the entire 
training set. The trained classifier is then evaluated by 
obtaining predictions on the predetermined test set.

Finally, a post-training (post-hoc) analysis is 
conducted on the trained models using the test set to 
assess their performance during inference. SHapley 
Additive exPlanations (SHAP) (S. Lundberg & Lee, 
2017) are used to obtain insights into each feature’s 
contribution to a classifier’s prediction. This tool 
is grounded in a game-theoretic concept, namely 
Shapley values, which allocate a fair contribution to 
each feature. SHAP values measure the difference 
between the expected model output and the actual 
prediction attributed to each feature. SHAP values for 
a given model f(x) with the model’s baseline predictio 
ϕ0 are shown in Equations (1) and (2) below.

 		     		     (1)

			        		     (2)

	   (3)

Eq. 3 computes the marginal effect of adding 
i to S. Then, the weighted average of these marginal 
effects yields ϕi, the SHAP value for feature i, where N 
is the set of features in the dataset, with cardinality M, 
and S is a subset of N excluding feature i. The SHAP 
values can then be applied to interpret the classifier 
locally and globally. The local explanation is obtained 
for individual predictions, enabling users to understand 
why the classifier produces a decision. This approach is 
commonly represented in force plots (S. M. Lundberg 
et al., 2018). Meanwhile, the global explanation helps 
users observe overall feature importance and patterns 
occurring in model-dataset interaction.

III.	 RESULTS AND DISCUSSIONS

The evaluation process begins with specifying 
metrics to measure how the classifiers perform. 
Standard metrics stemming from fundamental 
evaluations, such as True Positive (TP), True Negative 
(TN), False Positive (FP), and False Negative (FN). 
These values are then used in further classification 
metrics, such as Precision (Prec), Specificity (TNR), 
Sensitivity (TPR), and F1. The Prec (Eq. 4) metric 
measures the proportion of relevant items among 
the retrieved items. Specificity, or TN Rate (Eq. 
5), measures the ratio of relevant items that are not 
returned. Sensitivity or TP Rate (Eq. 6) measures 
the ratio of relevant items returned from all relevant 
ones. Finally, F1 (Eq. 7) measures the predictive 
performance of a classifier, accounting for   Prec and 
TPR.

Precision (Prec) = TP/(TP + FP)			     (4)
Specificity (TNR) = TN/(TN + FP)		     (5)
Sensitivity (TPR) = TP/(TP + FN)		     (6)
F1 = 2 × Prec × TPR/(Prec + TPR)		     (7)

Table 5 summarizes each classifier’s 
performance during testing. All values, formatted 
in mean and standard deviation, are obtained from 
Stratified-K Fold (K=10). The highest metric achieved 
across K is in brackets. The best-performing classifiers 
from the training phase are then evaluated on the test 
data. The data partition, as described, varies across 
scenario sets. In each partition, the indices of training 
and test data are randomized and recorded (1) to ensure 

Table 4 Hyperparameters and Their Search Space during Fine-Tuning

Hyperparameters Search Space
Classifier

A G R X
n_estimators [50, 100, 150, 200, 250] ü ü ü ü
learning_rate [0.01, 0.05, 0.1 0.175, 0.2, 0.25] ü ü  û ü
max_depth [3, 4, 5, 6, 7, 8] û ü ü ü
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each classifier trains and tests the same set of data and 
(2) for reproducibility. Several classifiers may perform 
best in several scenarios but struggle in others. Such a 
condition motivates the use of the data indices shuffle 
and tuning process.

According to Table 5, all classifiers show 
similar performance across metrics and outperform 
the conventional classification approach presented 
by Sofro et al. (2024). Most performant classifiers 
developed in this study yield 2-3% higher Accuracy, 
3-30% higher Precision, and 60% higher Specificity. 
These results highlight the superior performance of 
the ML algorithms, considering the extensive training 
scenarios employed in this study.

Among the classifiers, the smallest difference is 
in accuracy, with a gap of 0.02 between the most- and 
least-performant classifiers. On average, the Random 
Forest classifier produces 0.76, while AdaBoost can 
produce 0.74. The former classifier provides a shorter 
interquartile range than the latter (see Figure 2). This 
indicates that Random Forest models’ accuracy tends 
to converge, i.e., the middle quartiles of experimental 
results differ slightly. However, this classifier produces 
an outlier, showing roughly at 0.68.

Next, there are notable differences in Specificity 
compared to accuracy, as the boxes in the plots differ 
in length. The highest and lowest mean Specificity 
differ by approximately 0.06. Random Forest achieves 
the best Specificity, averaging 0.97, while Gradient 

Boosting and XGBoost yield 0.87. In contrast to the 
Accuracy metric, Random Forest does not have any 
outlier results. This high Specificity suggests that 
all classifiers correctly classify the negative class. 
However, these good True Negative Rate (TNR) results 
are not followed by their counterpart, True Positive 
Rate (TPR) or Sensitivity. All classifiers struggle to 
achieve satisfactory results, with the lowest mean of 
0.26 and the highest of 0.42. These exhibits suggest 
that class imbalance affects classifiers' performance, 
leading them to lean towards one class (Buda et al., 
2018), i.e., prospects failing to become athletes.

The F1 metric produced by all classifiers shows 
a noticeable gap. As seen in Table 5, the XGBoost 
classifier achieves the highest score across the 10-fold 
with 0.67, comparable to Gradient Boosting with 0.64. 
Despite the XGBoost’s performance, it is preferable 
to choose Gradient Boosting as the most-performing 
classifier due to its higher mean F1 score. The higher 
the mean F1 score, the more likely the classifier is 
to produce consistent results, leading to dependable 
performance.

Further, the Gradient Boosting achievement 
reflects its inherent strategy, in which weak learners 
are sequentially combined to form a strong learner 
through an iterative process. The algorithm utilizes 
an additive approximation. Therein, a weighting 
mechanism is employed to obtain more accurate 
generalization (Mienye & Sun, 2022).

Table 5 Numerical Classifiers’ Performance Over Test Sets.

Classifier
Metrics

Accuracy Specificity Sensitivity Precision F1

AdaBoost (A) 0.74 ± 0.03 (0.80) 0.89 ± 0.05 (0.97) 0.30 ± 0.13 (0.6) 0.49 ± 0.15 (0.75) 0.36 ± 0.12 (0.57)
GradientBoosting (G) 0.75 ± 0.07 (0.82) 0.87 ± 0.08 (1.0) 0.42 ± 0.16 (0.7) 0.56 ± 0.23 (1.0) 0.46 ± 0.15 (0.64)
Random Forest (R) 0.76 ± 0.04 (0.80) 0.93 ± 0.04 (1.0) 0.26 ± 0.13 (0.6) 0.56 ± 0.2 (1.0) 0.34 ± 0.13 (0.60)
XGBoost (X) 0.75 ± 0.05 (0.85) 0.87 ± 0.05 (0.93) 0.40 ± 0.18 (0.7) 0.49 ± 0.13 (0.75) 0.43 ± 0.15 (0.67)

Figure 2 Boxplots for the Performance of Classifiers, i.e., AdaBoost (A), 
Gradient Boosting (G), Random Forest (R), and XGBoost (X).
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Moving on to the models’ interpretability, this 
study employs local explanation activity using SHAP. 
As seen in Figure 3, a pair of SHAP values on the 
trained Random Forest classifier. This illustration 
compares the classifier’s decision for a record in the 
test set and indicates whether the predicted target 
class is 0 (prospect failed to become an athlete) or 
1 (otherwise). To obtain this level of detail, a pair of 
force plots showing the contribution of all features to 
the decision to target class 0 (see Figure 3a) and class 
1 (see Figure 3b) is presented. The ground truth for 
this instance is 0.

As seen in Figure 3a,  f(x) = 0.95, indicating a 
push from the base value ≈ 0.72. Therein, the arrow 
from left to right indicates increments to the base 
value. Likewise, the opposite direction in Figure 3b 
shows decrements made to the base value. The 
base value ( ) represents the classifier’s 
average (expected) output across the dataset for the 
corresponding record. Since the ground-truth label 
for the testing data in Figure 3a is 1, the force plot 
illustrates the features’ contributions, leading to a 
prediction close to the label (1). 

It is also worth noticing in Figure 3a that 
all features are mirrored to those in Figure 3b. For 
instance, the feature contributing the highest SHAP 
value, i.e., Waist length (Wt), is placed between 
Weight (BB) and Edu_Mother (EI) feature. Also, the 
length of each arrow reflects the impact made by the 
corresponding feature, where the bigger the impact, 
the longer the arrow’s length. 

Next, this study conducts Global Explanation 
evaluation and feature importance assessment. As 
described in the Model Performance Comparison 
part, there are several experiments, each with shuffled 
training and testing indices. The   index setup ensures 
that all classifiers receive the same data configuration, 
ensuring fair comparisons. Then, the optimal 
hyperparameter configuration is applied to classifiers 
before conducting evaluation.

During the global explanation assessment, 
two models are selected based on their performance, 
not solely on the best-performing aspect. XGBoost 
is chosen because it achieves the highest F1 score 
across 1 of 10 test sets. Meanwhile, Random Forest is 
chosen for its performance on Accuracy, Specificity, 
and Precision, but it falls short on the mean F1 score. 
Besides, Random Forest is the only algorithm out of 
the four with parallel model generation. 

Figure 4 illustrates the global performance 
of both the XGBoost and Random Forest classifiers 
on the test data. In contrast to the local explanation 
step, this step attempts to capture the overall classifier 
behavior contributed by each feature. Hence, the 
beeswarm plot shown in Figure 4 shows all features 
and their contribution in each test data entry. Table 6 
complements this information by summarizing key 
features based on the mean (|SHAP value|).

In addition to the value assessments above, one 
can use a clustering mechanism considered during the 
testing phase, along with SHAP values, to identify 
redundant features. The clustering herein is conducted 

Figure 3 A Pair of Local Explanation Results Utilizing SHAP Force Plot 
on the Random Forest Classifier, Showing How the Trained Classifier Produces f(x) 

for Target Class (a) 0 and (b) 1.
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to reveal inherent structure via a hierarchical method 
provided by the SHAP tool. This evaluation aims to 
identify which features in the dataset are relatively 
independent. Also, this process investigates any 
coupling/relation between features, leading to 
redundant contributions. 

Alternatively, such a process reveals which 
features are closely related. The threshold value called 
clustering cut-off, shows pairs or groups of features 
with clustering distance up to the threshold value. The 
clustering distance ranges from 0 to 1, where 0 means 
very close or duplicate, and 1 indicates independent. 
The clustering cut-off value herein is 0.75 because no 
pairs were found during our evaluations. Such a value 
is relatively conservative, since it is close to 1. The 
value accommodates leaf clusters with a fairly large 
margin. This setup also allows SHAP to reveal more 
structure in classifiers.

According to Table 7, tree-based classifiers, 
such as Gradient Boosting, Random Forest, and 
XGBoost, indicate that a pair of features is labeled as 
redundant by SHAP. However, this label is obtained 
by setting the clustering cut-off to 0.75, which is 
conservative. On the other hand, AdaBoost returns no 
redundant features that fall within this threshold. This 
implies that the classifier considers all key features 
during testing.

IV.	 CONCLUSIONS

This study examines the performance of several 
classifiers in predicting successful athletes based 
on social, demographic, and physical measurement 
records. Through nested stratified cross-validation, 
the study ensures a reliable and unbiased evaluation of 
model performance and finds that Gradient Boosting 

Figure 4 A Sample of Feature Importance Analysis on Trained Classifiers: 
(a) XGBoost and (b) Random Forest.

Table 6 Top 5 Features and Their Mean(|SHAP_value|).

Classifier
Feature

1 2 3 4 5
A Wt (0.05) TB (0.05) BB (0.04) EI (0.03) Hp (0.02)
G EA (0.12) IMT JA (0.07) TB (0.06) SA (0.06)
R G (0.06) TB (0.05) IMT (0.05) SI (0.04) Wt (0.04)
X G (0.03) TB (0.08) IMT (0.07) BB (0.06) Wt (0.05)

Table 7 Redundant Features with Clustering Cut_Off = 0.75

Classifiers
Feature

#1 #2
AdaBoost N/A N/A
Gradient Boosting Finance Gaji_2
Random Forest Gaji_2 Finance
XGBoost Gaji_2 FinanceIN
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is the most consistent classifier across the test set, 
as indicated by the mean F1 score. This classifier 
also shows negligible differences across other key 
performance metrics.

Alongside this finding, this work utilizes an 
explainable AI tool. The use of SHAP for explainable 
AI provides valuable insights into model decisions, 
reveals critical factors that influence prediction 
outcomes, and enhances the interpretability of 
machine learning models. Experimental results 
highlight key features that influence predictions, 
particularly those dominated by the anthropometric 
group, such as Gender, Height, Weight, BMI, and waist 
length. Meanwhile, only a few classifiers consider 
demographic features, such as parents’ occupation 
and salary, to be influential. Furthermore, only one 
classifier identifies the hypertension feature as a 
key determinant during the prediction phase. These 
contributions have practical implications for various 
stakeholders, including educational institutions and 
the sports industry, which seek data-driven approaches 
for talent identification. 

Despite these contributions, this work is limited 
to data from the pre-selection process. Data collected 
during athlete admissions can reveal more valuable 
relationships between performance and outcomes. In 
addition, physiological measurements obtained during 
physical tests are missing, leaving the connections 
between athletes’ physical condition and on-field 
performance underexplored. 

To build on this work, future studies investigate 
various combinations of data types, including 
categorical and numerical features, along with 
additional feature groups to improve detection and 
provide a more comprehensive perspective. The 
incorporation of numerical data enables the observation 
and analysis of regression-based problems. In addition, 
integrating secondary data sources from similar sports 
serves as a substitute for missing data and increases 
the overall dataset size.
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