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Abstract - This research evaluates the
performance of Artificial Neural Network (ANN)
models in forecasting temperature at Djuanda Airport,
comparing them with the traditional Autoregressive
Integrated Moving Average (ARIMA) model and a
hybrid ARIMA—ANN approach. Although statistical
models such as ARIMA are widely applied, their
capacity to capture nonlinear dynamics in tropical
climate conditions is limited, particularly when the
data exhibit irregular fluctuations that linear models
cannot adequately represent. Forecasting temperatures
in tropical airport settings, which is crucial for flight
planning, operational safety, and the reliability of
aviation operations, remains relatively underexplored.
This gap underscores the importance of alternative
modeling techniques that can effectively address
nonlinear relationships. Using one year of observed
data, the models are evaluated with three accuracy
metrics: Mean Absolute Error (MAE), Mean Absolute
Percentage Error (MAPE), and Root Mean Squared
Error (RMSE). The ANN model achieves the lowest
error values (MAE 0.7630, MAPE 2.7067%, RMSE
1.0074) compared to both ARIMA and hybrid
approaches. The metrics and the testing graph
collectively indicate that ANN has a stronger ability
to capture nonlinear temperature dynamics in tropical
contexts. Nonetheless, the findings must be interpreted
with caution due to the limited dataset and single
case study. These limitations highlight the need for
extended data and alternative architectures to improve
forecasting accuracy and strengthen support for safer
aviation operations.
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I. INTRODUCTION

Weather and climate have a profound impact
on human life, particularly in regions with dynamic
atmospheric conditions. Weather refers to short-term
variations in atmospheric conditions over a small
area, whereas climate represents the average weather
over a more extended period and a broader region. In
recent years, global climate change has made weather
patterns increasingly unpredictable, particularly
in tropical areas such as Indonesia (Leontinus,
2022). This challenge is further intensified by rapid
urbanization and the urban heat island effect, which
contribute to higher urban temperatures than those
in the surrounding areas. As one of the largest cities
in Indonesia, Surabaya faces erratic temperature
changes. Additionally, data from the Meteorology,
Climatology, and Geophysical Agency (BMKGQG)
indicate an increasing trend in average temperatures
in Surabaya over the past decade, which is attributed
to the combined effects of human activities and global
climate change (Wicaksono, 2024). This condition
affects the comfort of community life, infrastructure
planning, and energy needs in the region.

In addition to social and environmental impacts,
temperature forecasting is crucial for aviation safety
and efficiency. Air transportation plays a vital role in
supporting Indonesia's economic growthandpopulation
mobility. Djuanda International Airport serves as
the main gateway to eastern Indonesia, offering both
domestic and international flights. Meteorological
conditions, particularly air temperature, are critical
for aircraft operations. Rising temperatures reduce
air density, which in turn decreases aircraft lift and
directly affects the takeoff and landing processes
(Razzaaq et al., 2024). By combining the maximum
air temperature and air pressure, the density altitude
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can be calculated, providing essential information
for flight operators to ensure safe operations (Kania,
2022).

Despite its importance, forecasting in
tropical climates remains challenging because
temperature data often exhibit irregular and nonlinear
fluctuations. Traditional statistical models, such
as the Autoregressive Integrated Moving Average
(ARIMA), are designed to capture linear patterns
but may not adequately represent the complexity
of temperature dynamics in tropical regions. This
limitation underscores the need for approaches that
can handle both linear and nonlinear behaviors in
time-series data. Artificial Neural Networks (ANN)
have emerged as a promising alternative owing to their
ability to approximate nonlinear functions and capture
hidden patterns in time-series data.

Temperature data often fluctuate irregularly,
underscoring the need for effective modeling methods.
One such approach s the application of ANN, including
hybrid models that combine ARIMA with ANN. This
hybrid approach is expected to improve prediction
accuracy by compensating for the weaknesses of
each individual method, thereby creating a more
adaptable model for forecasting weather conditions
in Surabaya. Previous research demonstrates that an
ANN utilizing the Backpropagation Neural Network
technique, which incorporates rainfall and wind
speed as variables, produces minimal error and is
identified as the most effective model (Aruan et al.,
2021). In addition, research conducted by Aleksandra
has determined daily minimum and maximum
temperature forecasts with 96% conformity to actual
measurements using an ANN in Poland, which is
located in a temperate transitional climate zone with
compound climate variability (Baczkiewicz et al.,
2021). In contrast, research conducted by Thsan et al.
(2024) employ the Hybrid ARIMA-NN method to
forecast rainfall in Makassar City, developing a model
that captures linear patterns in time-series data while
simultaneously addressing nonlinear patterns, thus
generating predictive values that are close to the actual
observations with relatively low error rates.

This research focuses on accurately predicting
temperatures in the Djuanda International Airport
area, which experiences dynamic weather conditions
and varying data distributions. By utilizing historical
meteorological data from the weather station at
Djuanda Airport, we identified the most effective
models, including artificial neural networks, ARIMA,
and hybrid approaches that combine both ARIMA and
artificial neural networks. These models are expected
to deliver high-accuracy weather predictions, which
are vital for supporting flight operations and ensuring
safety at Djuanda Airport.

Furthermore, the solutions developed in
this research can be applied to other tropical cities
facing similar challenges. By enhancing temperature
prediction capabilities, we can implement more
targeted mitigation and adaptation measures to address
climate change, ultimately promoting environmental

sustainability and improving the overall quality
of life within the community. This aligns with the
achievement of Sustainable Development Goal (SDG)
13, which focuses on climate change by ensuring that
communities can adapt to significant temperature
fluctuations, making daily life safer and more
comfortable.

II. METHODS

This research employs daily temperature data
from Djuanda Airport, Surabaya, obtained from the
National Oceanic and Atmospheric Administration
(NOAA) database (NOAA, 2024). The dataset spans
from December 2023 to December 2024 and consists
of approximately 374 daily observations expressed
in degrees Celsius. These data serve to identify
temperature variation patterns and provide the basis
for developing and evaluating forecasting models
that capture short-term dynamics relevant to aviation
operations and local climate conditions.

An ANN is a structure designed to solve certain
types of problems by mimicking the way the human
brain solves problems. These structures are designed
to address specific issues, particularly those involving
high-dimensional, nonlinear data, by emulating
the problem-solving methods of the human brain
(Schmidgall et al., 2024). The performance of ANNs
is highly dependent on the network architecture and
the relationship between the neurons. Neurons are
arranged in several layers that form the basic structure
of the brain. In general, an ANN consists of three main
layers: the input layer, which receives data; the hidden
layer, which processes information; and the output
layer, which produces predictions or decisions based
on the processed data, as shown in Figure 1 (Saputra
et al., 2023).

Figure 1 General Model Neural Network

One of the crucial aspects of a Neural Network
is its capacity to detect nonlinear patterns in data. The
detection of nonlinearity can be evaluated using the
Terasvirta Test, which is developed based on neural
network models. The Terasvirta Test, first introduced
by Terasvirta in 1993, follows a systematic procedure
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(b) is then calculated The next step is to calculate the
test statistic y> = nR?: ;{f,m} The null hypothesis
is that the model has a linear pattern. In contrast, the
alternative hypothesis is that the model has a nonlinear
pattern, with the conclusion rejecting H if ¥l ;{:,m}
or p-value < a.

In ANN, the data used is normalized data, which
involves scaling the data to the range of 0,1 (min) to
1 (max) using the binary sigmoid formula (Chandra
et al., 2022), as shown i in Equation (1). With y, is the
observat1on data and v,' is the normalized data. The
estimated result of ANN ¥ must be converted into
the form of data before normalization (¥;) through the
denormalization process (Sakti et al., 2024) shown in
Equation (2).

An activation function is used to perform the
transformation in an ANN. Activation functions are
used to perform transformations in Artificial Neural
Networks. Commonly used activation functions
include the Sigmoid Function and the Tanh Function,
as shown in Equations (3) and (4).

Sig(x) = 1+e—% (3)

—.'K

Tanhi{x) = = @

The activation function used depends on the
nature of the data and the type of output desired
(Montgomery et al., 2015). ANN models require a
training process, in which parameters such as weights
and biases are estimated by minimizing the overall
squared error. One popular algorithm used to train
ANNS is the backpropagation algorithm, which is a
form of the steepest descent method. The algorithm
for backpropagation consists of four steps, which is
the Initialization, Activation, Weight Training, and
Iteration steps (Novita & Putri, 2021).

The initialization step provides initial values for
the parameters required by the neural network, such
as weights and thresholds. The output units (y,, k =
2, 3,..., m) receive the target pattern from the learning
input pattern and calculate the error information, as
shown in Equation (5). Then calculate the weight
correction (to correct the value w k) shown in Equation
(6). Also, calculate the bias correction (to correct the
value of w,,) as shown in Equation (7). Subsequently,
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The next step is activation, which determine
the actual output in the hidden layer and calculate the
exact output in the output layer. The hidden units (Z, j

=1, 2,3, ..., p) sum the input deltas of the units in the
layer above them, as shown in Equation (8). This value
is multiplied by the derivative value of the activation
function to calculate the error information displayed in
Equation (9). Then calculate the weight correction (to
correct the value of v, ) shown in Equation (10). Then
also calculate the bias correction (to correct the value
of v ]_) as shown in Equation (11).

oo " 5

oiny= ) S ®)
Sin; - f'(Zing) ©)

Avy = ad;x; (10)

Ave; = a5 (1)

The third step is weight training, which calculate
the error gradient at the output and hidden layers. The
output units (¥, k=1, 2, 3,..., m) correct their biases
and weights (j =1, 2, 3,..., p) using the formula shown
in Equation (12). The h1dden units (Z j=1,2,3,.,
p) correct their biases and weights (i = l 2,3,..,n)as
shown in Equation (13). Lastly the fourth and ﬁnal step
is iteration. During this step, the process is repeated
(iteration) until the minimum error is obtained.

wi(new) = wy(old) + Awp, (12)

(13)

The ARIMA model is a time series analysis
method used to forecast future data based on past data.
Several stages are involved in the ARIMA model,
including identifying time series patterns, checking
the significance of parameters, the diagnostic test stage
(which involves normality and white noise tests), and
the prediction or forecasting stage (Pradana et al.,
2022). The ARIMA model assumes that time series
data are stationary in terms of mean and variance,
meaning that the average variance of the data remains
constant (Amaly et al., 2022). The identification of

v (new) = v;;(old) + Avy;
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time series data stationarity in variance can be assessed
using the Box-Cox Plot, which indicates a rounded
value of 1 (Nanlohy & Loklomin, 2023). Concurrently,
the stationarity of time series data in the mean can be
identified through observations on the Autocorrelation
Function (ACF) plot and the Augmented Dickey-
Fuller (ADF) test, which determines whether a unit
root is present in the model. The ADF test statistic is
shown in Equation (14).

ADF = ﬁi

SE (B.) (14

The null hypothesis in the ADF test is that the
data are not stationary in the mean, and the alternative
hypothesis is that the data are stationary in the mean,
with the criteria to reject H, if p-value < a The
differencing process is used to make the data stationary
in terms of the mean, and the Box-Cox transformation
is employed to make the data stationary in terms of
the variance (Guobadia & Uadiale, 2024). The Box-
Cox transformation is a power transformation on the
response, where the transformation is 2,'-:* ,where A, often
referred to as the shape parameter, is the parameter that
needs to be estimated (Maulana & Hajarisman, 2023).
The ARIMA model aims to determine the statistical
relationship between the variable to be predicted and
its historical values (Geurts et al., 1970). The ARIMA
(p, d, q) model has the following general form, as
shown in Equation (15).

6,(B)(1 — B)%y. = 8,(B)a, (15)

With B as the backshift operator, at is the error
at time ¢, p is the AR order, g is the MA order, and d
is the number of differencing processes. In ARIMA,
there is a diagnostic test that consists of a white noise
test and a normality test on the residual model. The
white noise test uses the L-Jung Box test to determine
whether the model residuals follow a white noise
distribution. The test statistic Q is shown in Equation

(16).

i 2
B P
Q= nn+ Z}ZK:ﬂl —k (16)

Where 7 is the amount of data, £ is the lag, K is
the maximum lag, and p, is the lag k autocorrelation
function value. The null hypothesis in the white noise
test is that the residuals follow a white noise
distribution, and the alternative hypothesis is that the
residuals do not follow a white noise distribution. If

the g = 2 or p-value < a, then the null
Q>x f;—f k-p—q)

hypothesis is rejected (Katabba & Estefani, 2023).
The normality test uses the Kolmogorov-Smirnov test
to determine whether the residuals have a normal
distribution. The test statistic D is shown in Equation

(17).

D = Sup,|F,(x) — Fy(x)l (17)

D is the test statistic, F (x) is the cumulative
value based on the data, and F(x) is the cumulative
probability value under HP(Z < Zt). The null
hypothesis in the normality test is that the residual
data are normally distributed, and the alternative
hypothesis is that the residual data are not normally
distributed. If D > Da, with Da being the critical value
of the Kolmogorov-Smirnov test or p-value < a, then
the decision is to reject H with the conclusion that the
residual data is not normally distributed (Katabba &
Estefani, 2023).

In addition to the fulfilled diagnostic test, the
selection of a good ARIMA model is based on a low
value of the Akaike Information Criterion (AIC). AIC
is a statistical criterion that balances model fit and
complexity. AIC specifically emphasizes the trade-
off between goodness of fit and model complexity to
achieve optimal estimation (Pangaribuan et al., 2023).
The AIC formula is shown in Equation (18), where
¥.p is the residual covariance estimation matrix for the
AR(p) model, T is the number of residuals, and K is
the number of variables (Muslihin & Ruchjana, 2023).

— 2 .
AlCi = log|¥,,| +=pK-

Zhang, as cited in Laily et al. (2021), developed
a hybrid model to enhance forecasting accuracy
by considering several key factors. First, selecting
a forecasting method that aligns with the specific
characteristics of the dataset is often a challenging
task. Second, real-world time series data are not
purely linear or nonlinear but are a combination of
both. Third, various studies have indicated that no
single forecasting method is universally effective
under all conditions. Therefore, hybrid models
integrate both linear and nonlinear components to
improve prediction accuracy. One widely used hybrid
approach is the Hybrid ARIMA-NN, which combines
the ARIMA model to handle stochastic and nonlinear
patterns (lhsan et al., 2024). In general, the Hybrid
ARIMA-NN model is presented in Equation (19),
where L, represents the linear component derived from
the ARIMA model.

ye=L+N; (19)

Meanwhile, N, is a nonlinear component
obtained by modeling the residuals of these two
components. These two components are estimated
from the data. First, the ARIMA model is used to
model the linear component, so the residuals from the
linear model will only contain nonlinear relationships.
Suppose e, is the residual at time t from the linear model
shown in Equation (20), where L. is the estimated
value at time ¢ obtained from the relationship.

Gy =¥~ Er (20)

142 ComTech: Computer, Mathematics and Engineering Applications, Vol. 16 No. 2 December 2025, 139—151



Residuals play a crucial role in determining
the adequacy of a linear model. A linear model is
considered inadequate if a linear correlation structure
persists in the residuals. However, residual analysis
is unable to detect nonlinear patterns in the data.
Currently, there is no general diagnostic test for
nonlinear autocorrelation relationships. Therefore,
even if a model has passed the diagnostic test, it may
still be inadequate if the nonlinear relationship has
not been adequately modeled (Ihsan et al., 2024).
The presence of significant nonlinear patterns in the
residuals indicates the limitations of the ARIMA
model. By modeling the residuals using an ANN,
nonlinear relationships can be found. With n nodes,
the ANN model for the residuals is given by Equation
(21), where f'is a nonlinear function determined by the
neural network, and ¢ represents a random error.

€ = f{ar—j_:ar—::---:ﬂr—n]"' Er (21)

So, if the selection of function f is not
appropriate, the error (g, will be random. Therefore,
identifying the right model is crucial. Suppose the
approximation of the above equation is denoted as ﬁr,
then the joint approximation can be shown in Equation
(22).

Ve = Er"'ﬁr (22)

In selecting the best model, performance
evaluation is crucial to determine the extent to which
the model can provide accurate predictions. Various
metrics are used to measure the error rate and accuracy
of the model. One commonly used approach is to
calculate the error value. Data accuracy parameters in
detecting errors include Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), and Root
Mean Squared Error (RMSE) (Hilal et al., 2024).

Mag = Ze=alve =5l
n (23)
100\ % 7
maps = (S5) ) [
= Tt (24)
|l n
RMSE= |~) (v~ 7))’
y =1 25)

With y, is the actual data at time #, ¥ is the
predicted data at time ¢, and » is the number of data
observations. A model has excellent criteria if the
MAPE value is < 10% and good if the MAPE is
between 10%-20%. The following outlines the stages
of the analysis method used in this research.

The ANN analysis begins with examining
the descriptive statistics to understand the Dbasic
characteristics of the temperature data. Next, the
Terasvirta test is applied to check whether the data
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follow a linear or nonlinear pattern. The data are then
split into training and testing sets in a 90:10 ratio. A
Partial Autocorrelation Function (PACF) plot is used
to identify the best lag value k. Afterward, the data are
normalized using the min-max method to improve the
performance of the neural network. The normalized
data are combined with lagged data by shifting the
time base back by k to prepare the input features. A
neural network model is then defined, including its
parameters. A trial-and-error process is conducted
to test different numbers of hidden nodes using the
sigmoid activation function. Each configuration is
evaluated by predicting the testing data, and the best
number of nodes is selected based on the lowest MAE,
MAPE, and RMSE values of the denormalized results.
The structure of the final ANN model is visualized,
and equations are developed to describe how input
data move through the layers to produce the output.

The ARIMA analysis begins by verifying
whether the data is stationary. If the variance is not
stable, a Box-Cox transformation is applied. If the
mean is still not stable after the transformation,
differencing is used to stabilize the data. Once the data
is stationary, ACF and PACF plots are used to identify
the best ARIMA model. After selecting a model, the
significance of its parameters is tested. Then, the
residuals are checked to ensure they behave like white
noise and are typically normally distributed. The best
model is chosen based on the principle of parsimony,
which means selecting the simplest model that fits
well. Finally, the model is used to make forecasts,
and its accuracy is measured using MAE, MAPE, and
RMSE based on actual data.

The hybrid ARIMA-NN process starts by
calculating residuals, which are the differences
between actual data and the ARIMA model’s predicted
values. These residuals are used as training data. ACF
and PACF plots of the residuals are then used to choose
input variables based on significant lags. The residual
data is normalized using min-max normalization, and
lagged versions are created by shifting the time base
back by kk. Next, a neural network model is defined
with its parameters. This network is used to predict the
residuals for the testing data. The predicted residuals
are added to the ARIMA forecasts to get the final
predictions. The best model is chosen by comparing
MAE, MAPE, and RMSE values for different neural
network configurations. Finally, the structure and
equation of the hybrid ARIMA-NN model are created
to describe how the final predictions are made.

III. RESULTS AND DISCUSSIONS

Descriptive statistics are applied to identify the
general characteristics of the data. In this research,
descriptive analysis is performed using time series
plots to show the data patterns. The data visualization
is presented in Figure 2.

Based on Figure 2, the air temperature at
Djuanda Airport, Surabaya, has exhibited substantial
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Time Series Plot of Temperature
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Figure 2 Time Series Plot

0.50-

Figure 3 PACF Plot

fluctuations over the past year. The temperature
generally ranged between 25.50°C and 32.10°C, with
a mean of 28.82°C and a variance of 1.09°C. Irregular
extreme increases and decreases indicate considerable
variability in temperature dynamics throughout the
year.

For the ANN model, the selection of input lags
is chosen based on the PACF. PACF is widely used
to detect the direct relationship between a series and
its lagged values after controlling for the intermediate
lags, which makes it appropriate for identifying
informative predictors. PACF plots are depicted in
Figure 3.

Based on Figure 3, and using 95% confidence
bounds as the significance criterion, the PACF shows
notable spikes at lags 1, 2, 4, and 12. These lags
are incorporated as input features for the ANN to
ensure that the model captures statistically relevant
temporal dependencies rather than relying on arbitrary
lag choices. Before implementing the model, the
Terasvirta test is applied to examine whether the data
follows a linear or nonlinear structure. The results of
the Terasvirta test are presented in Table 1 and provide
important evidence for selecting the appropriate
modeling approach.

144

Table 1 Terasvirta Test

Prob Conclusion
X 12.46
Reject /{, data is nonlinear
p - value 0.002

According to Table 1, the data exhibit a nonlinear
pattern, which emphasizes the necessity of using an
activation function in the modeling process. Prior to
implementing the artificial neural network (ANN)
model, the data undergoes min-max normalization,
as described by the formula in Equation (1). Table
2 presents the values before and after the min-max
normalization process.

Table 2 Normalization result

Index Actual Normalization
1 26.4 0.2091
2 28.9 0.5121
373 29.3 0.5606
374 27.9 0.3909
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Table 3 displays the descriptive statistics for
both the raw and normalized data. The comparison
shows that normalization changes the mean, variance,
minimum, and maximum values. These results
confirm that normalization adjusts the data scale while
preserving the number of observations.

Table 3 Descriptive Statistics

N Mean Var Min Max

Raw 374 28.82 1.09 2550 32.10
Normalized 374  0.5019 0.0176 0.1 0.9

The algorithm employed in this research is
backpropagation, which is widely used for training
ANN due to its ability to minimize error through
iterative weight adjustments. To construct the ANN
model, several parameters are applied, ensuring that the
network architecture is tailored to the characteristics
of the dataset. These parameters are systematically
presented in Table 4, providing a clear overview of the
model configuration used in the analysis.

The number of hidden neurons is selected
within the range of 2 to 7. A relatively small number
of nodes is chosen due to the limited dataset size, as a
simpler architecture is more appropriate for mitigating
overfitting and maintaining the model’s generalization
capability. The ANN model output, generated using
the parameters presented in Table 4, is subsequently
converted back to the original units through
denormalization using Equation (2). Following this
process, MAE, MAPE, and RMSE are calculated
based on the output and testing data for each trial
node, with the results presented in Table 5.

Table 4 ANN Parameter

Parameter Value Description
Input layer 4 (lagl,2,4,12)  Based on PACF
Hidden layer 2,3,4,5.6,7 Trial Error
Output layer 1 Predicted value
Learning rate 0.001
Activation Sigmoid, Tanh Trial error
function

) £ .
f-"” _ "_(E W.‘.l}xz- + brl}); =123
j =1 ’

Table 5 MAE, MAPE dan RMSE Value

Nodes MAE MAPE % RMSE

Sigmoid 2 0.7486 2.6585 1.0049
3 0.7031 2.4953 0.9684

4 0.7260 2.5770 0.9887

5 0.7472 2.6517 1.0160

6 0.7405 2.6262 1.0032

7 0.7339 2.6035 0.9932

Tanh 2 0.7539 2.6751 1.0077
3 0.7496 2.6623 1.0057

4 0.7496 2.6600 1.0016

5 0.7672 2.7251 1.0498

6 0.7550 2.6782 1.0036

7 0.7381 2.6196 1.0101

Based on Table 5, the ANN model with a sigmoid
activation function and three nodes shows the best
performance, as indicated by the lowest MAE, MAPE,
and RMSE values. The resulting optimal network
architecture is 4-3-1. A graphical representation of this
architecture is provided in Figure 4. Based on Figure
4, the model equation is shown in Equation (26).

Next, ¥" will be denormalized using Equation
(3). The first step in ARIMA modeling is to examine
the stationarity of the time series data. The ACF plot
shown in Figure 5 displays a gradual dying-down
pattern. This pattern indicates that the data is not yet
stationary in the mean.

However, the data maintains a constant
variance, as indicated by the rounded values on the
control charts, which exceed 1. This result suggests
that while the series requires differencing to achieve
mean stationarity, the variance remains stable and
does not require transformation. The corresponding
visualization is presented in Figure 6, which illustrates
the stability of variance across the observed data.

The differencing process is essential for
achieving mean stationarity. In this research, first-order
differencing is applied to obtain mean stationarity. This
conclusion is supported by the ACF and PACF plots in

7Y = o ((7-1(0.17612) + y_,(1.01635) + y/_,(~2.39467) + y{_,,(0.34512)) — 1.29603

7 = o ((-1(~080982) +y/_,(~0.6079) + y/_,(~0.57186) + y/_,,(1.02736) ) + 0.52203)

" = o ((v_1(~12287) + y/_,(~0.88003) + y/_,(0.01151) + 3/_,,(0.80882) ) — 0.5485

'

=
Il

3 . .
] (Z -[._L_rk'-."-'f‘u tput) k'..j-:' + b {outp ur})
k=1

v’ =(-01819175" — 1.062857, " — 0796527, " ) + 1.00944
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(26)
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Figure 7, as well as by the results of the Augmented
Dickey-Fuller (ADF) test, which yield a p-value of
0.010, as presented in Table 6.

Table 6 ADF Test
Prob Conclusion
-9.90 .
X 9.907 Reject , H,
p - value 0010 Data is stationary in mean

After achieving stationarity in the mean,
ARIMA modeling is conducted with a differencing
order of d = 1. The estimation results include the
significance of the parameters, the white noise test,
and the AIC values. These results for each ARIMA
model are summarized in Table 7.

Based on Table 7, the best-fitting model is
ARIMA (1,1,1). Although all models indicate a non-
normal distribution, the Central Limit Theorem (CLT)
suggests that with a sufficiently large sample size, the
distribution can be treated as approximately normal.
The parameter estimates of the selected model are
provided in Table 8. Based on Table 8, the equation of
the ARIMA (1,1,1) model is shown in Equation (27)
where y, is time series data and a, is the error.

Figure 4 Model Architecture
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Figure 5 ACF Plot

146 ComTech: Computer, Mathematics and Engineering Applications, Vol. 16 No. 2 December 2025, 139—151



Table 7 Model Selection Table 8 Parameter Coefficient

ARIMA White Parameter  Coefficient  Std. Error p-value
Parameter . AIC
(p,d,q) Noise ARI 0.5128 0.0636 0.0000
(1,1,0) Significant v 754.57 MAL1 -0.9042 0.0305 0.0000
1,1,1) Significant v 718.66
(0,1,1) Significant \ 744.30 (1 -¢,B)1—-Bly, =(1+8,Bla,
2,1,1) Insignificant \ 720.39 (1-051288)(y, —y,_,) = (1 — 0.9042B) a,
(1,1,2) Insignificant \ 720.47

¥ =15128y,_; — 05128y, ; + a; — 0.9042a,_; (27)

Lower CL
A
0 [using S5.0% confidence)
Estimate 358
0575 Lower CL 100
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Rounded Value 4,00
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Figure 7 (a) ACF and (b) PACF Plot after Differencing
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The ARIMA (1,1,1) model achieves an MAE
of 1.5249, an MAPE of 5.5389%, and an RMSE of
1.9338, indicating excellent prediction performance.
The first step in constructing the hybrid ARIMA-ANN
model is to examine the linearity of the residuals from
the ARIMA (1,1,1) model. This step ensures that the
residuals contain nonlinear patterns that the ANN can
capture. The test results are presented in Table 10.

Table 9 Terasvirta Test

Prob Conclusion
X 8.778 Reiect H
ejec
p - value 0.012 ! 0

The residuals of the ARIMA (1,1,1) model
in Table 9 show a nonlinear pattern. This indicates
the need for an activation function, such as the one
in the ANN model, to capture the underlying data
structure. To determine suitable inputs, the PACF of
the residual series is examined, as it detects remaining
autocorrelations not explained by the linear ARIMA
structure.

Figure 8 PACF Plot of Residual ARIMA (1,1,1)

The PACF plot in Figure 8 shows a single
significant spike at lag 18, indicating residual
dependence at this lag. Accordingly, lag 18 is selected
as the sole input feature for the ANN, ensuring that
the hybrid model focuses on statistically significant
nonlinear dependencies. The algorithm and parameters
for ARIMA (1,1,1) residual modeling are summarized
in Table 10.

Table 10 ANN for Residual Parameter

The best model is determined by comparing
the MAE, MAPE, and RMSE values. These error
measures provide an objective basis for evaluating the
model's accuracy. The results of this comparison are
presented in Table 11.

Table 11 MAE, MAPE dan RMSE Value

Nodes MAE MAPE % RMSE

Sigmoid 2 1.5758 5.7187 1.9822
3 1.5525 5.6365 1.9594

4 1.5577 5.6551 1.9651

5 1.5573 5.6528 1.9619

6 1.5722 5.7064 1.9802

7 1.5852 5.7520 1.9928

Tanh 2 1.5630 5.6735 1.9697
3 1.5747 5.7127 1.9747

4 1.5757 5.7196 1.9881

5 1.5666 5.6856 1.9709

6 1.5657 5.6851 1.9804

7 1.5790 5.7290 1.9824

Parameter Value Description

Input layer 1 Based on the PACF lag
Hidden layer 2,3,4,5,6,7 Trial Error
Output layer 1 Predicted value
Learning rate 0.001

Activation function ~ Sigmoid, Tanh Trial error

Based on Table 11, the best model is achieved
using a sigmoid activation function with three nodes.
The resulting optimal network architecture is 1-3-1. A
visualization of this architecture is provided in Figure
9. The model equation based on Figure 8 for ANN
residuals can be written as follows in Equation (28).

£* = (- 15(0.29399) + 0.82181)
fY = o(a'r-15(0.1765) + 1.04074)

£ = g(a’,_15(1.84388) — 0.94403)

3 . .
Fe=() wlewssd p0 4 plouepuo
k=1

o= |:—1 56435£1) +1.08954 £ — 0.09995 £) + 0.90012
(28)

The combination of Equations (27) and (28) will
form an ARIMA(1,1,1)-ANN(1-3-1) model, which
can be mathematically written as follows in Equation
(29). The best model is determined by evaluating the
MAE, MAPE, and RMSE values of each method.
These performance measures are used to compare
and assess model accuracy. The detailed results are
presented in Table 12.

Ve = (L5128y,_, — 0.5128y,_o+ a; — 0.9042a,_, +

(1]

((~1564357 +1.08954£ "'~ 0.09995f*') + 090012

(29)
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Table 12 MAE, MAPE, and RMSE Value

Method MAE MAPE % RMSE
NN 0.7630 2.7067 1.0074
ARIMA 1.5249 5.5389 1.9338
ARIMA-NN 1.5525 5.6365 1.9594

According to Table 12, the single ANN method
shows the best performance, yielding lower MAE,
MAPE, and RMSE values than the other methods.
This suggests that the ANN model is more effective
at capturing data patterns. Figure 10 presents a
comparison of the ANN, ARIMA, and ARIMA-ANN
models based on both training and testing data.

Based on Figure 10, all methods capture the
training data pattern reasonably well; however, ANN
shows superior performance on the testing data. The
fundamental difference in model structures can explain

et' 18 ——

this. ARIMA, as a linear model, relies on past values
and error terms, making it less effective in capturing
irregular fluctuations or sudden shifts in temperature
data. Even when combined in the hybrid ARIMA-
ANN, the residual component still inherits ARIMA's
linearity, limiting its capacity to fully represent
complex dynamics. In contrast,an ANN is a data-driven
nonlinear model that can approximate highly complex
relationships without prior assumptions about the data
structure. Its hidden layers and activation functions
enable the network to adapt flexibly to abrupt variations
and nonlinear dependencies, which are characteristic
of meteorological data. This flexibility explains
why ANN achieved lower error values compared to
ARIMA and hybrid ARIMA-ANN in this research.
Similar conclusions have been drawn in prior research
on gold prices (Ulandari, 2023), rainfall (Ihsan et al.,
2024), and agricultural commodities (Palupi et al.,
2023), further reinforcing that ANN is well-suited for
forecasting tasks dominated by nonlinear patterns.

Figure 9 Model Architecture

-] 1 e o

tnden

(2)

Temperature

Figure 10 Comparison Fitted Plot on Data (a) Training (b) Testing
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IV. CONCLUSIONS

The research findings demonstrate that the
ANN model effectively captures the nonlinear patterns
of temperature data at Djuanda Airport during both
training and testing phases. Compared to the ARIMA
and hybrid ARIMA-ANN models, the ANN model
achieves lower MAE, MAPE, and RMSE values,
indicating relatively lower prediction errors. Although
the hybrid ARIMA-ANN model is designed to integrate
linear and nonlinear characteristics for improved
accuracy, in this case, the pure ANN approach shows
greater adaptability to the data dynamics.

These results are consistent with previous
evidence on the strengths of ANN in handling
strongly nonlinear time series. However, it should
be interpreted with caution, given the research's
limitations, including its focus on a single location and
the use of a fixed ANN configuration. From a practical
perspective, more accurate temperature forecasts can
support aviation stakeholders by enhancing flight
scheduling, improving operational safety margins,
and contributing to more efficient energy management
at airport facilities. Future works should optimize
ANN architectures and extend the analysis to multiple
sites, longer horizons, and alternative models (e.g.,
TSR, Exponential Smoothing, SVR). Additionally,
future research should explore higher-frequency data,
such as hourly observations, to enhance accuracy and
generalizability for aviation operations.
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