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Abstract - Drowsiness is a problem that needs
to be addressed to improve road safety. To minimize
this safety issue, driving-monitoring systems
have been implemented in current car models,
and electrocardiography (ECG) is one of the most
commonly used driving monitoring techniques.
ECG data are modeled using a deep neural network,
including a Bidirectional Gated Recurrent Unit (Bi-
GRU). However, the accuracy for classifying Wake-
Sleep is under 80% and Wake-NREM-REM reaches
less than 68%. To address this issue, ECG data from
the MESA and SHHS datasets are modeled using a
combination of a Convolutional Neural Network
(CNN) and a Bi-GRU, referred to as CNN-GRU.
This model incorporated Batch Normalization and
RMSProp to achieve improved accuracy in classifying
drivers' conditions. It operates in two computing
sectors: cloud computing (Google Colaboratory,
also known as Colab) and edge computing (utilizing
an AMD Ryzen 5 4600H processor laptop). Those
computing sectors focused on a case where no internet
connectivity occurred to process the classification.
Those classifications achieved accuracy rates of
82.88% and 81.78% for Wake-Sleep classification
in cloud- and edge-computing, respectively.
Additionally, it achieved 71.01% (Colab) and 68.85%
(edge-computing) accuracy in Wake-NREM-REM
classification. This result indicates that CNN-GRU
achieved better performance, surpassing the previous
Bi-GRU model, which only achieved 80.42% (Colab)
and 76.2% (edge-computing) for Wake-Sleep, and
68.85% (Colab) and 66.43% for Wake-NREM-REM.

Keywords: Internet of Things, deep learning, ECG,
drowsiness detection, edge computing
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I. INTRODUCTION

Traffic accidents are a top priority when
implementing road safety measures. Traffic accidents
occur due to various factors, one of which is drowsiness,
which affects 633 drivers (1.6%) per year in the
USA (Kirley et al., 2023). Furthermore, drowsiness
contributed to 74.4% of crash incidents reported
in Europe, with the Czech Republic accounting for
the highest proportion of cases within the continent
(84.5%) (van Schagen, 2021). The high number of
accidents leads several automobile associations,
research institutes, and manufacturers to implement
safety systems.

Driver Monitoring Systems (DMS) represent
one of the most prominent areas of current research,
offering a practical approach to reducing the incidence
of fatal road accidents. These systems primarily utilize
facial landmarks and Eye Aspect Ratios (EAR) as the
two predominant technologies for assessing driver
drowsiness (Florez et al., 2024). Both technologies
utilize cameras or image-sensing devices to monitor
the condition of potentially drowsy drivers, where
the captured images are analyzed using deep learning
methodologies, particularly Convolutional Neural
Networks (CNN). This results in a classification
accuracy of at least 90% (Albasrawi et al., 2022).
However, facial landmarks and EAR do not detect
drivers under nighttime or low illumination or capture
images when the subject is not in a proper position
(Shamrat et al., 2022; Guthikonda, 2023). Therefore,
image recognition is not viable under unconditional
scenarios.

One alternative method for measuring heart rate
is electrocardiography (ECG), which demonstrates the
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highest accuracy (94%) and precision (97%) (Curtin
et al., 2018; Mewada, 2023; Venkatesh et al., 2022).
Nowadays, ECG is extracted from polysomnography
(PSG), which is used to detect the electrostatic current
generated by the pulse of blood vessels and measure
peak-to-peak heart rate variability (Dutt et al., 2023;
Morokuma et al., 2023). Some researchers recognize
this benefit as a method for classifying drowsiness
levels by modeling data using a deep learning process.

One of the proposed approaches is SleepECG,
which applies a Bi-directional GRU (Bi-GRU) to
process inputs from datasets such as the Multi-Ethnic
Study of Atherosclerosis (MESA), and Sleep Heart
Health Studies (SHHS) to classify human drowsiness
(Blaha & DeFilippis, 2021; Chen et al., 2015; Quan
et al., 1997; Ullah & Tamanna, 2023). The Bi-GRU
processing input also incorporates the RMSProp
optimizer to normalize the error and first-order
data, thereby avoiding overfitting during processing
(Elshamy et al., 2023; Brunner & Hofer, 2023).
Incorporating the RMSProp optimizer eliminates
the vanishing gradient problem and classifies driver
drowsiness levels (Cho et al., 2014; Rama Devi et al.,
2024; Zulgarnain et al., 2024).

However, this model does not exceed an
accuracy level of 80% for Wake-Sleep and 67% for
Wake-NREM-REM. To overcome this issue, a CNN is
added to this model. This deep learning combination
is suitable for increasing the accuracy of classifying
drowsiness (Chollet, 2021). Hence, combining models
of CNN and Bi-GRU is chosen as the proposed model.

In this research, a CNN and Bi-GRU are used
as a one-packaged model to combine the beneficial
advantages of accuracy and handling the vanishing
gradient problem. The model runs on supercomputers,
which are categorized as cloud-computing systems,
using Google Colab. This cloud system enables the
utilization of NVIDIA A100 GPUs to run complex
datasets and modeling (Choquette et al., 2021). After
running in a cloud system, the model is also processed
on a personal computer (PC) or laptop, which utilizes
an AMD Ryzen 5 4600H processor to execute a
deep learning model with complex computational
tasks (Sulistiyono et al., 2024). This utilization also
tests the model's complexities that edge-computing
devices might handle. Additionally, this approach also
evaluates the model’s performance on edge-computing
devices and allows comparison of cloud- and edge-
computing performance, including a comparison with
SleepECG (Brunner & Hofer, 2023).

II. METHODS

In this section, the methods are divided into
two platforms: the computing and data processing
platform. The computing platform focuses on the
tools, platforms, or specifications that the system use.
Meanwhile, Data processing emphasizes the flow
of data being modeled from the input datasets to be
evaluated and run to classify sleep stages.

For the computing platform, this study employs

cloud computing through Google Colaboratory
with TensorFlow and Keras APIs to develop deep
learning programs. Colab also serves as a platform
for monitoring CPU and GPU utilization, while the
NVIDIA A100 GPU accelerates the modeling of sleep—
wake and REM-NREM-wake data. The measurement
parameters for both CPU and GPU include power
consumption and RAM/ROM utilization. These
parameters are measured using the Weights and Biases
API, which records both power usage and memory
consumption (Tornede et al., 2023).

Another platform used in this study is edge
computing. This system employs a laptop, specifically
an HP Pavilion Gaming 15 with an AMD Ryzen 5
4600H CPU, which has six cores and 12 threads and
provides processing speeds of up to 4 GHz. The Ryzen
54600H also integrates a VGA processor with six cores
and a frequency of 1500 MHz (Sulistiyono etal., 2024).
These specifications are sufficient for processing deep
learning models, as similar devices have been used for
complex human activity recognition tasks that require
large datasets and advanced modeling. In addition,
edge computing offers the advantage of operating in
locations without internet access (Wang et al., 2025).
After defining the computational platform, the next
step is to define the data processing workflow. This
includes inputting data, implementing algorithms or
models, and conducting evaluation after modeling, as
illustrated in Figure 1.

For data input, the ECG modeling uses the
Multi-Ethnic  Study of Atherosclerosis (MESA)
dataset (Blaha & DeFilippis, 2021; Chen et al., 2015)
for training and the Sleep Heart Health Study (SHHS)
database (Quan et al., 1997; Ullah & Tamanna, 2023)
to predict the results after being modeled. These two
databases must be requested by the National Sleep
Research Resource (NSRR) and will be processed for
two weeks. Once access is granted, the datasets are
downloaded into a Python IDE for model execution.
MESA and SHHS retrieval can be achieved using the
SleepECG API. Data retrieval from MESA and SHHS
is performed using the SleepECG API, where the
commands sleepecg.read mesa() and sleepecg.read
shhs() download and read the full datasets without
filtering by file code (Brunner & Hofer, 2023).

The relevant information is extracted from heart
rate variability and R-R interval filtering after reading
the data, a process referred to as feature extraction.
The extracted data from MESA serves as the training
dataset, while the SHHS extraction is used for testing
and prediction. The training and testing data then
enter the staging classification, which is divided into
two types: Wake-Sleep and Wake-NREM-REM. The
staged training data is used to train the model, which
is subsequently tested with the staged testing data to
predict driver classification.

After classification into stages is complete,
the data are modeled using a CNN-GRU architecture
adapted from the Bi-GRU model of SleepECG
(Brunner & Hofer, 2023). The proposed CNN-GRU
runs with five epochs for Wake-REM and 25 epochs
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for Wake-NREM-REM, using 62 iterations to process
atotal of 7,257,480 data cells (1970 x 3684) as training
input. The architecture consists of convolution, max-
pooling, batch normalization, and bidirectional GRU
layers. The convolution layer applies 16 filters with a
kernel size of two units and uses padding to maintain
input dimensions, while the max-pooling layer
employs a pool size of two units and a stride of one
unit with padding so that pooling does not reduce the
data dimensions.

The data are normalized and densely connected
after pooling, after which the process continues with
the GRU. The GRU is designed with two bidirectional
layers consisting of 16 units, and its output is passed
to a dense layer that is fully connected to the softmax
function. To optimize the CNN-GRU, the RMSProp
optimizer is applied together with categorical
cross-entropy to evaluate and minimize loss. This
optimization process limits weight updates, calculates
momentum, and adjusts bias to improve model
stability (Elshamy et al., 2023).

To summarize the model, Figure 2 presents its
structure, including the optimizer. The SHHS data are
also incorporated into the CNN-GRU model, with the
same dimensions as the MESA dataset (1970 x 3684),
and are used for testing the proposed model. The
processed data generate a confusion matrix that reports
accuracy, Cohen’s Kappa, F1-score, and precision.

To evaluate the model, the data processed by the
CNN-GRU algorithm are compared with SleepECG
and other studies using accuracy results obtained from
the Keras metrics. The accuracy is calculated using the
following formula in Equation (1), where TP represents
the confusion matrix value at the top left, 7N the value
at the bottom right, P the value at the bottom left, and
FN the value at the top right. In addition to accuracy,
memory usage is also assessed by comparing the GRU
model of Brunner and Hofer with the proposed CNN—
GRU model. This comparison determines the RAM
capacity required for processing each model after
extracting data from the MESA dataset.

TN+TE

Accuracy = ——
y TN+FP+TP+FN )

Following the assessment of data accuracy and
precision, a comparative analysis is conducted between
the CNN-GRU-processed data and the SleepECG
model. This evaluation encompasses three primary
aspects: the accuracy metrics of each implemented
algorithm, kappa values (Warren, 2015), and the
computational demands of data processing. Accuracy
metrics are derived from the findings reported by
Brunner and Hofer, utilizing datasets from MESA
and SHHS. The assessment of computational resource
consumption focuses on RAM utilization during data
processing with the three algorithms.

In addition to comparing Brunner and Hofer’s
GRU model, the CNN-GRU model is also evaluated
against 1-dimensional CNN models inspired by Ellis
et al.’s work. The original Ellis model consists of an

8-layer 1-dimensional convolutional network, with six
layers forming the initial structure of the deep learning
network (phase 1) and two additional layers positioned
in the middle (phase ii) before the training and testing
data are processed in the fully connected layer (Ellis et
al., 2021). In this research, however, only phase (ii) of
the CNN model is used, with a simplified design that
includes a single convolutional layer, no dropout, and
one fully connected dense layer. This configuration
applies 32 convolutional kernels along with a pooling
size of two and a stride of one.

III. RESULTS AND DISCUSSIONS

The experimental results are presented in two
parts. The first part explains the accuracy and loss of
data processing. The second part focuses on the results
of model accuracy and Cohen’s kappa coefficient
(Warrens, 2015; Zhang et al., 2021) for the previous
and proposed models.

The first part of the experimental results explains
the accuracy and loss of data processing by comparing
CNN-GRU, Bi-GRU, and CNN. For training, the
MESA dataset is loaded and modeled using a CNN
Bi-GRU. RMSProp and categorical cross-entropy
are applied to correct and minimize data errors. The
model runs on both Google Colaboratory and edge-
computing systems. The data are then processed with
CNN and Bi-GRU deep learning models, and the
outputs of these processes are summarized in Table 1.

The CNN-GRU model demonstrates better
processing time than the Bi-GRU model, requiring
1 hour 40 seconds (3,640 seconds) for Wake-REM
and 5 hours 42 minutes 39 seconds (20,559 seconds)
for Wake-NREM-REM when using a CPU. The
processing time improves further with the NVIDIA
A100, decreasing to 27 minutes 9 seconds (1,629
seconds) for Wake-REM and 4 hours 59 minutes 48
seconds (17,988 seconds) for Wake-NREM-REM.
Additionally, the model achieves its highest accuracy
of 93.46% when trained with the NVIDIA A100.
However, RAM consumption remains relatively
high, reaching 8.6 GB with the A100 for Wake-REM,
compared to only 5.69 GB when using the CPU.

However, when trained with the Wake-NREM-
REM stage, the RAM capacity used is 9.11 GB, a 0.39
GB difference from the 8.72 GB used in the CPU.
These results also happened to the edge computing
model, which used a capacity of 2.9 GB for classifying
Wake-Sleep and 4.05 GB for Wake-NREM-REM.
These results indicate that CNN-GRU has a higher
accuracy value and lower loss compared to CNN and
Bi-GRU separately. However, the use of higher RAM
with an NVIDIA A100 GPU in the CNN-GRU model,
particularly in the wake-REM stage, is a special
concern.

After training the model with MESA, it is tested
using the SHHS dataset. The test measures model
accuracy and the kappa coefficient for classifying
sleepiness levels. In addition, precision, F1 score,
and testing time are evaluated to assess the model’s
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Table 1 Comparison After Training Classification of Deep Learning

CLASSIFIER MODEL SYSTEM ACC (%) PROC TIME (S) RAM (GB)
CNN 91.8 95 5.47
Bi-GRU CPU (Xeon®) 79.7 4522 6.26
CNN-GRU 91.1 3640 5.69
CNN 91.85 21 6.82
Wake-REM Bi-GRU GPU (A100) 80.18 3.303 7.56
CNN-GRU 93.46 1.629 8.6
CNN 91.8 78 1.98
Bi-GRU Edge Comp 76.3 3 2.57
CNN-GRU 91.99 2 2.9
CNN 88.98 542 7.69
Bi-GRU CPU (Xeon®) 74.3 27.425 9.75
CNN-GRU 89.96 20.559 8.72
CNN 89.2 367 8.34
Wake-NREM-REM Bi-GRU GPU (A100) 74.98 24.156 10.2
CNN-GRU 89.98 17.988 9.11
CNN 89.03 472 2.81
Bi-GRU Edge Comp 75.6 23,927 4.75
CNN-GRU 89.74 20.173 4.05

Table 2 Comparison After Testing Deep Learning Model for Classifications (CPU vs A100 vs Edge)

for Accuracy, Cohen’s Kappa, Precision, and F1 Score

CLASSIFIER MODEL PROCESS ACC COHEN’S PRECISION (%) F1 SCORE (%)
TYPE (%) KAPPA  RgpM  NREM  Wake REM NREM  Wake
Bi-GRU 79.84 0.5459 88 65 85 77
CNN-GRU CPU 83.06 0.6013 88 73 88 72
CNN 73.34 0.4262 86 55 84 70
Bi-GRU 80.42 0.5416 88 65 87 72
Wake-REM CNN-GRU  A100 82.88 0.6014 88 72 88 73
CNN 80.64 0.5059 82 77 87 63
Bi-GRU 76.20 0.4749 87 59 82 75
CNN-GRU ~ FEdee 81.78 0.594 87 74 88 71
computing
CNN 7221 0.4187 86 50 83 71
Bi-GRU 67.36 0.4973 31 83 67 43 63 69
CNN-GRU CPU 69.35 0.5189 39 84 79 52 74 74
CNN 65.51 0.3743 46 71 58 9 75 63
Bi-GRU 68.84 0.5032 37 83 64 38 65 71
;{Ng‘l\lj[e'NREM' cNN-GrRu A0 71.01 0.5214 39 85 78 52 74 75
CNN 68.34 0.4437 47 70 63 1 72 59
Bi-GRU 66.43 0.4972 37 83 64 38 65 71
CNN-GRU corl;:lf)ﬁfing 68.85 0.5112 38 85 78 51 74 72
CNN 61.93 0.3378 46 72 55 7 73 67
CNN-GRU for Drowsiness..... (Setiawan Hendratno,; Nico Surantha) 121



classification performance. The results of these
measurements for each model are presented in
Table 2.

As shown in Table 2, the CNN-GRU model
achieves higher accuracy and Kappa values than the
CNN and Bi-GRU models when evaluated separately.
Specifically, it reaches 83.06% accuracy with a
Kappa of 0.6013 on the Intel Xeon CPU, and 82.88%
accuracy with a Kappa of 0.6014 on the A100 GPU
for Wake-REM classification. For Wake-NREM-REM
classification, the model obtains 69.35% accuracy with
a Kappa of 0.5189 on the CPU, and 71.01% accuracy
with a Kappa of 0.5214 on the A100 GPU.

Meanwhile, the accuracy and Kappa value of
CNN-GRU in edge computing reached 81.78% and
0.594, compared to the accuracy and Cohen's kappa
values of the GRU, which reached 76.20% and 0.4749,
respectively. For Wake-NREM-REM, the accuracy and
Cohen's Kappa values of the CNN-GRU are 68.85%
and 0.5112, respectively. These values are higher than
those of Brunner and Hofer's GRU and Ellis et al. 's
CNN (Ellis et al., 2021). Thus, the CNN-GRU had a
higher value than the two previously designed models.

After evaluating the model for sleep stage
classification, the deep learning model’s processing
is analyzed in terms of device utilization, including
RAM, GPU, power, and CPU usage. The device
is measured using the Weight and Biases API to
capture metrics such as RAM capacity, ROM, GPU
power, processor capability, and GPU memory. These
measurements are then summarized and presented in
Table 3.

The RAM and CPU usage of the Bi-GRU, CNN,
and CNN-GRU models increase significantly when the
NVIDIA A100 GPU is activated, as shown in Table 3.
In the CNN model, RAM usage rises from 5.47 GB to
6.82 GB. Similarly, the GRU and CNN-GRU models
require 7.56 GB and 8.12 GB of RAM, respectively,

when running with the A100. By contrast, when the
GPU is not activated, RAM consumption is reduced
to 6.26 GB for GRU and 5.69 GB for CNN-GRU in
processing the driver/patient drowsiness classification
task.

CNN-GRU RAM usage can be considered
the largest in this study. This extensive RAM usage
is due to the GPU's processing only utilizing 0.44
GB of Video RAM (V-RAM) when it is activated.
Consequently, the Intel Xeon CPU must process
the CNN-GRU model using 108 system/processor
threads. This enables the CNN-GRU to be the largest
RAM and CPU user when the NVIDIA A100 GPU is
enabled.

Meanwhile, when the model is only processed
through a CPU with a 16 GB RAM capacity, the
CNN-GRU model requires only 5.69 GB of RAM.
The GRU model required the most RAM, with a
usage of 6.26 GB. The use of ROM and CPU threads
requires only 35 systems/processor threads and 38.08
GB. The CNN model utilizes the least RAM, ROM,
and CPU threads, with figures of 5.47 GB, 37, and 30
system/processor threads, respectively. Instead, while
the model is processed in edge computing, the three
models are assisted by the internal GPU of the CPU,
which has a video RAM capacity of 0.155 GB. The
CNN-GRU model processing obtains the lowest ROM
usage, at 1.25 GB.

Meanwhile, the two models require different
amounts of RAM, specifically 30.28 GB for GRU
and 3.01 GB for CNN. Meanwhile, the CNN model
utilizes the fewest CPU threads, specifically 71 system/
processor threads. The Bi-GRU model had the highest
thread usage, with a value of 75 systems per thread.
This is undoubtedly one of the factors contributing to
accuracy and the highest Kappa value compared to the
two separate models.

The second part of the experimental results

Table 3 Comparison After Testing Deep Learning Model for Classifications (CPU vs A100 vs Edge)

UTILIZATION SYSTEM WAKE-REM WAKE-NREM-REM
GRU CNN-GRU CNN GRU CNN-GRU CNN
RAM (GB) CPU Only (Colab) 6.26 5.69 5.47 8.73 6.93 7.32
CPU+With A100 7558 8118 6.82 9.07 7583 7632
Edge computing 2.57 2.40 1.98 3.07 2.87 1.98
ROM(GB) CPU Only (Colab) 38.08 38.07 37 40.02 40 38.1
CPU+With A100 38.17 39.85 39.75 40.11 40.53 40.23
Edge computing 30.28 1.25 3.01 32.14 2.35 3.01
CPU Thread (System/  CPU Only (Colab) 35 36 30 41 37 37
Processor) CPU+With A100 62.21 45.41 53.2 67.47 47.81 55.1
Edge computing 75 72 71 78 75 73
VRAM (GB) CPU+With A100 2874 0.441 0.85 2961 0.892 0.88
Edge computing 0.155 0.155 0.155 0.155 0.155 0.155
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involves comparing CNN-GRU and other deep
learning models. CNN-GRU outperforms the previous
Bi-GRU by achieving 83.06% accuracy and 0.6014
in cloud computing, as well as 81.78% accuracy and
0.594 in edge computing. Nevertheless, this model
can be improved by comparing it with other models
that combine multiple deep learning techniques into a
more comprehensive, single model. Some models use
a combination of feed-forward and back-propagation
methods, while others employ a simple convolutional
layer. The models mentioned are listed in Table 4.

In Table 4, the Bi-GRU and CNN-DA models
for wake-sleep classification show varying accuracy
and Cohen’s Kappa values compared to the CNN-
GRU model. The CNN model studied by Tang et
al. (2022) achieves only 65.1% accuracy with the
SHHS dataset, which is lower than the accuracy of
the CNN-GRU model for Wake-Sleep classification.
However, Tang’s model classifies the Wake-N1-N2-
Sleep category with slightly lower accuracy than the
Wake-NREM-REM CNN-GRU, which achieves the
highest score of 71.01%. Meanwhile, the CNN-DA
model exceeds 83% accuracy and achieves a Cohen’s
Kappa coefficient of 0.749, which is the highest value
reported so far. This improvement is possible because
the CNN-DA model combines data points from both
training and test datasets before encoding, and also
employs Leaky ReLU to maintain the gradient of
negative inputs, thereby preventing severe over- or
under-correction (Maniatopoulos & Mitianoudis,
2021).

In comparison, the Bi-GRU model developed
by Brunner and Hofer (2023) achieved a Kappa value
0f 0.5459. This performance is attributed to the GRU’s
capability to ignore unreadable or corrupted values
and update them with newly processed outputs. As
a result, the model yielded relatively high precision
and F1 scores, with 88% and 85% for sleep modes,
and 65% and 77% for wake modes, respectively.
Nevertheless, its Cohen’s Kappa remained lower than
that of the CNN-GRU model byTang et al. (2022).

Apart from these two models, CNN-GRU is
also compared with CoSleepNet, which demonstrates
superior performance. Although CNN-GRU achieves
an accuracy of 83.06%, which is close to CNN-LSTM’s
83.55%, its Kappa value (0.6013) is significantly
lower than CoSleepNet’s 0.7693. This gap results from
CoSleepNet’s hybrid architecture, which integrates
focal loss to handle class imbalance and employs a
discrete cosine transform to correct irregular data
features (Efe & Ozsen, 2023). Incorporating focal loss
or similar mechanisms may enhance CNN-GRU’s
ability to manage imbalance prior to normalization
and optimization.

IV. CONCLUSIONS

CNN-GRU is developed from SleepECG’s
Bi-GRU to provide higher accuracy and a higher
Kappa coefficient. The model achieves an accuracy
of 83.06% and a Kappa value of 0.6013 for Wake-
Sleep classification, and 71.01% with a Kappa value
of 0.5214 for Wake-NREM-REM classification. In
addition, the model is designed to optimize memory
utilization, reducing RAM usage from 8.1 GB to 7.4
GB. These results indicate that CNN-GRU surpasses
SleepECG’s Bi-GRU in terms of both performance
and efficiency.

Despite these improvements, CNN-GRU
still requires further development to achieve higher
precision and F1 Score values. Compared to advanced
models such as CoSleepNet, which can classify five
levels of sleepiness, CNN-GRU remains limited in
its classification capability. To address this limitation,
performance can be enhanced by training and testing
on larger datasets, modifying stride and padding
structures in pooling layers, and using padding values
beyond zero. Furthermore, employing alternative
optimizers such as Adam in comparison with
RMSProp and exploring multi-dimensional features
may help improve both accuracy and the Cohen’s
Kappa coefficient.

Table 4 Comparison of the Performance of Other Previous Deep Learning Models with the Proposed.

CLASSIFIER MODEL ACC (%) COHEN’S KAPPA ARTICLE
ake-N1-N2-Sleep CNN-DA 65.1 0.749 (Tang et al., 2022)
Wake-N1-N2-N3-Sleep CNN-GRU 83.15 0.76 (Pei et al., 2022)
Wake - Sleep GRU 79.84 0.5459 (Brunner & Hofer, 2023)
Wake-NREM- Sleep UTSN 89.5 - (Tezuka et al., 2021)
Wake-N1-N2-N3-Sleep CoSleepNet (CNN-LSTM) 83.55 0.7693 (Efe & Ozsen, 2023)
Wake - Sleep CNN-GRU 83.06 0.6013 Proposed research
81.78 0.594
Wake-NREM-REM CNN-GRU 71.01 0.5214 Proposed research
68.85 0.5112
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