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Abstract - Drowsiness is a problem that needs 
to be addressed to improve road safety. To minimize 
this safety issue, driving-monitoring systems 
have been implemented in current car models, 
and electrocardiography (ECG) is one of the most 
commonly used driving monitoring techniques. 
ECG data are modeled using a deep neural network, 
including a Bidirectional Gated Recurrent Unit (Bi-
GRU). However, the accuracy for classifying Wake-
Sleep is under 80% and Wake-NREM-REM reaches 
less than 68%. To address this issue, ECG data from 
the MESA and SHHS datasets are modeled using a 
combination of a Convolutional Neural Network 
(CNN) and a Bi-GRU, referred to as CNN-GRU. 
This model incorporated Batch Normalization and 
RMSProp to achieve improved accuracy in classifying 
drivers' conditions. It operates in two computing 
sectors: cloud computing (Google Colaboratory, 
also known as Colab) and edge computing (utilizing 
an AMD Ryzen 5 4600H processor laptop). Those 
computing sectors focused on a case where no internet 
connectivity occurred to process the classification. 
Those classifications achieved accuracy rates of 
82.88% and 81.78% for Wake-Sleep classification 
in cloud- and edge-computing, respectively. 
Additionally, it achieved 71.01% (Colab) and 68.85% 
(edge-computing) accuracy in Wake-NREM-REM 
classification. This result indicates that CNN-GRU 
achieved better performance, surpassing the previous 
Bi-GRU model, which only achieved 80.42% (Colab) 
and 76.2% (edge-computing) for Wake-Sleep, and 
68.85% (Colab) and 66.43% for Wake-NREM-REM.

Keywords: Internet of Things, deep learning, ECG, 
drowsiness detection, edge computing

I. INTRODUCTION

Traffic accidents are a top priority when 
implementing road safety measures. Traffic accidents 
occur due to various factors, one of which is drowsiness, 
which affects 633 drivers (1.6%) per year in the 
USA (Kirley et al., 2023). Furthermore, drowsiness 
contributed to 74.4% of crash incidents reported 
in Europe, with the Czech Republic accounting for 
the highest proportion of cases within the continent 
(84.5%) (van Schagen, 2021)⁠. The high number of 
accidents leads several automobile associations, 
research institutes, and manufacturers to implement 
safety systems. 

Driver monitoring systems (DMS) represent 
one of the most prominent areas of current research, 
offering a practical approach to reducing the incidence 
of fatal road accidents. These systems primarily utilize 
facial landmarks and eye aspect ratios (EAR) as the 
two predominant technologies for assessing driver 
drowsiness (Florez et al., 2024). Both technologies 
utilize cameras or image-sensing devices to monitor 
the condition of potentially drowsy drivers, where 
the captured images are analyzed using deep learning 
methodologies, particularly Convolutional Neural 
Networks (CNN). This results in a classification 
accuracy of at least 90% (Albasrawi et al., 2022). 
However, facial landmarks and EAR do not detect 
drivers under nighttime or low illumination or capture 
images when the subject is not in a proper position 
(Shamrat et al., 2022; Guthikonda, 2023). Therefore, 
image recognition is not viable under unconditional 
scenarios.

One alternative method for measuring heart rate 
is electrocardiography (ECG), which demonstrates the 
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highest accuracy (94%) and precision (97%) (Curtin 
et al., 2018; Mewada, 2023; Venkatesh et al., 2022). 
Nowadays, ECG is extracted from polysomnography 
(PSG), which is used to detect the electrostatic current 
generated by the pulse of blood vessels and measure 
peak-to-peak heart rate variability (Dutt et al., 2023; 
Morokuma et al., 2023). Some researchers recognize 
this benefit as a method for classifying drowsiness 
levels by modeling data using a deep learning process. 

One of the proposed approaches is SleepECG, 
which applies a Bi-directional GRU (Bi-GRU) to 
process inputs from datasets such as the Multi-Ethnic 
Study of Atherosclerosis (MESA), and Sleep Heart 
Health Studies (SHHS) to classify human drowsiness 
(Blaha & DeFilippis, 2021; Chen et al., 2015; Quan 
et al., 1997; Ullah & Tamanna, 2023). The Bi-GRU 
processing input also incorporates the RMSProp 
optimizer to normalize the error and first-order 
data, thereby avoiding overfitting during processing 
(Elshamy et al., 2023; Brunner & Hofer, 2023). 
Incorporating the RMSProp optimizer eliminates 
the vanishing gradient problem and classifies driver 
drowsiness levels (Cho et al., 2014; Rama Devi et al., 
2024; Zulqarnain et al., 2024). 

However, this model does not exceed an 
accuracy level of 80% for Wake-Sleep and 67% 
for Wake-NREM-REM. To overcome this issue, a 
Convolutional Neural Network (CNN) is added to 
this model. This deep learning combination is suitable 
for increasing the accuracy of classifying drowsiness 
(Chollet, 2021). Hence, combining models of CNN 
and Bi-GRU is chosen as the proposed model.

In this research, a CNN and Bi-GRU are used 
as a one-packaged model to combine the beneficial 
advantages of accuracy and handling the vanishing 
gradient problem. The model runs on supercomputers, 
which are categorized as cloud-computing systems, 
using Google Colab. This cloud system enables the 
utilization of Nvidia A100 GPUs to run complex 
datasets and modeling (Choquette et al., 2021). After 
running in a cloud system, the model is also processed 
on a personal computer (PC) or laptop, which utilizes 
an AMD Ryzen 5 4600H processor to execute a 
deep learning model with complex computational 
tasks (Sulistiyono et al., 2024). This utilization also 
tests the model's complexities that edge-computing 
devices might handle. Additionally, this approach also 
evaluates the model’s performance on edge-computing 
devices and allows comparison of cloud- and edge-
computing performance, including a comparison with 
SleepECG (Brunner & Hofer, 2023).

II.	 METHODS

In this section, the methods are divided into 
two platforms: the computing and data processing 
platform. The computing platform focuses on the 
tools, platforms, or specifications that the system use. 
Meanwhile, Data processing emphasizes the flow 
of data being modeled from the input datasets to be 
evaluated and run to classify sleep stages.

For the computing platform, this study employs 
cloud computing through Google Colaboratory 
with TensorFlow and Keras APIs to develop deep 
learning programs. Colab also serves as a platform 
for monitoring CPU and GPU utilization, while the 
NVIDIA A100 GPU accelerates the modeling of sleep–
wake and REM–NREM–wake data. The measurement 
parameters for both CPU and GPU include power 
consumption and RAM/ROM utilization. These 
parameters are measured using the Weights and Biases 
API, which records both power usage and memory 
consumption (Tornede et al., 2023).

Another platform used in this study is edge 
computing. This system employs a laptop, specifically 
an HP Pavilion Gaming 15 with an AMD Ryzen 5 
4600H CPU, which has six cores and 12 threads and 
provides processing speeds of up to 4 GHz. The Ryzen 
5 4600H also integrates a VGA processor with six cores 
and a frequency of 1500 MHz (Sulistiyono et al., 2024). 
These specifications are sufficient for processing deep 
learning models, as similar devices have been used for 
complex human activity recognition tasks that require 
large datasets and advanced modeling. In addition, 
edge computing offers the advantage of operating in 
locations without internet access (Wang et al., 2025). 
After defining the computational platform, the next 
step is to define the data processing workflow. This 
includes inputting data, implementing algorithms or 
models, and conducting evaluation after modeling, as 
illustrated in Figure 1.

For data input, the ECG modeling uses the 
Multi-Ethnic Study of Atherosclerosis (MESA) 
dataset (Blaha & DeFilippis, 2021; Chen et al., 2015) 
for training and the Sleep Heart Health Study (SHHS) 
database (Quan et al., 1997; Ullah & Tamanna, 2023) 
to predict the results after being modeled. These two 
databases must be requested by the National Sleep 
Research Resource (NSRR) and will be processed for 
two weeks. Once access is granted, the datasets are 
downloaded into a Python IDE for model execution. 
MESA and SHHS retrieval can be achieved using the 
SleepECG API. Data retrieval from MESA and SHHS 
is performed using the SleepECG API, where the 
commands sleepecg.read_mesa() and sleepecg.read_
shhs() download and read the full datasets without 
filtering by file code (Brunner & Hofer, 2023).

The relevant information is extracted from heart 
rate variability and R-R interval filtering after reading 
the data, a process referred to as feature extraction. 
The extracted data from MESA serves as the training 
dataset, while the SHHS extraction is used for testing 
and prediction. The training and testing data then 
enter the staging classification, which is divided into 
two types: Wake-Sleep and Wake-NREM-REM. The 
staged training data is used to train the model, which 
is subsequently tested with the staged testing data to 
predict driver classification.

After classification into stages is complete, 
the data are modeled using a CNN-GRU architecture 
adapted from the Bi-GRU model of SleepECG 
(Brunner & Hofer, 2023). The proposed CNN-GRU 
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Figure 1 Research Workflow

Figure 2 CNN-GRU Model
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runs with five epochs for Wake-REM and 25 epochs 
for Wake-NREM-REM, using 62 iterations to process 
a total of 7,257,480 data cells (1970 × 3684) as training 
input. The architecture consists of convolution, max-
pooling, batch normalization, and bidirectional GRU 
layers. The convolution layer applies 16 filters with a 
kernel size of two units and uses padding to maintain 
input dimensions, while the max-pooling layer 
employs a pool size of two units and a stride of one 
unit with padding so that pooling does not reduce the 
data dimensions.

The data are normalized and densely connected 
after pooling, after which the process continues with 
the GRU. The GRU is designed with two bidirectional 
layers consisting of 16 units, and its output is passed 
to a dense layer that is fully connected to the softmax 
function. To optimize the CNN-GRU, the RMSProp 
optimizer is applied together with categorical 
cross-entropy to evaluate and minimize loss. This 
optimization process limits weight updates, calculates 
momentum, and adjusts bias to improve model 
stability (Elshamy et al., 2023).

To summarize the model, Figure 2 presents its 
structure, including the optimizer. The SHHS data are 
also incorporated into the CNN-GRU model, with the 
same dimensions as the MESA dataset (1970 × 3684), 
and are used for testing the proposed model. The 
processed data generate a confusion matrix that reports 
accuracy, Cohen’s Kappa, F1-score, and precision.

To evaluate the model, the data processed by the 
CNN–GRU algorithm are compared with SleepECG 
and other studies using accuracy results obtained from 
the Keras metrics. The accuracy is calculated using the 
following formula in Equation (1), where TP represents 
the confusion matrix value at the top left, TN the value 
at the bottom right, FP the value at the bottom left, and 
FN the value at the top right. In addition to accuracy, 
memory usage is also assessed by comparing the GRU 
model of Brunner and Hofer with the proposed CNN–
GRU model. This comparison determines the RAM 
capacity required for processing each model after 
extracting data from the MESA dataset.

			      (1)

Following the assessment of data accuracy and 
precision, a comparative analysis is conducted between 
the CNN-GRU-processed data and the SleepECG 
model. This evaluation encompasses three primary 
aspects: the accuracy metrics of each implemented 
algorithm, kappa values (Warren, 2015), and the 
computational demands of data processing. Accuracy 
metrics are derived from the findings reported by 
Brunner and Hofer, utilizing datasets from MESA 
and SHHS. The assessment of computational resource 
consumption focuses on RAM utilization during data 
processing with the three algorithms.

In addition to comparing Brunner and Hofer’s 
GRU model, the CNN-GRU model is also evaluated 
against 1-dimensional CNN models inspired by Ellis 

et al.’s work. The original Ellis model consists of an 
8-layer 1-dimensional convolutional network, with six 
layers forming the initial structure of the deep learning 
network (phase i) and two additional layers positioned 
in the middle (phase ii) before the training and testing 
data are processed in the fully connected layer (Ellis et 
al., 2021). In this research, however, only phase (ii) of 
the CNN model is used, with a simplified design that 
includes a single convolutional layer, no dropout, and 
one fully connected dense layer. This configuration 
applies 32 convolutional kernels along with a pooling 
size of two and a stride of one.

III.	 RESULTS AND DISCUSSIONS

The experimental results are presented in two 
parts. The first part explains the accuracy and loss of 
data processing. The second part focuses on the results 
of model accuracy and Cohen’s kappa coefficient 
(Warrens, 2015; Zhang et al., 2021) for the previous 
and proposed models.

The first part of the experimental results explains 
the accuracy and loss of data processing by comparing 
CNN-GRU, Bi-GRU, and CNN. For training, the 
MESA dataset is loaded and modeled using a CNN 
Bi-GRU. RMSProp and categorical cross-entropy 
are applied to correct and minimize data errors. The 
model runs on both Google Colaboratory and edge-
computing systems. The data are then processed with 
CNN and Bi-GRU deep learning models, and the 
outputs of these processes are summarized in Table 1.

The CNN-GRU model demonstrates better 
processing time than the Bi-GRU model, requiring 
1 hour 40 seconds (3,640 seconds) for Wake-REM 
and 5 hours 42 minutes 39 seconds (20,559 seconds) 
for Wake-NREM-REM when using a CPU. The 
processing time improves further with the NVIDIA 
A100, decreasing to 27 minutes 9 seconds (1,629 
seconds) for Wake-REM and 4 hours 59 minutes 48 
seconds (17,988 seconds) for Wake-NREM-REM. 
Additionally, the model achieves its highest accuracy 
of 93.46% when trained with the NVIDIA A100. 
However, RAM consumption remains relatively 
high, reaching 8.6 GB with the A100 for Wake-REM, 
compared to only 5.69 GB when using the CPU.

However, when trained with the Wake-NREM-
REM stage, the RAM capacity used is 9.11 GB, a 0.39 
GB difference from the 8.72 GB used in the CPU. 
These results also happened to the edge computing 
model, which used a capacity of 2.9 GB for classifying 
Wake-Sleep and 4.05 GB for Wake-NREM-REM. 
These results indicate that CNN-GRU has a higher 
accuracy value and lower loss compared to CNN and 
Bi-GRU separately. However, the use of higher RAM 
with an Nvidia A100 GPU in the CNN-GRU model, 
particularly in the wake-REM stage, is a special 
concern. 

After training the model with MESA, it is tested 
using the SHHS dataset. The test measures model 
accuracy and the kappa coefficient for classifying 
sleepiness levels. In addition, precision, F1 score, 
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Table 1 Comparison After Training Classification of Deep Learning

CLASSIFIER MODEL SYSTEM ACC (%) PROC TIME (S) RAM (GB)

Wake-REM

CNN
CPU (Xeon®)

91.8 95 5.47
Bi-GRU 79.7 4522 6.26

CNN-GRU 91.1 3640 5.69
CNN

GPU (A100)
91.85 21 6.82

Bi-GRU 80.18 3.303 7.56
CNN-GRU 93.46 1.629 8.6

CNN
Edge Comp

91.8 78 1.98
Bi-GRU 76.3 3 2.57

CNN-GRU 91.99 2 2.9

Wake-NREM-REM

CNN
CPU (Xeon®)

88.98 542 7.69
Bi-GRU 74.3 27.425 9.75

CNN-GRU 89.96 20.559 8.72
CNN

GPU (A100)
89.2 367 8.34

Bi-GRU 74.98 24.156 10.2
CNN-GRU 89.98 17.988 9.11

CNN
Edge Comp

89.03 472 2.81
Bi-GRU 75.6 23,927 4.75

CNN-GRU 89.74 20.173 4.05

Table 2 Comparison After Testing Deep Learning Model for Classifications (CPU vs A100 vs Edge) 
for Accuracy, Cohen’s Kappa, Precision, and F1 Score

CLASSIFIER MODEL PROCESS 
TYPE

ACC 
(%)

COHEN’S 
KAPPA

PRECISION (%) F1 SCORE (%)
REM NREM Wake REM NREM Wake

Wake-REM

Bi-GRU

CPU

79.84 0.5459 88 65 85 77

CNN-GRU 83.06 0.6013 88 73 88 72

CNN 73.34 0.4262 86 55 84 70

Bi-GRU

A100

80.42 0.5416 88 65 87 72

CNN-GRU 82.88 0.6014 88 72 88 73

CNN 80.64 0.5059 82 77 87 63

Bi-GRU
Edge 

computing

76.20 0.4749 87 59 82 75

CNN-GRU 81.78 0.594 87 74 88 71

CNN 72.21 0.4187 86 50 83 71

Wake-NREM-
REM

Bi-GRU
CPU

67.36 0.4973 31 83 67 43 63 69
CNN-GRU 69.35 0.5189 39 84 79 52 74 74
CNN 65.51 0.3743 46 71 58 9 75 63
Bi-GRU

A100
68.84 0.5032 37 83 64 38 65 71

CNN-GRU 71.01 0.5214 39 85 78 52 74 75
CNN 68.34 0.4437 47 70 63 11 72 59
Bi-GRU

Edge 
computing

66.43 0.4972 37 83 64 38 65 71
CNN-GRU 68.85 0.5112 38 85 78 51 74 72
CNN 61.93 0.3378 46 72 55 7 73 67
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and testing time are evaluated to assess the model’s 
classification performance. The results of these 
measurements for each model are presented in 
Table 2.

As shown in Table 2, the CNN-GRU model 
achieves higher accuracy and Kappa values than the 
CNN and Bi-GRU models when evaluated separately. 
Specifically, it reaches 83.06% accuracy with a 
Kappa of 0.6013 on the Intel Xeon CPU, and 82.88% 
accuracy with a Kappa of 0.6014 on the A100 GPU 
for Wake-REM classification. For Wake-NREM-REM 
classification, the model obtains 69.35% accuracy with 
a Kappa of 0.5189 on the CPU, and 71.01% accuracy 
with a Kappa of 0.5214 on the A100 GPU.

Meanwhile, the accuracy and Kappa value of 
CNN-GRU in edge computing reached 81.78% and 
0.594, compared to the accuracy and Cohen's kappa 
values of the GRU, which reached 76.20% and 0.4749, 
respectively. For Wake-NREM-REM, the accuracy and 
Cohen's Kappa values of the CNN-GRU are 68.85% 
and 0.5112, respectively. These values are higher than 
those of Brunner and Hofer's GRU and Ellis et al. 's 
CNN (Ellis et al., 2021). Thus, the CNN-GRU had a 
higher value than the two previously designed models.

After evaluating the model for sleep stage 
classification, the deep learning model’s processing 
is analyzed in terms of device utilization, including 
RAM, GPU, power, and CPU usage. The device 
is measured using the Weight and Biases API to 
capture metrics such as RAM capacity, ROM, GPU 
power, processor capability, and GPU memory. These 
measurements are then summarized and presented in 
Table 3.

The RAM and CPU usage of the Bi-GRU, CNN, 
and CNN-GRU models increase significantly when the 
NVIDIA A100 GPU is activated, as shown in Table 3. 
In the CNN model, RAM usage rises from 5.47 GB to 
6.82 GB. Similarly, the GRU and CNN-GRU models 

require 7.56 GB and 8.12 GB of RAM, respectively, 
when running with the A100. By contrast, when the 
GPU is not activated, RAM consumption is reduced 
to 6.26 GB for GRU and 5.69 GB for CNN-GRU in 
processing the driver/patient drowsiness classification 
task.

CNN-GRU RAM usage can be considered 
the largest in this study. This extensive RAM usage 
is due to the GPU's processing only utilizing 0.44 
GB of Video RAM (V-RAM) when it is activated. 
Consequently, the Intel Xeon CPU must process 
the CNN-GRU model using 108 system/processor 
threads. This enables the CNN-GRU to be the largest 
RAM and CPU user when the NVIDIA A100 GPU is 
enabled.

Meanwhile, when the model is only processed 
through a CPU with a 16 GB RAM capacity, the 
CNN-GRU model requires only 5.69 GB of RAM. 
The GRU model required the most RAM, with a 
usage of 6.26 GB. The use of ROM and CPU threads 
requires only 35 systems/processor threads and 38.08 
GB. The CNN model utilizes the least RAM, ROM, 
and CPU threads, with figures of 5.47 GB, 37, and 30 
system/processor threads, respectively. Instead, while 
the model is processed in edge computing, the three 
models are assisted by the internal GPU of the CPU, 
which has a video RAM capacity of 0.155 GB. The 
CNN-GRU model processing obtains the lowest ROM 
usage, at 1.25 GB.

Meanwhile, the two models require different 
amounts of RAM, specifically 30.28 GB for GRU 
and 3.01 GB for CNN. Meanwhile, the CNN model 
utilizes the fewest CPU threads, specifically 71 system/
processor threads. The Bi-GRU model had the highest 
thread usage, with a value of 75 systems per thread. 
This is undoubtedly one of the factors contributing to 
accuracy and the highest Kappa value compared to the 
two separate models.

Table 3 Comparison After Testing Deep Learning Model for Classifications (CPU vs A100 vs Edge)

UTILIZATION SYSTEM WAKE-REM WAKE-NREM-REM
GRU CNN-GRU CNN GRU CNN-GRU CNN

RAM (GB) CPU Only (Colab) 6.26 5.69 5.47 8.73 6.93 7.32
CPU+With A100 7558 8118 6.82 9.07 7583 7632
Edge computing 2.57 2.40 1.98 3.07 2.87 1.98

ROM(GB) CPU Only (Colab) 38.08 38.07 37 40.02 40 38.1
CPU+With A100 38.17 39.85 39.75 40.11 40.53 40.23
Edge computing 30.28 1.25 3.01 32.14 2.35 3.01

CPU Thread (System/
Processor)

CPU Only (Colab) 35 36 30 41 37 37
CPU+With A100 62.21 45.41 53.2 67.47 47.81 55.1
Edge computing 75 72 71 78 75 73

VRAM (GB) CPU+With A100 2874 0.441 0.85 2961 0.892 0.88
Edge computing 0.155 0.155 0.155 0.155 0.155 0.155
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The second part of the experimental results 
involves comparing CNN-GRU and other deep 
learning models. CNN-GRU outperforms the previous 
Bi-GRU by achieving 83.06% accuracy and 0.6014 
in cloud computing, as well as 81.78% accuracy and 
0.594 in edge computing. Nevertheless, this model 
can be improved by comparing it with other models 
that combine multiple deep learning techniques into a 
more comprehensive, single model. Some models use 
a combination of feed-forward and back-propagation 
methods, while others employ a simple convolutional 
layer. The models mentioned are listed in Table 4.

In Table 4, the Bi-GRU and CNN-DA models 
for wake-sleep classification show varying accuracy 
and Cohen’s Kappa values compared to the CNN-
GRU model. The CNN model studied by Tang et 
al. (2022) achieves only 65.1% accuracy with the 
SHHS dataset, which is lower than the accuracy of 
the CNN-GRU model for Wake-Sleep classification. 
However, Tang’s model classifies the Wake-N1-N2-
Sleep category with slightly lower accuracy than the 
Wake-NREM-REM CNN-GRU, which achieves the 
highest score of 71.01%. Meanwhile, the CNN-DA 
model exceeds 83% accuracy and achieves a Cohen’s 
Kappa coefficient of 0.749, which is the highest value 
reported so far. This improvement is possible because 
the CNN-DA model combines data points from both 
training and test datasets before encoding, and also 
employs Leaky ReLU to maintain the gradient of 
negative inputs, thereby preventing severe over- or 
under-correction (Maniatopoulos & Mitianoudis, 
2021).

In comparison, the Bi-GRU model developed 
by Brunner and Hofer (2023) achieved a Kappa value 
of 0.5459. This performance is attributed to the GRU’s 
capability to ignore unreadable or corrupted values 
and update them with newly processed outputs. As 
a result, the model yielded relatively high precision 
and F1 scores, with 88% and 85% for sleep modes, 
and 65% and 77% for wake modes, respectively. 
Nevertheless, its Cohen’s Kappa remained lower than 
that of the CNN-GRU model byTang et al. (2022).

Apart from these two models, CNN-GRU is 
also compared with CoSleepNet, which demonstrates 
superior performance. Although CNN-GRU achieves 
an accuracy of 83.06%, which is close to CNN-LSTM’s 
83.55%, its Kappa value (0.6013) is significantly 
lower than CoSleepNet’s 0.7693. This gap results from 
CoSleepNet’s hybrid architecture, which integrates 
focal loss to handle class imbalance and employs a 
discrete cosine transform to correct irregular data 
features (Efe & Ozsen, 2023). Incorporating focal loss 
or similar mechanisms may enhance CNN-GRU’s 
ability to manage imbalance prior to normalization 
and optimization.

IV.	 CONCLUSIONS

CNN-GRU is developed from SleepECG’s 
Bi-GRU to provide higher accuracy and a higher 
Kappa coefficient. The model achieves an accuracy 
of 83.06% and a Kappa value of 0.6013 for Wake-
Sleep classification, and 71.01% with a Kappa value 
of 0.5214 for Wake-NREM-REM classification. In 
addition, the model is designed to optimize memory 
utilization, reducing RAM usage from 8.1 GB to 7.4 
GB. These results indicate that CNN-GRU surpasses 
SleepECG’s Bi-GRU in terms of both performance 
and efficiency.

Despite these improvements, CNN-GRU 
still requires further development to achieve higher 
precision and F1 Score values. Compared to advanced 
models such as CoSleepNet, which can classify five 
levels of sleepiness, CNN-GRU remains limited in 
its classification capability. To address this limitation, 
performance can be enhanced by training and testing 
on larger datasets, modifying stride and padding 
structures in pooling layers, and using padding values 
beyond zero. Furthermore, employing alternative 
optimizers such as Adam in comparison with 
RMSProp and exploring multi-dimensional features 
may help improve both accuracy and the Cohen’s 
Kappa coefficient.

Table 4 Comparison of the Performance of Other Previous Deep Learning Models with the Proposed.

CLASSIFIER MODEL ACC (%) COHEN’S KAPPA ARTICLE
ake-N1-N2-Sleep CNN-DA 65.1 0.749 (Tang et al., 2022)
Wake-N1-N2-N3-Sleep CNN-GRU 83.15 0.76 (Pei et al., 2022)
Wake - Sleep GRU 79.84 0.5459 (Brunner & Hofer, 2023)
Wake-NREM- Sleep UTSN 89.5 - (Tezuka et al., 2021)
Wake-N1-N2-N3-Sleep CoSleepNet (CNN-LSTM) 83.55 0.7693 (Efe & Ozsen, 2023)
Wake - Sleep CNN-GRU 83.06 0.6013 Proposed research

81.78 0.594

Wake-NREM-REM CNN-GRU 71.01 0.5214 Proposed research
68.85 0.5112
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