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Abstract - Small and Medium Enterprises 
(SMEs) have experienced rapid growth, contributing 
approximately 95% to the global economy, 60% to 
global employment, and 50% to global GDP. This 
growth is accompanied by significant challenges, 
with approximately 70% of SMEs failing within 
the first three years, primarily due to poor inventory 
management. It emphasizes the crucial role of 
accurate demand forecasting for SMEs, particularly 
in the retail sector, where time series at various 
levels of hierarchical structure exhibit different 
scales and display diverse patterns. However, 
most existing research on demand forecasting for 
SMEs focuses on a single hierarchical level—either 
bottom, middle, or top—without addressing the 
entire hierarchy. The research sought to address this 
gap by forecasting across all hierarchical levels and 
evaluating different reconciliation techniques to 
generate coherent and accurate forecasts for multiple 
products in retail SMEs. The ETS state space model 
was used as the base forecasting model. This model 
was widely recognized as a benchmark in forecasting 
competitions. The reconciliation methods assessed 
were Bottom-Up, Top-Down based on historical 
proportions (average proportions), Top-Down based 
on forecast proportions, and Minimum Trace (MinT) 
(Ordinary Least Squares (OLS), OLS Non-Negative 
(OLS Non-Neg), Weighted Least Squares (WLS), and 
WLS Non-Negative (WLS Non-Neg)). The evaluation 
results show that the OLS Non-Negative method, 
with an average SMAPE value of 35.335%, produces 
more accurate reconciliation than other methods. In 
addition, this method also outperforms the base model 
with an increase in accuracy of 13%.

Keywords: Comparative Analysis, Reconciliation 
Techniques, Bottom-Up, Top-Down, Minimum 
Trace, Product Forecasting, Retail Small and Medium 
Enterprises (SMEs)

I.	 INTRODUCTION

Small and medium-sized enterprises (SMEs) 
have grown rapidly in recent years. According to 
World Trade Organization (2022), in 2022, SMEs 
made up about 95% of the world’s business population, 
employed around 60% of the global workforce, and 
contributed approximately 50% to the global Gross 
Domestic Product (GDP). According to Bayraktar 
and Algan (2019), 20% of SMEs fail in the first year, 
another 20% in the second year, and about 50% do not 
survive beyond the first five years. That statement aligns 
with the findings of Carazas et al. (2020) that 70% to 
80% of SMEs fail in the first three years due to poor 
inventory management. Effective demand forecasting, 
a critical aspect of inventory management, allows 
SMEs to estimate customer demand, maintain efficient 
stock levels, minimize lost sales, and maximize profits 
(Fildes et al., 2022). According to Saleem et al. (2020), 
using forecasting models positively correlates with 
improving SME performance. However, many SMEs 
still rely on intuition to estimate sales due to limited 
resources such as data, hardware, software, costs, 
and knowledge. This fact makes demand forecasting 
research tailored to SMEs’ needs critical.

Making product estimates for SMEs, especially 
in the SME retail sector, is challenging. The increasing 
number of items in the retail inventory system makes 
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accurate forecasting increasingly complex due to the 
variety of demand patterns shown by hundreds or 
thousands of Stock Keeping Units (SKUs). Another 
problem arises due to the fact that each SKU usually 
consists of a particular hierarchical structure (Fildes et 
al., 2022). Time series at different levels of hierarchical 
structure have different scales and show very diverse 
patterns. Time series at the bottom of the hierarchical 
structure tend to have random variations or fluctuations 
(noisy) and often show irregular observation patterns 
(intermittent), making them more challenging to model 
and predict. Meanwhile, higher-level time series are 
usually much smoother and easier to predict. 

Most demand forecasting research on SMEs 
only focuses on one hierarchical level: bottom, 
middle, or top. Several previous studies have tried 
to overcome intermittent problems at the lowest 
level using special models to handle intermittent 
patterns, such as Syntetos Boylan Approximation 
(SBA), Aggregate Disaggregate Intermittent Demand 
Approach (ADIDA), and Croston (Chatzipanagioti, 
2018). Others focus on clustering time series at mid-
level aggregation using clustering (Purnamasari et al., 
2023) or based on shared attributes (Isnaini & Sudiarso, 
2018). Other previous studies also try to forecast at the 
highest level of the hierarchy by aggregating the totals 
of many time series at once (Angulo-Baca et al., 2020; 
Fahrudin et al., 2022; Kolade et al., 2019; Pratama 
et al., 2022). These approaches, of course, have their 
respective advantages. Forecasting at the lowest level 
of the hierarchy allows the model to capture the entire 
time series pattern without any information being 
lost due to aggregation, and forecasting at the middle 
level of the hierarchy uses clustering techniques, 
allowing for more flexible model selection options 
according to the type of characteristics of the time 
series in each cluster. Meanwhile, forecasting at the 
top hierarchical level can reduce the complexity of the 
forecasting model because it only requires one model. 
However, a model is needed to produce consistent 
forecasts at various levels of the product hierarchy 
while maintaining the coherence of forecasting results 
to make optimal decisions. It is doubtful that this 
aggregation constraint will be satisfied if the estimates 
on each series in the hierarchical structure are generated 
independently. Furthermore, forecasting methods 
on data with hierarchical patterns should utilize the 
relationships between series at each hierarchical level 
(Oliveira & Ramos, 2019). Therefore, the research 
aims to perform forecasting at all levels of the product 
hierarchy in SMEs by leveraging the interrelationships 
between time series through hierarchical reconciliation 
techniques.

Methods for producing coherent forecasts 
at all hierarchical levels are generally known as 
reconciliation methods. The simplest reconciliation 
methods are the Top-Down and Bottom-Up 
(Wickramasuriya et al., 2019). The Bottom-Up 
approach involves making base forecasts on all-time 
series at the lowest level and aggregating these base 
forecasts to a higher level (Bertani et al., 2021). The 

main advantage of this approach is that no information 
is lost due to aggregation because forecasting is done 
at the lowest level. The weakness of this method is 
the potential for the accumulation of errors due to 
aggregation at higher levels. Meanwhile, the Top-
Down approach is carried out by making base forecasts 
at the highest hierarchical level and disaggregating 
these base forecasts to the lowest hierarchical level 
(Anderer & Li, 2022). The limitation of the Top-Down 
approach, which uses historical proportions, tends to 
produce less accurate forecasts at lower hierarchical 
levels. 

Empirical studies comparing the performance of 
Bottom-Up and Top-Down methods provide varying 
results regarding the choice between Bottom-Up and 
Top-Down (Athanasopoulos et al., 2024). Recent 
research in this area addresses these issues using a 
two-stage approach. In the initial stage, forecasting 
is carried out for all series at all hierarchical levels. 
Next, a regression model combines these base 
forecasts to produce consistent forecasts. According 
to Athanasopoulos et al. (2009) and Hyndman et al. 
(2011), the Ordinary Least Squares (OLS) estimator 
method demonstrates the success of their approach 
compared to traditional methods. Then, Generalized 
Least Squares are proposed to improve forecasting 
accuracy by considering as much variation and 
interrelationships between errors in the base forecast 
as possible. However, this approach cannot guarantee 
that the forecasts produced are non-negative. This 
weakness becomes a severe problem in inherently non-
negative applications like sales data. This problem is 
later answered by the research of Wickramasuriya et 
al. (2020) through a quadratic programming approach 
by applying non-negative constraints.

The selection of a suitable model to forecast 
multiple series simultaneously involves various 
options. While machine learning and deep learning 
models excel at capturing non-linear relationships 
between input and target variables, they are 
computationally intensive and heavily reliant on 
extensive feature engineering. These approaches may 
not be the best for small and medium-sized businesses 
operating in environments with limited resources. In 
such cases, the exponential smoothing model serves 
as a more practical choice for forecasting. This 
model offers the advantage of lower computational 
costs and reduces dependence on complex features 
of engineering while also striking a balance between 
accuracy and model complexity. Additionally, the 
exponential smoothing approach has shown strong 
performance in a wide range of time series (Panigrahi 
et al., 2021; Rosenblad, 2021). According to Barrow 
et al. (2020), the exponential smoothing family model 
emerges as the most commonly used model in their 
survey. It is utilized approximately a third of the 
time, compared to more complex models, which are 
employed only about 10% of the time.

In the research, an empirical study is conducted 
using sales data from Funan Mart, a pseudonym 
for one of the SMEs in Indonesia. The exponential 
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smoothing model is used as the base forecasting 
model, while the Bottom-Up, Top-Down, and 
Minimum Trace (MinT) reconciliation models 
are used as reconciliation comparison methods. 
The research aims to investigate and gain a deeper 
understanding of various reconciliation techniques 
in hierarchical forecasting to produce accurate and 
coherent multiple-product forecasts in retail SMEs. 
The research results are expected to provide an in-
depth view of the selection of hierarchical levels, the 
use of reconciliation techniques, and their impact on 
forecasting accuracy at each hierarchy level.

II.	 METHODS

A hierarchical time series is a type of 
multivariate time series in which each time series 
entity is related to each other through a particular 
hierarchical structure (Wickramasuriya et al., 2019). 
An illustration of this structure is in Figure 1. The 
top of the hierarchy in Figure 1 represents the total 
number of all-time series contained in the hierarchical 
structure. The top of the hierarchy is the total of the 
time series divided by a particular parameter, such as 
geographic location, product category, or store ID. 
This structure is then subdivided into more detailed 
levels using similar methods until it reaches the lowest 
time series level. In Figure 1, the highest-level time 
series can represent a retail organization’s total sales, 
the middle-level time series A and B can represent the 
total sales in each SKU category sold, and the lowest-
level time series AA, AB, BA, and BB can reflect the 
total sales of each SKU in each category being sold.

Figure 1 Illustration of Hierarchical Time Series Structure

In particular, following the notation in the 
research of Wickramasuriya et al. (2019), a set of N 
time series of length T has a hierarchical structure, 
where Yt ∈ RN is a vector containing all observations 
from each time series at time t, and bt ∈ RM is a vector 
containing observations from M lower-level time 
series at time t. Then, the hierarchical structure of 
the time series can be represented in matrix form in 
Equation (1). The S ∈ RNxM is a covariance matrix that 
describes the time series structure from the lowest to 
the highest level.

					        (1)

The forecasting model used as the base 
forecast in the research is the exponential smoothing 
model. Exponential smoothing requires decomposing 
a time series into three components: trend, seasonal, 
and error components. Various combinations of 
these components result in different combinations 
of exponential smoothing models. In the framework 
described by Hyndman et al. (2002), an automatic 
model selection approach is proposed to select the 
exponential smoothing model that best suits the time 
series data. This process is carried out through two main 
stages: maximizing the likelihood for each exponential 
smoothing model and selecting the model that produces 
the lowest Akaike’s Information Criterion (AIC). 
This research forecasts at all hierarchical levels using 
the framework proposed by Hyndman et al. (2002). 
In the M5 forecasting competition, the exponential 
smoothing model selection framework is used as the 
baseline model (Makridakis et al., 2022). This model 
outperforms the other 50 benchmark models, with 
only 415 out of 5,507 participating teams (equivalent 
to 7.5%) surpassing its performance. 

In general, predictions produced by base 
models tend to be incoherent. Therefore, additional 
methods are needed to ensure the coherence of the 
time series forecasting results. The most commonly 
used reconciliation method is linear reconciliation 
(Wickramasuriya et al., 2019). If  is defined as 
a multi-horizon base forecast over h-steps of the 
entire time series in the hierarchy and S as a summing 
matrix describing the hierarchical structure, the linear 
reconciliation can be formulated in Equation (2). 
The matrix P ∈ RMxN serves as the optimal mapping 
matrix, reconciling the base forecast ( ) with the 
reconciled forecast ( ) as shown in Equation (2).

 				       (2)

The Bottom-Up approach involves making 
base forecasts for all-time series at the lowest level 
and aggregating these base forecasts to higher-level 
hierarchies. In this approach, the matrix P is mapped 
in Equation (3). In accordance with the notation used 
by Wickramasuriya et al. (2019), N states the total 
number of time series in a hierarchical structure, while 
M is the number of time series at the lowest level.

 				       (3)

The 0M×(M−N) is the null matrix of M×(N−M), 
and lM is the M×M identity matrix. The role of the P 
matrix here is to extract forecasts at the lower level, 
which are summed by the S summation matrix to 
produce forecast reconciliation  for all levels of 
the hierarchy.

The Top-Down approach involves forecasting 
the time series at the highest hierarchical level 
and disaggregating the forecasting results to the 
lowest hierarchical level. In this approach, the P 
matrix is mapped in Equation (4). In this context, 
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 represents the set of proportions 
corresponding to a series at the lower level. The role of 
the P matrix in the Top-Down approach is to distribute 
the predictions at the top level into predictions for the 
series at the bottom level. There are several variants 
of the Top-Down approach. The first approach is Top-
Down, based on average historical proportions. In this 
approach, the proportion of the matrix P is represented 
in Equation (5). Here, yj,t denotes the historical data 
value of the lower-level series j in period t. Each 
proportion Pj reflects the average historical proportion 
of the lower-level series {yj,t}  over the period t = 1, 
⋯, n compared to the aggregate total {yt}. The second 
approach is the proportions of historical averages. 
In this approach, the matrix P can be mapped in 
Equation (6). Each proportion, denoted as Pj, reflects 
the historical average value of a specific lower-level 
series, represented by {yj,t}, compared to the overall 
average value of the aggregate series {yt}. 

 				       (4)

					       (5)

 				       (6)

Top-Down approaches using historical 
proportions for disaggregation often produce less 
accurate forecasts at lower hierarchy levels than 
Bottom-Up approaches. It is because historical 
proportions do not account for potential changes in 
proportions over time (Athanasopoulos et al., 2009). 
For example, in a retail context, beverage products 
have a different time series pattern from household 
products. Due to aggregation effects, a Top-Down 
approach based on historical proportions cannot 
capture such patterns. To address this issue, proportions 
based on historical forecasts can be used. This 
approach creates independent forecasts for each series 
across all hierarchy levels. At each hierarchical level, 
the proportion of each individual forecast to the 
aggregate total is calculated using Equation (7). The 

 is the h-step ahead forecast for the series 

corresponding to nodes that are l levels above j. Then, 
 is the number of initial h-step-ahead predictions 

under a node that is l levels above node j and directly 
connected to that node. These proportions are then 
used to distribute forecasts from top to bottom. This 
process is repeated for each node from the top to the 
bottom level in the hierarchy.

 				       (7)

Top-Down and Bottom-Up reconciliation 
methods suffer from information loss because 
forecasting is only based on forecasts at the top or 
lowest level of the hierarchy. Previous research by 
Wickramasuriya et al. (2019) proposes an approach 
that minimizes the trace of the covariance matrix P of 
the reconciliation forecast error to utilize information 
from all levels in the hierarchy.

Assuming that the base forecasts are 
unbiased, the forecast error at horizon h is defined 
as  . Under this assumption, 
the expected value of the forecast error is zero, 
i.e., . Consequently, the expected 
value of the base forecast is equal to the expected 
value of the actual future observation, expressed 
as . Let   denote the base 
forecasts at the lowest (bottom) level. If these 
forecasts are unbiased, it is E[yt+h] = Sβt+h, where βt+h 
represents the true expected values of the bottom-
level series. According to the linear reconciliation in 
Equation (2), reconciled forecasts are computed as 

, where S is the summing matrix and 
P is the reconciliation (or projection) matrix. Taking 
the expectation of both sides and substituting the 
previous relationships yields   
= , To ensure that the reconciled forecasts 
remain unbiased, it is  , 
and the following condition must hold: PS = IN, where  
IN ∈ RN×N. According to Wickramasuriya et al. (2019), 
the primary objective of the MinT reconciliation 
method is to determine the matrix  P  that satisfies the 
equation PS = IN because minimizing the trace of the 
covariance matrix P is ​​equivalent to minimizing the 
sum of the variances of the reconciled forecast errors. 
The solution to this problem is described in Equation 
(8). The Wh represents the covariance matrix of the 
base forecast errors at horizon h. Because the base 
forecasting error cannot be calculated in advance, the 
value of Wh must be estimated.

.	 		     (8)

In OLS, the value is Wh =  IN . This method is the 
same as the OLS estimator model, so the value of the 
matrix P can be seen in Equation (9). Then, in WLSs, 
the value is Wh = Λ, where Λ is a diagonal matrix with 
value S1. Then, S is the summing matrix and 1 ∈ RM×1 
is the unit vector. This method assigns weight to the 
top-level series M and 1 for the weight of the bottom-
level series. Therefore, this method is called WLSs 
(Weighted Least Squares applying structural scaling).

 		     (9)

The main issue with the MinT reconciliation 
approach is that it does not ensure that the reconciled 
forecast will always be non-negative. It can be a 
significant problem in sales forecasting, where 
the target variable is inherently non-negative. The 
forecast reconciliation is redefined using quadratic 
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programming, which imposes a non-negative constraint 
to solve this problem. It ensures that the final reconciled 
forecast will have a non-negative value.

Several metrics are used to evaluate the 
performance of various forecasting models. These 
metrics include Mean Absolute Error (MAE), Root 
Mean Squared Error (RMSE), and Mean Absolute 
Percentage Error (MAPE). The formulation of MAE 
and RMSE is defined in Equations (10) and (11). Next, 
the formulation of MAPE is in Equation (12). The n is 
the number of observations, yt is the actual value, and 

 is the predicted value at time t.

,		   	  (10)

, 		   (11)

 		   (12)

The main problem with using MAPE is that 
when (𝑦𝑡) has a value of zero, the divisor becomes 
zero, and the division result becomes undefined. 
Symmetric Mean Absolute Percentage Error (SMAPE) 
overcomes this problem by calculating the prediction 
error relative to the average of the actual value and the 
predicted value, not just the actual value. The smaller 
the SMAPE value, the better the forecasting results. 
SMAPE is shown in Equation (13). Interpretation of 
MAPE and SMAPE can be seen in Table 1.

   		   (13)

Figure 2 illustrates the complete flow of 
the research. The data are from sales database of 
Funan Mart, which was processed through daily 
aggregation from November 2022 to September 2023, 
encompassing a total of 307 days. Table 2 provides a 
detailed description of the dataset.

Table 1 Interpretation of Mean Absolute Percentage Error (MAPE) 
and Symmetric Mean Absolute Percentage Error (SMAPE)

MAPE Value SMAPE Value Predictive Performance 
Evaluation

< 10% < 10% Very accurate forecast
10−20% 10−20% Good forecast
20−50% 20−50% Reasonable forecast
> 50% > 50% Inaccurate forecast

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-
Down Historical Average Proportion, TD-FP: Top-Down Forecast Proportions, 
OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least 
Squares Non-Negative.

Figure 2 Research Flow
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Table 2 Dataset Description

Column Data Type Total Records
Product Code object 293,185
Product Name object 293,185
Transaction Time datetime64[ns] 293,185
Quantity int64 293,185
Category Code object 293,185

The number of unique Product Codes in the 
dataset is 955. After further analysis, it is found that 
ten products are not sold at all during the period from 
November 14, 2022, to September 16, 2023. Hence, 
these products are removed. Furthermore, 406 products 
are only sold in less than 10 days out of 307 days. These 
products are removed before forming the hierarchical 
structure. An example of a removed intermittent time 
series can be seen in the Appendix. The main reason 
for removing products with very sporadic intermittent 
patterns, especially in a hierarchical context, is 
that they can affect the quality of the aggregation 
calculation. In a hierarchical context, the middle and 
upper levels are the aggregates of the products at the 
lower levels. Products with a very intermittent pattern 
whose sales value is mostly zero but are punctuated 
by sporadic sales spikes can cause aggregate value 
distortion. These irregular spikes can introduce bias 
in the trend or demand patterns at higher hierarchical 
levels. The data’s hierarchical structure is divided 
into three levels. Table 3 shows the entire time series 
at each hierarchical level. Level 1 of the hierarchy 
represents the total sales. Level 2 represents sales by 
product category, and level 3 represents sales on each 
SKU. This hierarchy is formed using the ‘hierarchical 
forecast’ library.

Table 3 Number of Series in Each Hierarchy

Level Total Series in Each Level
Level 1 1
Level 2 14
Level 3 539
All Series 554

There are 13 recorded days with zero sales. 
These days can be identified through review at the 
highest hierarchical level of the data. The researchers 
perform imputation to handle days with zero sales 
using the time interpolation method from the Pandas 
library. The data are then divided into a training 
set and a test set, with the training set consisting of 
293 days and the remaining 14 days used as the test 
set. Training is carried out using the exponential 
smoothing model with the Stats Forecast library to 
produce base forecasts. The base forecasting results 
are then reconciled using Bottom-Up, Top-Down 
historical average proportions denoted as TD-HP-AP, 
Top-Down based on historical proportion averages 
denoted as TD-HP-PA, Top-Down based forecast 
proportions denoted as TD-FP, MinT, and Non-
Negative MinT techniques. The reconciliation results 
are then compared using SMAPE, MAE, and RMSE 
metrics.

III.	 RESULTS AND DISCUSSIONS

Table 4 shows the performance comparison of 
each reconciliation model based on MAE at various 
hierarchy levels. Table 5 presents the performance of 
each model based on RMSE. Finally, Table 6 compares 
the models’ performance using SMAPE.

Table 4 Mean Absolute Error Values ​​at Each Hierarchy Level

Model 
Aggregation Level

All Levels
Top-Level Middle Level Bottom Level

Base 66.629 12.326 1.091 1.494
Bottom-UP 81.478 12.526 1.091 1.526
TD-HP-PA 66.629 14.119 1.178 1.623
TD-HP-AP 66.629 13.691 1.186 1.620
TD-FP 66.629 12.241 1.074 1.474
OLS 66.604 12.465 1.107 1.512
OLS Non-Neg 66.654 12.390 1.074 1.479
WLS 71.372 12.165 1.096 1.503
WLS Non-Neg 72.885 12.253 1.084 1.496

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average 
Proportion, TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary 
Least Squares Non-Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-
Negative.
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All reconciliation models show high accuracy 
at the top hierarchical level, with SMAPE values 
ranging from 6.239 to 7.875, MAE values ranging 
from 66.604 to 81.478, and RMSE values ranging 
from 80.503 to 106.526. At this hierarchical level, 
all models based on the Top-Down approach produce 
consistent and similar predictions, with MAE values 
of 66.629, RMSE of 80.789, and MAPE of 6.239. This 
uniformity of results is due to the characteristics of the 
Top-Down approach, which only uses the base forecast 
results from the top level of the hierarchy as a base 
for distributing values ​​to the levels below. The OLS-
based reconciliation model also performs well and is 
comparable to the Top-Down approach, as seen from 
the MAE, RMSE, and SMAPE values, which are not 
significantly different. It indicates the OLS approach 
can provide effective reconciliation at a high-level 
hierarchy without losing significant accuracy. 

On the other hand, the Bottom-Up reconciliation 
model shows the worst performance compared to 
other reconciliation methods, with an MAE value of 
81.478, RMSE of 106.526, and SMAPE of 7.875. The 
significant difference between the MAE and RMSE 
values in the Bottom-Up approach at the high hierarchy 
level indicates significant, uneven errors at the top 
level. This phenomenon is caused by the accumulation 
of errors due to the data aggregation process from 
lower to higher levels of the hierarchy. In addition, at 
this level of the hierarchy, the Weighted Least Squares 
(WLS) reconciliation approach that gives greater 
weight to the top level produces less satisfactory 
performance than other methods. It is indicated by the 
MAE value of 71.372, RMSE of 86.221, and SMAPE 
of 6.859, which are quite different from other models. 
These results indicate that giving suboptimal weights 
to the top level of the hierarchy can increase the model’s 

Table 5 Root Mean Squared Error (RMSE) Values ​​at Each Hierarchy Level

Model
Aggregation Level

All Level
Top-Level Middle Level Bottom Level

Base 80.789 15.373 1.434 1.929
Bottom-UP 106.526 16.109 1.434 1.994
TD-HP-PA 80.789 17.302 1.551 2.092
TD-HP-AP 80.789 17.024 1.563 2.097
TD-FP 80.789 15.356 1.424 1.919
OLS 80.503 15.574 1.454 1.954
OLS Non-Neg 80.524 15.514 1.436 1.935
WLS 86.221 15.387 1.441 1.946
WLS Non-Neg 88.598 15.480 1.433 1.946

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.

Table 6 Symmetric Mean Absolute Percentage Error (SMAPE) Values ​​at Each Hierarchy Level

Model
Aggregation Level

Average
Top-Level Middle Level Bottom Level

Base 6.239 32.727 84.290 41.085
Bottom-UP 7.875 33.499 84.290 41.888
TD-HP-PA 6.239 35.128 88.184 43.184
TD-HP-AP 6.239 34.960 88.223 43.141
TD-FP 6.239 32.842 84.439 41.173
OLS 6.244 38.643 87.510 44.132
OLS Non-Neg 6.250 33.064 66.691 35.335
WLS 6.859 32.960 87.379 42.399
WLS Non-Neg 7.025 33.147 74.632 38.268

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.
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sensitivity to errors that occur at the top level, thereby 
worsening the prediction accuracy at the top level. 
Therefore, more strategic weight settings are needed 
to increase the effectiveness of the WLS approach in 
maintaining accuracy at upper hierarchical levels. 

Figure 3 displays the results of the accuracy 
rankings calculated using the Multiple Comparisons 
with the Best (MCB) test to evaluate the significance 
of the findings at the top hierarchical level to confirm 
these findings. This method has been widely used in 
forecasting literature. The MCB test evaluates the 
performance of methods by comparing the average of 
their rankings, using critical differences determined 
through confidence intervals (Koutsandreas et al., 
2022). The MCB test is applied at the top hierarchical 
level, and the results are presented for each forecasting 
method. In each panel of Figure 3, methods not in the 
gray area (representing the best-ranked method) are 
considered to have significantly worse performance 
than the best method. The results of this visual 
analysis show that Top-Down reconciliation methods 
such as TD-HP-PA, TD-HP-AP, and TD-FP, as well 
as OLS-based methods (including OLS with non-
negative restrictions) and direct forecasting from 
the base model, produce identical performance. In 
contrast, Bottom-Up reconciliation shows the lowest 
performance, and WLS does, too. Methods that do not 
overlap the gray area, showing the confidence interval 
of the best method, are considered to have significantly 
lower performance than the best method.

At the middle hierarchy level, the forecasting 

results are greatly influenced by the type of 
reconciliation model used. In the Top-Down approach, 
the forecast at this level is obtained through a 
disaggregation process from the forecast results at the 
upper hierarchy level. The TD-HP-PA reconciliation 
method uses a disaggregation method based on the 
historical proportion average. This approach produces 
MAE values ​​of 14.119, RMSE of 17.302, and SMAPE 
of 35.128. Meanwhile, the TD-HP-AP reconciliation 
model uses the historical average proportion method, 
which gives slightly better results, with MAE values ​​
of 13.691, RMSE of 17.024, and SMAPE of 34.960. 
In the Top-Down forecast proportion approach, the 
proportions used are taken from the latest forecast 
results (forecast proportion), not historical data. This 
approach allows the model to be more responsive 
to the latest data patterns than historical proportion-
based methods that rely only on past information. It 
can be confirmed by the MAE value of 12.241, RMSE 
of 15.356, and SMAPE of 32.842, which is better than 
the two previous Top-Down reconciliations.

On the other hand, in the OLS and WLS 
reconciliation models based on structural scaling, 
the forecast results at the middle hierarchy level are 
influenced by all base forecasts at all levels in the 
hierarchy. The main difference between OLS and WLS 
lies in how they consider the hierarchical structure 
in the reconciliation process. In the OLS method, 
all elements in the reconciliation are given the same 
weight without considering differences in scale or 
structure between hierarchy levels. In contrast, weights 

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.

Figure 3 Multiple Comparisons with the Best (MCB) Test 
with a Confidence Level of 0.95 at the Top Hierarchical Level
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are given according to the hierarchical structure in the 
WLS method with a structural scaling approach. In 
contrast, levels with larger data scales or influences 
are given higher weights. 

The forecasting results at the middle hierarchy 
level are MAE of 12.465, RMSE of 15.574, and 
SMAPE of 38.643. The results are slightly worse 
than WLS, with MAE of 12.165, RMSE of 15.387, 
and SMAPE of 32.960. Although WLS with structural 
scaling offers greater flexibility in handling scale 
imbalances between levels, this approach requires 
careful weight settings. Inappropriate weights can 
increase the model’s sensitivity to errors at a certain 
level, especially if there are levels with high data 
variability. As a result, the reconciliation results can 
be less stable compared to the OLS approach, which 
gives uniform weight to each element, as seen at the 
top level of the hierarchy, whereas WLS reconciliation 
produces poor results. Overall, the model accuracy 
is worse at the middle hierarchy level than at the 
top hierarchy level, with a range of SMAPE values ​​
between 32.727 and 38.643, MAE values ​​from 12.165 
to 14.119, and RMSE values ​​from 17.302. Figure 4 
shows the results of the MCB test to assess further the 
performance of each model at the middle hierarchy 
level. From the results of the MCB test, it is found 
that the base model is the most accurate, while the 
Top-Down forecast proportion reconciliation model 
is the most accurate. Methods that do not overlap the 
gray area, showing the confidence interval of the best 
method, are considered to have significantly lower 

performance than the best method.
The lowest level of the hierarchy shows the 

lowest forecasting accuracy compared to other levels. 
At this level, the SMAPE value ranges between 
66.691 and 88.223, the MAE value between 1.074 
and 1.186, and the RMSE value between 1.424 and 
1.563. At this level, the Bottom-Up reconciliation 
results are identical to the base model results, with an 
MAE value of 1.091, RMSE of 1.434, and SMAPE of 
84.290. It can be explained by the fact that the Bottom-
Up method only accumulates values ​​from the lowest 
level of the hierarchy to the top, so it does not change 
the base prediction results at this level. As previously 
expected, the Top-Down approach based on historical 
proportions produces worse accuracy at the lowest 
level of the hierarchy. 

The TD-HP-PA model using the disaggregation 
method based on the historical proportion average 
produces an MAE value of 1.178, an RMSE of 1.551, 
and a SMAPE of 88.184. Meanwhile, the TD-HP-AP 
model, which uses the historical average proportion 
method, shows similar performance, with an MAE 
value of 1.186, an RMSE of 1.563, and an SMAPE 
of 88.223. Both are proven to provide the worst 
forecasting results at this hierarchy level because 
both methods rely entirely on historical proportions 
without considering current patterns that may be 
more relevant. In contrast, the Top-Down forecast 
proportion approach, which uses proportions based 
on current forecast results (forecast proportions) 
instead of historical data, shows better performance 

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.

Figure 4 Multiple Comparisons with the Best (MCB) Test 
with a Confidence Level of 0.95 at the Middle Hierarchy Level
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than the other two Top-Down methods. This approach 
produces an MAE value of 1.074, an RMSE of 1.424, 
and an SMAPE of 84.439, almost equivalent to the 
baseline model. The low accuracy of the base model at 
the lowest level of the hierarchy also affects the results 
of the OLS and WLS-based reconciliation. 

Reconciliation with the OLS method produces 
an MAE value of 1.107, RMSE of 1.454, and SMAPE 
of 87.510, while the WLS method shows an MAE 
value of 1.096, RMSE of 1.441, and SMAPE of 
87.379. This poor performance can be explained by the 
dependence of both methods on the results of the base 
forecasts, which, at the lowest level of the hierarchy, 
have low accuracy. Poor base forecast results also 
impact the OLS and WLS reconciliation results at the 
middle level of the hierarchy, considering that these 
reconciliation methods consider the contribution 
of all levels in the hierarchy. However, using non-
negative constraints in the OLS and WLS methods has 
improved reconciliation accuracy at the lowest level 
of the hierarchy. 

By applying these restrictions, the reconciliation 
results show an increase in accuracy compared to the 
OLS and WLS methods without restrictions, surpassing 
the base model results. In addition, the use of non-
negative constraints also contributes positively to the 
accuracy of reconciliation at the middle hierarchy level, 
making this approach more effective in overcoming 
the weaknesses of the base model, which has low 
accuracy at the lowest hierarchy level. Figure 5 shows 
the results of the MCB test at the lowest hierarchy 
level to assess further each model's performance at the 
middle hierarchy level. From the results of the MCB 

test, the OLS non-negative reconciliation model is the 
most accurate, followed by the WLS non-negative 
reconciliation model. Methods that do not overlap the 
gray area, showing the confidence interval of the best 
method, are considered to have significantly lower 
performance than the best method.

Although the accuracy of each hierarchical 
reconciliation model has been described separately 
at the upper, middle, and lower levels, it is important 
to assess the overall effectiveness of the models 
because hierarchies are interdependent. A model 
that appears accurate at one level may produce 
inconsistencies or error propagation when connected 
to other levels. In addition, the main purpose of 
hierarchical reconciliation is to ensure the alignment 
of predictions across levels, so model performance 
is not only assessed based on local accuracy (per 
hierarchy level) but also the ability to maintain data 
integrity globally. Therefore, an assessment covering 
all levels of the hierarchy needs to be carried out to 
ensure that the model’s performance is optimal for all 
levels of aggregation. The Top-Down approach based 
on historical proportions gave the worst reconciliation 
results compared to other models. In the TD-HP-PA 
model, the disaggregation method is carried out based 
on the average of historical proportions, resulting in an 
MAE value of 1.623, RMSE of 2.092, and an average 
SMAPE of 43.184. Meanwhile, the TD-HP-AP 
model, which uses the average historical proportions, 
produces an MAE value of 2.097, an RMSE of 2.097, 
and an average SMAPE of 43.141. These poor results 
occur because both methods rely entirely on historical 
information, which cannot capture current patterns in 

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.

Figure 5 Multiple Comparisons with the Best (MCB) Test 
with a Confidence Level of 0.95 at the Bottom Hierarchy Level
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the data. In contrast, the Top-Down forecast proportion 
approach, which uses proportions based on current 
forecast results (forecast proportions) instead of 
historical proportions, performs better. This approach 
makes the model more responsive to current data 
patterns, resulting in more accurate reconciliations 
than the two historical proportion-based models. This 
model produces an MAE value of 1.474, an RMSE of 
1.919, and an SMAPE of 41.173, almost equivalent to 
the forecast results of the baseline model. 

In the OLS model, each element in the 
reconciliation process is given the same weight 
without considering the scale differences between 
the hierarchy levels. In contrast, the WLS model 
uses weights adjusted to the hierarchical structure, 
where levels with more significant influence in the 
hierarchy are given higher weights. The poor baseline 
forecasting results at the lowest level of the hierarchy 
with MAE values ​​of 1.091, RMSE of 1.434, and 
SMAPE of 84.290 cause error propagation to all 
levels of the hierarchy, which negatively impacts 
the reconciliation performance in both the OLS and 
WLS models. Applying non-negative constraints 
to both models successfully improves accuracy, 
especially at the lowest level of the hierarchy. In the 
OLS model with non-negative constraints, the MAE 
value decreases to 1.074, the RMSE to 1.436, and 
the SMAPE to 66.691. The result shows a significant 
improvement compared to OLS without non-negative 
constraints (MAE of 1.107, RMSE of 1.454, and 
SMAPE of 87.510). The same thing also happens in 
the WLS model with non-negative constraints, where 
the MAE value becomes 1.084, RMSE to 1.433, and 

SMAPE to 74.632. This figure is better than WLS 
without non-negative constraints, recording an MAE 
of 1.096, RMSE of 1.441, and SMAPE of 87.379. The 
increase in accuracy at the lowest level of the hierarchy 
positively impacts accuracy at all other levels of the 
hierarchy. Therefore, the OLS and WLS models with 
non-negative constraints show superior performance 
compared to other reconciliation models, including 
the base predictions without reconciliation. Between 
the two approaches, the OLS model with non-negative 
constraints performs better than the WLS model. 
This can be explained by the characteristics of the 
forecasting problem, which are more significant at 
the lowest level of the hierarchy, where the prediction 
accuracy tends to be low. Meanwhile, the middle 
and upper levels of the hierarchy perform more 
stable. The use of weights in the WLS model, which 
considers a hierarchical structure, actually worsens the 
reconciliation accuracy, especially at the upper levels 
of the hierarchy, because larger weights are allocated 
to higher-scale levels without considering the base 
prediction quality. Thus, the OLS model with non-
negative constraints successfully achieves an optimal 
balance between local (lower level) and global (upper 
level) accuracy in the hierarchical structure.

Figure 6 presents the results of the MCB 
analysis at all levels of the hierarchy to confirm this 
finding. This visual analysis shows that the OLS 
model with non-negative constraints produces the 
best reconciliation performance, followed by the WLS 
model without non-negative constraints. Methods that 
do not overlap the gray area, showing the confidence 
interval of the best method, are considered to have 

Note: TD-HP-PA: Top-Down Historical Proportion Average, TD-HP-AP: Top-Down Historical Average Proportion, 
TD-FP: Top-Down Forecast Proportions, OLS: Ordinary Least Squares, OLS Non-Neg: Ordinary Least Squares Non-
Negative, WLS: Weighted Least Squares, and WLS Non-Neg: Weighted Least Squares Non-Negative.

Figure 6 Multiple Comparisons with the Best (MCB) Test 
with a Confidence Level of 0.95 for All Hierarchy Levels
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significantly lower performance than the best method.
Retail SMEs often face challenges in the form of 

high levels of demand volatility across various product 
hierarchy structures, which can complicate stock 
management and make the right strategic decisions. 
In this context, applying the OLS model with non-
negative constraints provides significant benefits 
because this model can improve prediction accuracy 
at the SKU level. A better level of accuracy is essential 
to support the procurement process and optimal stock 
replenishment. Thus, SMEs can minimize potential 
losses caused by overstocking or understocking, 
ultimately increasing operational efficiency and 
profitability. As the scale and complexity of SME 
operations grow, the need to manage data and perform 
forecasting at various levels of the hierarchy increases, 
such as from product to category, from category to 
store, and to region. The OLS model with non-negative 
constraints has a significant advantage because it can 
produce consistent predictions across all hierarchy 
levels. This consistency plays an important role in 
supporting operational efficiency, such as through 
more accurate supply chain planning while ensuring 
alignment of business strategies between local and 
global levels. In addition, this model enables SMEs 
to respond to changes in market demand more quickly 
and effectively, thereby reducing resource waste, 
improving planning accuracy, and strengthening 
competitiveness in a dynamic and competitive market.

IV.	 CONCLUSIONS

The OLS reconciliation model applying non-
negative constraints is proven to be a superior and 
more stable reconciliation method at three levels of 
product hierarchy based on daily data compared to 
other reconciliation methods tested. The application 
of non-negative constraints significantly increases 
the accuracy at the lowest level of the hierarchy, 
ultimately contributing to the reconciliation results’ 
stability across all levels. This method produces an 
average SMAPE value of 35.335%. It performs better 
than other methods. In addition, the OLS method 
with non-negative constraints also outperforms the 
base model with an accuracy increase of 13%, where 
the base model has a SMAPE value of 41.085%. 
The research results can be used as a reference in 
forecasting reconciliation research, especially in the 
retail SME sector with daily data, where forecasting 
at the lowest level of the hierarchy is not optimal and 
produces negative values.

Furthermore, the OLS reconciliation model 
tested uses a uniform weighting approach at all 
hierarchy levels. On the other hand, the WLS model 
assigns weights based on the hierarchical structure, 
so the WLS forecasting results with structural scaling 
tend to be less stable than the OLS method. This 
instability is caused by the characteristics of the 
forecasting problem, which are more prominent at the 
lowest level of the hierarchy, where forecast accuracy 

tends to be low. Meanwhile, the middle and upper 
levels of the hierarchy show more stable performance. 

Future research can consider a more optimal 
weighting approach. One alternative that can be 
explored is assigning weights based on forecast 
variance. It has the potential to produce a more 
accurate and robust reconciliation model at all levels 
of the hierarchy.
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