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Abstract - The research aimed to optimize 
the quality attributes of Piper retrofractum Vahl.—
piperine content, color brightness, and water 
content—using Partial Least Squares Regression 
(PLSR) to evaluate the pretreatment effects with fruit 
peel infusions and drying conditions. The research 
urgency lied in addressing the challenges of achieving 
consistent product quality while promoting sustainable 
food processing practices. Around 30 samples of 
Piper retrofractum Vahl. were subjected to varying 
pretreatment concentrations, soaking durations, drying 
durations, and peel types (orange and pineapple). 
The PLSR model was employed to identify key 
factors influencing the quality attributes and assess 
predictive performance based on Root Mean Squared 
Error (RMSE) and Coefficient of Determination (R²) 
values. As a result, the PLSR model explains 43.22% 
of the variance in piperine content, highlighting the 
importance of shorter soaking durations and higher 
pretreatment concentrations in preserving piperine 
levels. For water content, the model captures 75.08% 
of the variance, emphasizing the critical role of drying 
duration in reducing moisture. However, the color 
brightness model explains only 18.5% of the variance, 
indicating the need to explore contributing factors 
further. The research introduces the innovative use of 
fruit peel-infused water as a sustainable pretreatment 
method, contributing to eco-friendly food processing 
practices and offering practical insights into optimizing 
production for improved product quality. The findings 
underscore the importance of balancing pretreatment 
and drying parameters to address inconsistencies in 
quality while promoting sustainability. Future research 
should expand experimental conditions, integrate 

additional variables, and explore advanced modeling 
techniques to enhance predictive accuracy and product 
quality.

Keywords: Piper retrofractum Vahl., predictive 
modeling in food science, Partial Least Squares 
Regression (PLSR), quality optimization in spice 
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I. INTRODUCTION

Piper retrofractum Vahl., commonly known 
as Java long pepper, holds significant economic and 
medicinal value, especially in Southeast Asia. The 
plant’s fruits are rich in bioactive compounds like 
piperine, known for its antioxidant, anti-inflammatory, 
and antimicrobial properties, which make it highly 
valuable for applications in the food, pharmaceutical, 
and cosmetic industries (Kubo et al., 2013; Tang et al., 
2019). Traditionally, Piper retrofractum Vahl. has been 
used to treat ailments such as asthma, bronchitis, and 
gastrointestinal disturbances due to its carminative and 
stimulant properties (Dermawan et al., 2022; Panphut 
et al., 2020). Recently, its potential as a COVID-19 
treatment has garnered attention, with studies showing 
promising inhibition of the virus’s main protease 
enzyme (Supriyanto & Mojiono, 2022).

The economic relevance of Piper retrofractum 
Vahl. extends beyond its medicinal use, with its 
oleoresins commonly used as flavor enhancers and 
preservatives in food products. Furthermore, its extracts 
have been employed in synthesizing nanoparticles 
for applications in medicine and materials science, 
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reflecting its alignment with sustainable industrial 
practices (Amaliyah et al., 2020, 2022). In the 
cosmetics industry, the plant’s antioxidant properties 
have been explored to promote skin health and tissue 
regeneration, adding to its commercial appeal (Salehi, 
2020).

Key quality attributes of dried Piper 
retrofractum Vahl.—piperine content, color 
brightness, and water content—are critical to its diverse 
applications. Piperine content not only determines the 
spice’s pharmacological efficacy but also enhances its 
pungency, contributing to its therapeutic and culinary 
value (Ishii et al., 2022; Takahashi et al., 2018). 
However, drying processes often cause variability in 
piperine levels, with high temperatures potentially 
degrading this compound (Takahashi et al., 2018). 
Similarly, color brightness plays a pivotal role in 
consumer acceptance, as it signifies freshness and 
quality. Factors such as phytochemical composition 
and drying conditions significantly influence this 
attribute (Christianty et al., 2024; Oe et al., 2023; 
Rohmatulloh et al., 2022). Additionally, water content 
directly impacts the shelf life and stability of dried 
Piper retrofractum Vahl., with optimal moisture levels 
preventing microbial growth while maintaining flavor 
and medicinal properties (Ekowati et al., 2012; Gorgani 
et al., 2017; Nurhidayah et al., 2024; Takahashi et al., 
2018).

Despite its importance, achieving consistent 
quality in dried Piper retrofractum Vahl. is challenging 
due to variability in processing conditions, including 
pretreatment and drying methods (Meechuen et al., 
2023; Takahashi et al., 2018). Recent advancements 
suggest that fruit peel-infused water, rich in flavonoids 
and ascorbic acid, can enhance the preservation of 
piperine and color while promoting sustainability in 
food processing (Christianty et al., 2024; Gorgani 
et al., 2017; Vannabhum et al., 2023). However, the 
application of such eco-friendly pretreatment methods 
remains underexplored (Weil et al., 2017).

The research aims to optimize the quality 
attributes of Piper retrofractum Vahl. through 
predictive modeling using Partial Least Squares 
Regression (PLSR). PLSR is a robust tool capable 
of handling multicollinearity and multiple response 
variables, making it well-suited for analyzing 
complex datasets typical of chemometrics (Mao et 
al., 2023; Stark et al., 2023; Zhou et al., 2019). By 
leveraging PLSR, the researcher seeks to identify key 
factors influencing piperine content, color brightness, 
and water content, providing actionable insights to 
enhance production efficiency and product quality 
(Li et al., 2020; Munnaf & Mouazen, 2022).

II. METHODS

This section details the methodology used 
to develop a predictive model employing PLSR to 
assess the impact of pretreatment with fruit peel-
infused water and subsequent drying conditions on 

the quality attributes of Piper retrofractum Vahl. The 
proposed methodology follows a systematic sequence, 
illustrated in Figure 1. It outlines the major stages of 
the experimental and analytical process. This flow 
diagram provides a visual representation of the steps 
involved, from data acquisition to predictive modeling.

Start

Sample Collection and Preparation
− Collect Piper retrofractum Vahl. fruits
− Ensure uniform size and ripeness
− Use clean and air-dry samples

Pretreatment with Peel-Infused Water
− Prepare infused water (orange and pineapple)
− Soak fruits for varying durations

Drying Process
− Control drying durations (12, 15, 18 hours)

Data Collection
− Measure piperine content
− Measure color brightness
− Measure water content

Data Preprocessing
− Normalize continuous features
− Encode categorical variables
− Split data into training/testing sets (80%/20%)

PLSR Model Building and Evaluation
− Use GridSearchCV for optimal components
− Evaluate the model: RMSE and R2

End

                             

Figure 1 Research Flow Diagram, Including Partial Least 
Squares Regression (PLSR), Root Mean Squared Error 

(RMSE), and Coefficient of Determination (R²)

The approach includes preliminary research 
and data collection, followed by the construction 
and evaluation of the PLSR model. By utilizing a 
structured experimental design and rigorous data 
analysis, the researcher aims to identify the key factors 
that influence the quality of Piper retrofractum Vahl. 
and to provide actionable insights for optimizing its 
processing conditions. The experimental data are 
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obtained from observations intended to build a robust 
prediction model for these novel pretreatment methods. 
These observations form the foundation for developing 
the PLSR model, which will be used to optimize the 
processing conditions for Piper retrofractum Vahl. The 
experiment involves 30 samples, each with a unique 
combination of pretreatment concentration, soaking 
duration, drying duration, and peel type (orange 
or pineapple). This structured experimental design 
allowed for a comprehensive analysis of the factors 
affecting the quality of Piper retrofractum Vahl. Vahl.

At the preliminary stage, Piper retrofractum 
Vahl. fruits, selected at the half-ripe stage for uniformity 
in size and ripeness, are meticulously harvested. To 
maintain sample integrity, they are transported under 
controlled temperatures (10-15°C) and thoroughly 
cleaned with distilled water upon arrival. The fruits are 
then air-dried to standardize moisture levels, ensuring 
consistent quality and reliable experimental outcomes 
before undergoing pretreatment. Three specific levels 
of pretreatment concentration are employed using 
infused water from orange and pineapple peels. The 
low concentration consists of 750 grams of orange 
peels in 1,000 ml of mineral water. Then, the medium 
concentration involves 1,000 grams of orange peels in 
the same volume of water. The high concentration uses 
1,250 grams of orange peels in 1,000 ml of mineral 
water. The soaking duration is varied across three 
levels to evaluate its impact on the infusion process: 
3 minutes for low duration, 15 minutes for medium 
duration, and 30 minutes for high duration. This 
variation aims to assess how different soaking times 
influence the overall effectiveness of the infusion. 
Then, in the drying process, samples are oven-dried 
at 70°C, with the drying duration assessed at three 
different lengths to evaluate its effect on the final 
product quality. The durations tested are 12 hours for 
low, 15 for medium, and 18 for high.

The quality attributes of the dried Piper 
retrofractum Vahl. samples—piperine content, color 
brightness, and water content—are measured using 
precise analytical methods. High-Performance Liquid 
Chromatography (HPLC) is employed to determine 
piperine content with high accuracy, while a calibrated 
colorimeter is used under consistent lighting to assess 
color brightness. The water content is measured 
through a weight loss method, by weighing the samples 
before and after drying to calculate moisture levels. 
These methods ensure the reliability and accuracy of 
the data collected during the experimental phase.

The next stage of the research involves a 
comprehensive data preprocessing phase, which is 
crucial for ensuring the data are properly formatted for 
analysis. This phase begins by encoding categorical 
variables such as pretreatment concentration, soaking 
duration, drying duration, and peel type into numerical 
formats using techniques like One-Hot Encoding 
or Label Encoding. This transformation is essential 
to make these variables compatible with regression 
and neural network models, both of which require 
numerical input.

Following the encoding process, feature scaling 
is applied to the continuous features, including all 
dependent variables and the newly encoded categorical 
features. Normalization or standardization methods 
are employed to ensure that these features are on a 
consistent scale. This step is crucial as it prevents any 
single variable from disproportionately influencing 
the model due to differences in scale. 

With the data appropriately scaled, the dataset 
is subsequently split into training and testing sets, with 
80% allocated to training and the remaining 20% set 
aside for testing. This division is crucial for assessing 
the model’s performance on unseen data, ensuring 
that the model not only fits the training data but also 
generalizes effectively to new examples.

Once the data are preprocessed, the next step 
involves building and evaluating the PLSR model. 
The preprocessed training and testing data are loaded 
from the specified files, and the dataset is separated 
into independent variables (features) and dependent 
variables (target outcomes: piperine content, color 
brightness, and water content) as summarized in 
Table 1. This separation of variables is crucial to 
facilitate the modeling process.

Table 1 Independent and Dependent Variables

Variable Type Variables
Independent Pretreatment Concentration, 

Soaking Duration, Drying 
Duration, Peel Type

Dependent Piperine Content (%), Color 
Brightness (L*), Water 
Content (%)

A critical step in the modeling process is the 
selection of the optimal number of components for the 
PLSR model (Liu et al., 2017; Rimsha et al., 2023; 
Zhang et al., 2021). GridSearchCV is employed to 
perform a 5-fold cross-validation across a range 
of potential numbers of components (Salter, 2018; 
Tsalyuk et al., 2017). In PLSR, the components 
are linear combinations of the original predictors 
(independent variables) (Andrade et al., 2023; 
Khudzaifi et al., 2020). These components are derived 
in such a way that they maximize the covariance 
between the predictors and the response variable. 
The exact linear combinations (i.e., which predictors 
are involved and their respective weights) can be 
extracted and analyzed to understand which predictors 
contribute most to each component (Greenberg et al., 
2023; Thelwell et al., 2020). This method allows for a 
thorough evaluation of different model configurations, 
with the optimal number of latent variables selected 
based on minimizing the cross-validated mean squared 
error (Aymen et al., 2023). The careful selection 
of these components ensures that the model is both 
accurate and efficient, balancing complexity with 
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predictive performance (Jin et al., 2022; Wan et al., 
2023).

After determining the optimal number of 
components, the PLSR model is fitted to the training 
data. It involves using the identified number of 
components to model the relationship between the 
independent variables and the target outcomes. Once 
the model is trained, it is used to predict outcomes on 
the test set, allowing for an assessment of its ability to 
generalize to new data.

The model’s performance is assessed using 
essential metrics, including Root Mean Squared Error 
(RMSE) and the Coefficient of Determination (R²). 
RMSE measures the average prediction error, indicating 
how closely the model’s predictions match the actual 
outcomes (Sim et al., 2018). The R² offers insight into 
how well the model captures the variability of the data, 
reflecting its overall effectiveness (Yeo & Saptoro, 
2024). These evaluations are critical in ensuring that 
the PLSR model is reliable and robust in predicting 
the quality attributes of Piper retrofractum Vahl. under 
various pretreatment and drying conditions.

III. RESULTS AND DISCUSSIONS

This section presents a detailed analysis and 
interpretation of the experimental data from the 
pretreatment and drying of Piper retrofractum Vahl. 
The research aims to understand how factors such 
as pretreatment concentration, soaking duration, 
drying duration, and peel type influence key quality 
attributes—piperine content, color brightness, and 
water content—using PLSR. The analysis provides 
valuable insights from technical, operational, and 
business perspectives, offering guidance on refining 
processing methods to optimize these quality attributes. 
The following sections discuss the outcomes and 
implications of the PLSR models in detail.

The preliminary experiment yields results 
from 30 samples. Each has a unique combination of 
pretreatment concentrations, soaking duration, drying 
duration, and peel type (orange or pineapple). These 
results, presented in Table 2, are used to model the 
effects on piperine content, color brightness, and water 
content using the PLSR model.

The PLSR analysis conducted for Piper 
retrofractum Vahl. reveals critical insights into how 
pretreatment and drying conditions influence key 
quality attributes, namely piperine content, color 
brightness, and water content. These findings have 
significant implications from technical, operational, 
and business perspectives. The accompanying figures 
visually demonstrate the predictive accuracy of the 
models by comparing actual versus predicted values 
for each target variable.

Table 2 Experimental Results

Conc Soak Dry. Pip. Col. Wtr Peel
Med. Low Low 0.295 45.02 20.49 Org
Med. Low High 0.539 43.2 13.54 Org
Med. High Low 0.49 48.02 23.72 Org
Med. High High 0.692 44.42 13.84 Org
Low Med. Low 0.651 39.66 23.60 Org
Low Med. High 0.796 35.03 12.03 Org
High Med. Low 0.661 44.26 17.50 Org
High Med. High 0.684 43.42 12.87 Org
Low Low Med. 0.207 39.95 19.38 Org
Low High Med. 0.439 40.72 23.97 Org
High Low Med. 0.283 44.66 18.85 Org
High High Med. 0.731 50.01 22.79 Org
Med. Med. Med. 0.51 44.54 20.33 Org
Med. Med. Med. 0.524 44.56 20.41 Org
Med. Med. Med. 0.518 45.3 20.55 Org
Med. Low Low 0.297 45.01 20.99 Pine.
Med. Low High 0.545 43.42 10.47 Pine.
Med. High Low 0.487 47.6 25.93 Pine.
Med. High High 0.699 41.01 14.85 Pine.
Low Med. Low 0.646 39.55 23.48 Pine.
Low Med. High 0.792 33.77 11.43 Pine.
High Med. Low 0.659 42.22 24.74 Pine.
High Med. High 0.683 40.9 11.15 Pine.
Low Low Med. 0.203 41.85 19.46 Pine.
Low High Med. 0.432 42.79 20.07 Pine.
High Low Med. 0.286 43.11 19.35 Pine.
High High Med. 0.729 44.55 21.61 Pine.
Med. Med. Med. 0.514 42.11 19.81 Pine.
Med. Med. Med. 0.521 43.79 19.80 Pine.
Med. Med. Med. 0.513 42.96 19.80 Pine.

Note: Conc: Pretreatment concentration (grams/ml), Soak: 
Soaking duration (hour), Dry.: Drying duration (hour), 
Pip.: Piperine content (%), Col.: Color brightness (L*), 
Wtr: Water content (%), Peel: Peel type (orange (org) or 
pineapple (Pine.)), Med.: Medium concentration, Low: 
Low concentration, and High: High concentration.

The PLSR model for piperine content selected 
seven components, achieving an RMSE of 0.0963 
and an R² value of 0.4322. It indicates that the model 
captures approximately 43.22% of the variance in 
piperine content, reflecting moderate predictive 
accuracy. RMSE measures the average magnitude 
of the model’s prediction error, where a lower value 
like 0.0963 suggests that predictions are reasonably 
close to actual values. The R² quantifies how well the 
model explains variability in the response variable. A 
value of 0.4322 implies that over half of the variance 
remains unexplained. These results are based on the 
selection of seven latent components in the PLSR 
model, chosen through five-fold cross-validation 
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as the number that minimized prediction error. The 
choice of seven components indicates that the model 
needed a relatively complex structure to best capture 
the linear relationships between the predictors and 
piperine content, yet it still leaves room for future 
improvement by incorporating additional or nonlinear 
variables.

Figure 2 illustrates the actual versus predicted 
values for piperine content. It highlights the model’s 
performance and the areas where predictions diverge 
from actual outcomes. The scattered points and the red 
dashed line representing perfect predictions (y = x) 
demonstrate the moderate fit of the model.

The weight coefficients, showing how much 
each predictor variable contributes to each latent 
component, are represented by the X-loadings in 
PLSR. Table 3 presents these weight coefficient values 
associated with the seven selected components for 
piperine content model. These values are computed 
using the Nonlinear Iterative Partial Least Squares 
(NIPALS) algorithm and indicate the strength and 
direction of each predictor’s influence in forming the 
latent components that best explain the variation in 
the response variable. For example, a high positive 
loading for Soaking Duration (S)_Low in Component 
1 (0.5315) suggests that it strongly contributes to that 

Figure 2 Actual vs Predicted Piperine Contents (%)

Table 3 Weight Coefficient Values for Piperine Content Model

Comp. 1 Comp. 2 Comp. 3 Comp. 4 Comp. 5 Comp. 6 Comp. 7

Pretreatment Concentration (C)_High 0.01792 -0.12739 -0.56248 0.27397 0.07456 0.12771 0.52678
Pretreatment Concentration (C)_Low -0.43515 0.44496 0.40867 0.27956 0.11089 0.08324 -0.11082
Pretreatment Concentration (C)_Medium 0.33772 -0.24215 0.19907 -0.48706 -0.16093 -0.18867 -0.40806
Soaking Duration (S)_High -0.05554 -0.45037 0.13312 0.33458 -0.40545 0.37475 -0.16096

Soaking Duration (S)_Low 0.53146 0.17110 0.26376 -0.02766 -0.08605 -0.21377 0.44800

Soaking Duration (S)_Medium -0.38491 0.25193 -0.33067 -0.26822 0.42249 -0.15144 -0.22526
Drying Duration (D)_High -0.36699 -0.29045 0.31785 -0.13850 -0.14890 -0.15190 0.29400
Drying Duration (D)_Low -0.05625 0.34237 0.00587 -0.40492 0.02392 0.62590 0.12990
Drying Duration (D)_Medium 0.40031 -0.02298 -0.30908 0.48807 0.12136 -0.10525 -0.39519
Peel Type_Orange 0.16870 -0.36594 0.30031 -0.17104 0.54897 0.23870 0.05869

Peel Type_Pinneapple -0.16870 0.36593 -0.30031 0.17104 -0.54890 -0.23870 -0.05869

Note: Comp.: Component.
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component and is positively associated with piperine 
retention. These coefficients are derived to maximize 
the covariance between the predictors (X) and the 
response (Y), enabling the model to capture the most 
predictive structure in the data.

The following component analysis of the 
PLSR model for piperine content provides a detailed 
understanding of the interactions between various 
processing factors and their impact on the retention 
of piperine in Piper retrofractum Vahl. Component 1 
explains the most variance in the model and highlights 
the critical relationship between soaking duration 
and pretreatment concentration. It shows that shorter 
soaking durations are advantageous for piperine 
retention, while lower pretreatment concentrations 
may be less effective. Specifically, there is a significant 
positive loading for Soaking Duration_(Low) (0.5315) 
and a substantial negative loading for Pretreatment 
Concentration_(Low) (-0.4352). This pattern indicates 
that shorter soaking durations help to maintain 
higher piperine content, likely by minimizing the 
potential for piperine leaching or degradation during 
the soaking process. In contrast, lower pretreatment 
concentrations appear to be less efficient in extracting 
piperine, possibly due to insufficient contact between 
the solvent and the bioactive compounds, which 
negatively impacts piperine levels.

Component 2 provides additional insights 
by highlighting the delicate balance between low 
pretreatment concentration and extended soaking 
durations. This component, characterized by a 
positive loading for Pretreatment Concentration_
(Low) (0.4450) and a negative loading for Soaking 
Duration_(High) (-0.4504), suggests that while lower 
pretreatment concentrations may help in preserving 
piperine, this benefit can be undermined by extended 
soaking durations. Prolonged exposure to water during 
extended soaking likely increases the risk of piperine 
solubilization or degradation, leading to significant 
losses. This finding emphasizes the importance of 
carefully managing soaking times to optimize piperine 
retention and prevent unwanted degradation.

Component 3 introduces a new dynamic, 
where Pretreatment Concentration_(High) contributes 
negatively (-0.5625), and Pretreatment Concentration_
(Low) (0.4087) and Soaking Duration_(Low) (0.2638) 
have positive contributions. It may reflect a saturation 
threshold where overly high concentrations no longer 
enhance extraction and can even promote instability in 
piperine, possibly due to increased oxidative stress or 
degradation facilitated by peel extracts’ acidity. This 
component suggests a non-linear relationship where 
moderate conditions may be more favorable than 
extremes.

Component 4 reveals a complex interplay 
between Pretreatment Concentration_(Medium) 
(-0.4871), Soaking Duration_(High) (0.3346), and 
Drying Duration_(Low) (0.4049). The high soaking 
duration here contributes positively, contrasting 
Component 2, but only when combined with medium 
pretreatment and low drying time. The result 

suggests a contextual benefit where extended soaking 
paired with gentle drying may preserve piperine 
if the concentration is neither too strong nor too 
weak—highlighting the importance of multivariable 
interaction rather than single-factor optimization.

Component 5 shows Soaking Duration_
(Medium) (0.4225) and Peel Type (Orange)_(0.5490) 
as key contributors. It suggests that moderate soaking 
times and the use of orange peel—as opposed to 
pineapple—may provide an optimal environment 
for retaining piperine, possibly due to the chemical 
compatibility or antioxidant properties of orange 
peels that stabilize piperine during drying. The higher 
contribution of orange peel over pineapple can also 
relate to enzymatic or structural differences affecting 
piperine’s thermal stability.

Component 6 points to a dominant influence 
from Drying Duration_(Low) (0.6259) and Soaking 
Duration_(High) (0.3747). It is noteworthy because it 
appears to contradict earlier findings, suggesting that 
high soaking durations may retain piperine if followed 
by gentle drying. It again reinforces the idea that no 
single factor operates in isolation, and processing 
conditions must be balanced holistically.

Component 7 is particularly notable for its 
synergistic relationship, demonstrating that a high 
pretreatment concentration combined with a short 
soaking duration optimizes piperine retention. The 
synergy between Pretreatment Concentration_(High) 
(0.5268) and Soaking Duration_(Low) (0.4480) 
suggests that these conditions work together to enhance 
piperine extraction while minimizing degradation. 
This combination appears to maximize the efficiency 
of piperine extraction, leading to a higher yield of 
the desired compound. This insight is crucial for 
optimizing the pretreatment process, as it provides a 
clear strategy for achieving the best possible quality 
outcomes in the final product.

The complexity of the piperine content model, 
as indicated by the need for seven components, reflects 
the intricate interactions between soaking duration, 
pretreatment concentration, and other factors. The 
moderate R² value suggests that while the model is 
useful, there is potential for improvement, possibly 
by incorporating additional variables or exploring 
non-linear modeling approaches. From a technical 
perspective, the analysis underscores the importance 
of carefully balancing soaking duration and 
pretreatment concentration to maximize piperine yield. 
Operationally, it can lead to process optimizations 
that reduce processing time and resource use while 
enhancing product quality. Business-wise, the ability 
to produce a high-piperine product consistently 
can justify premium pricing and enhance market 
competitiveness.

Figure 3 illustrates the actual versus predicted 
values for color brightness. The model for color 
brightness selected only one component, with an RMSE 
of 2.3805 and an R² value of 0.1850. It indicates that 
the model explains just 18.5% of the variance in color 
brightness, suggesting weak predictive performance 
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and the likelihood that key influencing factors are 
not captured. With a value of 2.3805, the RMSE 
suggests substantial deviations between predicted and 
actual color brightness values. Meanwhile, the low 
R² implies that most of the variation in brightness 
remains unexplained by the predictors used. These 
results are based on the selection of a single latent 
component in the PLSR model, chosen through five-
fold cross-validation to minimize prediction error. 
The simplicity of the model structure points to limited 
linear relationships between the predictors and color 
brightness, highlighting the need for additional or more 
relevant variables to improve prediction accuracy.

Table 4 presents the weight coefficient values 
associated with the single selected latent component 
for color brightness model. Based on Table 4, the 
following component analysis of the PLSR model 
for color brightness analysis provides insights into 
the key factors influencing the visual quality of 
Piper retrofractum Vahl. after the drying process. 
Given that the model identifies only one significant 
component, it suggests a relatively straightforward 
relationship between the predictors and color 
brightness. Component 1 reveals the influence of 
pretreatment concentration and soaking duration on 
the final color outcome, highlighting the importance 
of these variables in maintaining or enhancing the 
visual appeal of the product. This single component 
is dominated by positive loadings for Pretreatment 
Concentration_(Low) (0.5160) and Soaking Duration_
(Medium) (0.3835). It suggests that lower pretreatment 
concentrations and medium soaking durations are 

associated with brighter color outcomes. The lower 
concentration may help to prevent color dulling, 
while medium soaking allows for sufficient pigment 
extraction without over-extraction that can darken the 
color. This component indicates that a careful balance 
between these two factors is crucial for optimizing 
color brightness, ensuring that the product remains 
visually appealing, which is essential for consumer 
acceptance and marketability.

Table 4 Weight Coefficient Values 
for Color Brightness Model

Comp. 1
Pretreatment Concentration (C)_High -0.14770
Pretreatment Concentration (C)_Low 0.51598
Pretreatment Concentration (C)_Medium -0.28081
Soaking Duration (S)_High -0.25266
Soaking Duration (S)_Low -0.20117
Soaking Duration (S)_Medium 0.38354
Drying Duration (D)_High 0.30270
Drying Duration (D)_Low 0.06431
Drying Duration (D)_Medium -0.34591
Peel Type_Orange -0.31477
Peel Type_Pinneapple 0.31477

Note: Comp.: Component.

Figure 3 Actual vs Predicted Color Brightness (L*)
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The simplicity of the color brightness model, 
with only one component and low explanatory power, 
indicates that the relationship between the predictors 
and color brightness is either straightforward or 
inadequately captured by the current model. The 
low R² value suggests that additional factors, 
such as pigment concentration or environmental 
conditions during drying, may play significant roles in 
determining color brightness. Technically, it points to 
the need for further research to identify these factors 
and improve the model. Operationally, maintaining 
consistent pretreatment and soaking conditions is 
crucial for achieving uniform color quality, which 
is vital for consumer acceptance. From a business 
perspective, optimizing color brightness can enhance 
product appeal and potentially justify higher pricing.

The water content model, with four latent 
components, performs strongly, achieving an RMSE 
of 1.2467 and an R² value of 0.7508. it indicates that 

the model explains 75.08% of the variance in water 
content, reflecting a strong linear relationship between 
the predictors and the outcome. RMSE represents 
the average deviation between predicted and actual 
values, and a value of 1.2467 suggests relatively low 
prediction error. Figure 4 shows the actual versus 
predicted values for water content, indicating the 
model’s strong predictive power. The clustering of 
points around the diagonal line demonstrates the 
model’s effectiveness in accurately predicting water 
content.

Table 5 presents the weight coefficient values 
associated with the four selected latent components 
for water content model. Based on Table 5, the 
following latent component analysis of the PLSR 
model for water content provides insights into how 
various factors contribute to the final moisture levels 
in the dried Piper retrofractum Vahl. The four latent 
components identified by the model each play a 

Figure 4 Actual vs Predicted Water Content (%)

Table 5 Weight Coefficient Values for Water Content Model

Comp. 1 Comp. 2 Comp. 3 Comp. 4

Pretreatment Concentration (C)_High -0.13165 0.49757 -0.01020 0.51236

Pretreatment Concentration (C)_Low 0.02748 -0.12862 -0.03056 -0.37669

Pretreatment Concentration (C)_Medium 0.10216 -0.36590 0.03456 -0.17771
Soaking Duration (S)_High -0.10249 -0.29904 -0.40859 -0.16594
Soaking Duration (S)_Low 0.19247 -0.11319 0.27596 0.30088
Soaking Duration (S)_Medium -0.06780 0.35215 0.13016 -0.10103
Drying Duration (D)_High 0.77773 0.02922 0.01517 -0.08435
Drying Duration (D)_Low -0.39893 -0.25686 0.55782 -0.00498
Drying Duration (D)_Medium -0.39326 0.19767 -0.50445 0.08503
Peel Type_Orange -0.11599 0.37955 0.33557 -0.47955
Peel Type_Pinneapple 0.11599 -0.37955 -0.33557 0.47955

              Note: Comp.: Component.
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distinct role in explaining the variance in water 
content, highlighting the complexity of the drying 
process and its significant impact on the quality of the 
final product. Component 1 is primarily driven by the 
influence of drying duration, particularly when drying 
times are extended. With a strong positive loading of 
0.7777, this component confirms the expected outcome 
that longer drying durations are crucial for reducing 
water content. The extended exposure to heat or air 
allows for more moisture to evaporate, resulting in a 
drier final product. This finding aligns with standard 
drying principles, where the drying duration is directly 
proportional to the reduction in water content.

In Component 2, the role of pretreatment 
concentration comes to the forefront, with a positive 
loading of 0.4976. Higher concentrations of the 
pretreatment solution appear to have a significant 
impact on water retention, potentially altering 
the peel’s structural properties or influencing the 
efficiency of moisture removal during the drying 
process. It suggests that the chemical composition or 
concentration of the pretreatment can be fine-tuned to 
optimize the drying outcome, ensuring that moisture is 
effectively removed without compromising the quality 
of the peel.

Component 3 highlights the interaction between 
soaking duration and drying duration, with a negative 
loading for Soaking Duration_(High) (-0.4086) and a 
positive loading for Drying Duration_(Low) (0.5578). 
This component reflects the challenges associated with 
drying peels that have undergone prolonged soaking. 
Extended soaking increases the peel’s moisture content, 
which, when not followed by sufficiently long drying, 
results in higher residual moisture in the final product. 
This interplay between soaking and drying durations 
suggests that achieving optimal water content requires 
a careful balance of these two processes.

Component 4 focuses on the differences between 
pineapple and orange peels, with a particular emphasis 
on pretreatment concentration. The positive loadings 
for Peel Type_Pineapple (0.4795) and Pretreatment 
Concentration_(High) (0.5124) indicate that 
pineapple peels, when subjected to high pretreatment 
concentrations, tend to retain more water. It can be 
attributed to the structural differences between the 
two types of peels, which may respond differently to 
the same processing conditions. Understanding these 
differences is crucial for tailoring the drying process to 
the specific characteristics of the peel type used.

The water content model’s strong performance 
underscores the importance of drying duration as the 
most critical factor in reducing moisture content. The 
significant role of pretreatment concentration and the 
interaction between soaking and drying durations 
also highlights the need for careful optimization of 
these variables to achieve the desired moisture levels. 
Technically, the result suggests that drying processes 
should be precisely controlled to ensure product 
stability and prevent spoilage. Operationally, the 
ability to manage water content efficiently can lead to 
reduced spoilage rates, extended shelf life, and lower 

transportation costs due to reduced weight. From a 
business perspective, these efficiencies translate into 
cost savings and enhanced product quality, which can 
improve customer satisfaction and profitability.

IV. CONCLUSIONS

The research has demonstrated the significant 
influence of various pretreatment and drying conditions 
on the key quality attributes of Piper retrofractum 
Vahl. specifically focusing on piperine content, color 
brightness, and water content. By employing PLSR as 
a predictive modeling tool, the researcher has provided 
valuable insights into the complex relationships 
between these processing variables. The research 
offers practical implications for optimizing production 
processes in the food and spice industries. The findings 
highlight the need to balance pretreatment and drying 
parameters to ensure consistent product quality while 
supporting sustainable processing practices.  

The analysis of piperine content reveals that 
this critical quality attribute is significantly influenced 
by the interaction between soaking duration and 
pretreatment concentration. The PLSR model, which 
explains 43.22% of the variance in piperine content, 
indicates that shorter soaking durations combined 
with higher pretreatment concentrations are optimal 
for preserving piperine levels. It suggests that 
prolonged soaking may lead to the degradation or 
leaching of piperine, while adequate pretreatment 
concentration ensures efficient extraction of this 
bioactive compound. However, the moderate R² 
value of the model implies that a substantial portion 
of the variance remains unexplained, pointing to the 
existence of additional factors or interactions that are 
not fully captured. This limitation highlights the need 
for further research to explore other variables that may 
affect piperine content, such as soaking temperature or 
the specific chemical composition of the peel extracts 
used in pretreatment.

In contrast, the model for color brightness is 
less successful, explaining only 18.5% of the variance. 
The analysis suggests that lower pretreatment 
concentrations and medium soaking durations are 
associated with brighter color outcomes. However, 
the low explanatory power of the model indicates 
that the predictors used may not sufficiently account 
for the variability in color brightness. It can be due 
to the influence of other factors not included in 
the model, such as the specific types of pigments 
present in the peels, variations in peel thickness, or 
environmental conditions during the drying process. 
The limitations of this model underscore the need for 
further investigation into the determinants of color 
brightness, possibly incorporating advanced analytical 
techniques like spectrophotometry to quantify pigment 
concentrations more accurately.

The analysis of water content provides a more 
robust model, explaining 75.08% of the variance in 
moisture levels. The findings emphasize that drying 
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duration is the most critical factor in reducing water 
content, with longer drying times leading to lower 
residual moisture in the final product. The model 
also identifies the significant roles of pretreatment 
concentration and the interaction between soaking 
and drying durations, suggesting that these variables 
need to be carefully optimized to achieve the desired 
moisture content. The strong performance of this model 
underscores the importance of precise control over the 
drying process, which is crucial for ensuring product 
stability, extending shelf life, and maintaining overall 
quality. However, the model’s reliance on specific 
experimental conditions limits its generalizability. 
Future research can explore the effects of varying 
drying temperatures or different types of drying 
methods, such as freeze-drying or vacuum drying, 
to enhance the understanding of moisture control in 
Piper retrofractum Vahl. 

Despite the valuable insights gained, the 
research has several limitations that must be 
acknowledged. The experimental design is limited 
by the specific ranges of pretreatment concentration, 
soaking duration, and drying duration tested, which 
may not encompass the full spectrum of potential 
processing conditions. Additionally, the research 
focuses exclusively on orange and pineapple peels 
as pretreatment agents, limiting the applicability of 
the findings to other potential pretreatment materials. 
The moderate explanatory power of some models, 
particularly those for piperine content and color 
brightness, indicates that the inclusion of additional 
variables or the use of more sophisticated modeling 
techniques, such as non-linear regression or machine 
learning approaches, can enhance the accuracy and 
predictive power of the models. 

Future research should aim to address these 
limitations by expanding the range of experimental 
conditions and exploring other types of fruit peels or 
natural extracts as pretreatment agents. Investigating 
the effects of different drying methods and 
temperatures can also provide a more comprehensive 
understanding of the factors influencing the quality 
of dried Piper retrofractum Vahl. Additionally, the 
development of more advanced predictive models, 
possibly incorporating machine learning techniques, 
can offer more accurate predictions and deeper insights 
into the complex interactions between processing 
variables. Such research will not only enhance the 
scientific understanding of these processes but also 
provide practical guidance for optimizing production 
methods, ultimately contributing to producing high-
quality, consistent, and economically viable Piper 
retrofractum Vahl. products.
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