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Abstract - The behavior of petroleum 
reservoirs is inherently complex, making it challenging 
to determine their performance for both single-fluid 
and multiphase production systems. To accurately 
estimate the recovery reserves of a reservoir, a 
comprehensive understanding of its geometry and 
internal flow characteristics is essential. Numerical 
simulation serves as a fundamental tool for reservoir 
engineers, offering an efficient and reliable method 
to predict reservoir mechanisms, evaluate pressure 
variations, and estimate in-place hydrocarbon yield. 
This study employs mathematical modeling concepts 
and numerical techniques to analyze the dynamic 
behavior of petroleum reservoir systems. A flow 
model based on Partial Differential Equations (PDEs), 
specifically the diffusivity equation for unsteady-state 
fluid flow in porous media, is developed and applied. 
The diffusivity equation is discretized and solved 
mathematically using the explicit finite difference 
method to approximate pressure distribution over time 
and space. The primary objective of this research is 
to investigate and analyze the pressure distribution 
that governs reservoir performance under varying 
conditions. Sensitivity analyses are conducted to 
evaluate the influence of grid spacing, time step, 
hydraulic diffusivity, and boundary conditions on 
pressure reservoir behavior within a Cartesian grid 
for a one-dimensional, single-phase reservoir. The 
findings are expected to provide insight into the 
relationship between reservoir properties and fluid 
dynamics, supporting improved prediction of reservoir 
behavior. Ultimately, this research contributes to the 
optimization of petroleum production strategies and 

enhances the understanding of reservoir engineering 
processes through quantitative simulation.

Keywords: numerical simulation, diffusivity equation, 
explicit finite difference method

I.	 INTRODUCTION

The study of solving the diffusivity equation in 
reservoir simulation using the explicit method presents 
a practical approach for addressing Partial Differential 
Equations (PDEs) in numerical reservoir modeling 
through finite difference techniques. This explicit 
method is relatively straightforward to implement, 
as it involves one unknown variable (pn + 1) for the 
next time level and three known variables (pn) for 
the current time level. Reservoir engineers apply 
explicit methods to solve more complex PDEs under 
various reservoir conditions, including two-phase and 
multiphase flows, as well as unconventional reservoirs 
characterized by dual porosity and dual permeability. 
These methods are also used across one-dimensional 
(1D), two-dimensional (2D), and three-dimensional 
(3D) grids. This study focuses on a single-phase, one-
dimensional reservoir and employs a second-order 
PDE formulation. The solution is discretized using the 
explicit finite difference method, with two boundary 
conditions applied: a no-flow boundary condition and 
a specified boundary condition, where the pressure 
remains constant between the left and right boundaries.

The application of finite difference methods to 
solve PDEs continues to attract significant attention 
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and remains an active area of research in reservoir 
engineering. Over the years, numerous scholars explore 
and refine these numerical techniques to enhance the 
accuracy and stability of reservoir simulations. A 
variety of solution approaches—including Explicit, 
Implicit, Implicit Pressure and Explicit Saturation 
(IMPES), and Fully Implicit methods—are applied to 
model petroleum reservoirs operating under single-
phase or multiphase conditions. These methods are 
implemented using both Cartesian and cylindrical 
coordinate grids, allowing for flexible representation 
of different reservoir geometries and flow behaviors. 
(Sun & Ertekin, 2019). 

Additionally, the Finite Difference (FD) 
approach finds extensive application in seismic 
exploration, particularly for forward modeling, 
imaging, and inversion processes (Liu & Luo, 2022). 
Researchers continue to refine this method to improve 
computational efficiency and accuracy in complex 
geological settings. Sun et al. (2019) develop a 
nonconformal hybrid Finite Difference Time Domain 
(FDTD) and Finite Element Time Domain (FETD) 
technique that introduces hybridization through 
a buffer zone, effectively enhancing the method’s 
stability and adaptability for seismic simulations. 

Furthermore, an investigation and analysis of 
the one-dimensional heat equation are carried out using 
appropriate initial and boundary conditions with both 
Forward Time Centered Space (FTCS) and Crank–
Nicolson (CN) methods (Mojumder et al., 2023). 
These numerical techniques are widely applied due to 
their stability and accuracy in solving transient heat 
conduction problems, offering valuable insights into 
the temporal and spatial behavior of thermal diffusion. 
In addition, a new numerical solver is developed to 
simulate two-phase flow with phase change in porous 
media, utilizing the Finite Volume Method (FVM) 
to enhance computational precision and efficiency in 
modeling complex multiphase flow systems (Ghedira 
et al., 2025).

The higher-order partial differential equation 
functions as a second-order backward differentiation 
formula for the time derivative, employing a specific 
numerical technique to approximate nonlinear terms 
(Keita et al., 2021). A study investigates solutions to 
partial differential equations related to heat transfer, 
applying both explicit and implicit finite difference 
schemes to analyze their computational behavior 
and accuracy. This research examines various 
parameters that influence temperature distribution 
in slabs, considering both one-dimensional and two-
dimensional configurations (Adak, 2020; Aliyu et 
al., 2021). In addition, the finite difference method 
is used to analyze the combined thermal and flow 
characteristics of Boger nanofluid containing carbon 
nanotube materials, taking into account the effects 
of Cattaneo–Christov heat flux and thermal radiation 
(Raza & Wang, 2024). Furthermore, the influence 
of capillary pressure is evaluated in fully implicit 
finite difference simulations, focusing on water 
saturation behavior in two-phase systems within both 

homogeneous and heterogeneous porous media in 
numerical reservoir models (Wang et al., 2020).

The higher-order finite element method is 
applied to model unsteady, incompressible, and 
inviscid two-phase flows, utilizing the level set 
method with Galerkin discretization and a new 
explicit projection method to solve the incompressible 
Euler equations, where pressure and velocity fields 
are treated separately (Salomon & Guilcher, 2024). A 
finite volume scheme is also employed to simulate two-
phase flows in non-homogeneous and non-isotropic 
two-dimensional petroleum reservoirs using the 
IMPES method (Contreras et al., 2021). Furthermore, 
a higher-order numerical approach predicts the 
position of the fluid front and mitigates front smearing 
in large grids, minimizing computational errors in 
injection scenarios within production reservoirs. This 
is achieved through a second-order finite volume 
method coupled with a linear programming technique 
for C02 injection modeling (Kvashchuk et al., 2023). 
Additionally, a fully implicit one-dimensional thermal 
compositional two-phase flow simulator is utilized 
to compute counter-current flow and gravitational 
segregation in wellbores, where the governing 
equations are discretized using the finite volume 
method (Nascimento et al., 2021).

Predicting pressure distribution in petroleum 
reservoirs is essential for effective evaluation and 
management, as pressure variations occur both spatially 
and temporally. A practical approach to addressing this 
challenge involves formulating fluid flow equations 
based on specific reservoir characteristics and solving 
them numerically using Explicit and Implicit finite 
difference methods (Appau et al., 2019). These 
numerical techniques enable reservoir engineers to 
simulate complex flow behaviors, assess reservoir 
performance, and make informed decisions regarding 
production optimization and recovery efficiency.

The block-centered grid and point-distributed 
grid are the two most widely used formats for 
representing petroleum reservoirs in numerical 
simulations. In a point-distributed grid, the boundary 
grid lies along the reservoir boundary, while grid points 
representing boundary blocks are positioned midway 
between the interior and the boundary (Abou-Kassem 
et al., 2020).  These grid systems provide flexible 
spatial discretization, enabling accurate modeling of 
pressure and saturation variations across the reservoir. 

Recently, a new method for simulating 
unconventional reservoirs containing incompressible 
fluids has been developed to address two-phase 
systems, particularly oil and water, in non-isotropic 
two-dimensional reservoirs. This approach utilizes a 
finite volume quadrilateral grid to discretize pressure, 
ensuring numerical stability and spatial accuracy. 
Additionally, a high-resolution Correction Procedure 
via Reconstruction (CPR) scheme is implemented 
for discretizing saturation, improving the precision 
of fluid front prediction and minimizing numerical 
diffusion (Galindez-Ramirez et al., 2020).

This study employs commercial CMG-IMEX 
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software to perform reservoir simulations, focusing 
on black oil models characterized by dual porosity, 
radial grid flow, and single-phase reservoir conditions. 
The objective is to evaluate pressure distribution and 
fluid flow performance under varying parameters of 
fractured reservoirs (Maulindani et al., 2021). Further 
research extends this analysis by examining dual-
porosity reservoir behavior through a type curve 
analytical solution approach, demonstrating a strong 
correlation between numerical reservoir simulations 
and analytical model predictions (Maulindani et al., 
2021).

Based on the reviewed literature, the present 
study aims to determine the pressure distribution 
in a petroleum reservoir by solving the Diffusivity 
Equation using the explicit finite difference method. 
This approach is applied to a one-dimensional single-
phase reservoir model formulated on a Cartesian 
coordinate grid. The analysis investigates reservoir 
behavior through a simplified numerical framework, 
emphasizing the sensitivity of grid spacing, time 
steps, hydraulic diffusivity, and boundary conditions 
in influencing pressure performance and overall 
reservoir dynamics.

II.	 METHODS

The research methodology applied in 
examining the diffusivity equation follows the 
framework established by Sun and Ertekin (2019). In 
this study, an explicit one-dimensional single-phase 
approach is utilized for reservoir simulation. The 
fundamental differential equations governing pressure 
transient analysis are formulated in Equation (2), 
while the reservoir simulation process is represented 
in Equation (1), each expressed in different coordinate 
systems to accommodate varying reservoir geometries 
and flow conditions.

 	 			     	    (1)

			      	    (2)

Equations (1) and (2) represent the coupling 
of three fundamental fluid flow principles in porous 
media, collectively referred to as the diffusivity 
equations. Numerous researchers have applied these 
equations to analyze and predict fluid flow behavior 
in petroleum reservoirs under various geological 
and operational conditions. The third fundamental 
principle, the conservation of mass—also known as 
the continuity equation—approximates the inflow 
and outflow rates within porous media, as shown 
in Equation (3). Furthermore, Darcy’s Law, which 
characterizes the mechanism of fluid flow through 
porous structures, is presented in Equation (4). The 
equation of state for slightly compressible fluids, 
which relates pressure and fluid density variations, is 
expressed in Equation (5).

	

						         (3)

				       	    (4)

					        (5)

The finite difference method is applied to 
discretize the diffusivity equation into a numerical 
derivative form, emphasizing variations in pressure 
and time. This process utilizes the central difference 
approximation derived from the Taylor series expansion 
(Sun & Ertekin, 2019). Through the application of 
the Taylor series, forward and backward difference 
equations are systematically derived to approximate 
the temporal and spatial derivatives. Equation (6) 
illustrates the forward difference formulation, while 
Equation (7) presents the corresponding backward 
difference expression.

	
						         (6)

	
						         (7)

The first derivative solution obtained using 
the forward finite difference approach is presented 
in Equation (8), while the backward finite difference 
formulation for the first derivative is shown in Equation 
(9). By subtracting Equation (9) from Equation (8), 
the central finite difference approximation for the 
first derivative is derived, as expressed in Equation 
(10). This central finite difference provides improved 
accuracy by averaging the effects of the forward and 
backward approximations, thereby reducing numerical 
error in the derivative estimation.

			      (8)

 			       (9)

 		   (10)

The errors associated with these finite difference 
approximations vary between the forward, backward, 
and central schemes. The forward and backward 
schemes exhibit truncation errors of order ∆x, whereas 
the central difference scheme achieves higher accuracy 
with errors of order ∆x2. These truncation errors arise 
from approximating the continuous partial differential 
equation using discrete numerical formulations, 
reflecting the degree of precision inherent in each 
finite difference method.

By adding Equation (6) and Equation (7), the 
resulting expression is presented in Equation (11). 
Solving for provides the second derivative 
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finite difference, as shown in Equation (12). The 
truncation error associated with this second derivative 
approximation is of the order ∆x2 demonstrating 
greater numerical accuracy compared to first-order 
schemes. The diffusivity Equation (1) is subsequently 
solved using the Explicit finite difference method, as 
expressed in Equation (13).

	
						       (11)

			           
	  	  (12)

		   	  (13)

Hydraulic diffusivity, denoted as γ, is a physical 
parameter that characterizes the behavior of fluid flow 
within porous media. It is governed by the diffusivity 
equation, which defines the manner in which pressure 
varies spatially and temporally throughout the reservoir. 
This variation is influenced by the intrinsic properties 
of both the reservoir rock and the fluid as they interact 
over time. Hydraulic diffusivity determines the rate 
at which pressure disturbances propagate through the 
formation, serving as a critical factor in understanding 
and predicting reservoir fluid dynamics.

Higher hydraulic diffusivity within the reservoir 
allows for a more rapid response to variations in oil 
well injection or production rates. Hydraulic diffusivity 
is defined as the ratio involving permeability, porosity, 
viscosity, and compressibility, which collectively 
influence the fluid flow characteristics of the reservoir. 
This relationship is mathematically expressed in 
Equation (1). Subsequently, the pressure distribution 
for the next time level is determined, as presented 
in Equation (15), with the parameter α defined in 
Equation (16).

					      (14)

Where,
ф	 = porosity
μ  	= viscosity 
ct   	= compressibility total
k  	= permeability

 	  	  (15)

					      (16)

Where,
α  		  = Alpha
∆t    	  = Time step
∆x2   = Grid space
γ    	= Hydraulic Diffusivity

Numerical stability is a fundamental aspect 
of reservoir simulation, directly associated with the 

accuracy and performance of the diffusion equation. 
This equation is utilized to determine dependent 
parameters, including the reservoir model and its 
physical properties. In this process, the spatial and 
temporal derivatives are approximated using a truncated 
Taylor series expansion. The resulting truncation error 
emerges from this approximation, as computational 
systems can only handle a finite number of digits when 
solving the finite difference equation. Consequently, 
the numerical solution obtained differs from the exact 
analytical solution of the partial differential equation 
(Sun & Ertekin, 2019). 

To minimize truncation error and enhance 
the accuracy of the numerical approximation, the 
discrepancy between a partial differential equation and 
its finite difference representation at a specific point in 
space and time within the domain must be reduced. 
This discrepancy is referred to as the local truncation 
error or local discretization error. Accordingly, the 
truncation error, denoted as , is expressed in 
Equation (17). The diffusivity Equation (1) can then be 
examined alongside its corresponding finite difference 
approximation in Equation (13), which defines the 
local truncation error at the discrete spatial point i and 
time level n, as shown in Equation (18).

				     (17)

	
						       (18)

The local truncation error in Equation (10) 
cannot be precisely quantified because it involves the 
subtraction of terms expressed in algebraic (discrete) 
and continuous forms. Consequently, the solution 
derived from the finite difference (discrete) method 
does not fully converge to the exact solution of the 
differential problem, even when the grid dimensions 
are significantly reduced. This condition exemplifies 
a round-off error, which can rapidly dominate the 
intended solution and lead to inaccurate computational 
results.

To ensure convergence, conducting a stability 
analysis of the numerical approximation is essential. 
This analysis is crucial because finite difference 
schemes can exhibit varying stability characteristics—
being unconditionally stable, conditionally stable, 
or unconditionally unstable. The most widely used 
approach for evaluating the stability of such schemes 
is the von Neumann, or Fourier, analysis. This method 
assesses the growth or decay of initial errors in the 
finite difference approximation by expressing them as 
a finite Fourier series, as represented in Equation (19).

					      (19)

In this context, l is and l denotes the 
interval over which the function is defined. The Fourier 
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series method utilizes nodes derived from the solution, 
which can be expressed as a product of spatial and 
time-dependent terms. Furthermore, according to this 
method, the numerical scheme remains stable as long 
as the amplification factor, denoted as μmax, is less than 
one. The mathematical expression for the amplification 
factor is presented in Equation (20).

				     (20)
The stability analysis for the convergence of 

the one-dimensional diffusivity equation using the 
explicit scheme is presented in Equation (21). The 
explicit finite difference method remains stable only 
when specific conditions defined by this equation are 
satisfied, indicating that the scheme is conditionally 
stable. In this method, the solution for an unknown 
point at a given time step is computed directly from 
the known values at preceding time steps. This process 
is illustrated in Figure 1 (see Appendices), which 
provides a schematic representation of the solution 
framework in the explicit finite difference method.

					      (21)

The solution to the diffusivity equation in 
numerical simulations depends on two fundamental 
conditions: the initial condition and the boundary 
condition. The initial condition, such as the reservoir 
pressure, provides the necessary starting point for 
accurately modeling reservoir behavior. Boundary 
conditions include both inner boundaries, which 
define parameters like flow or injection rates, and outer 
boundaries, which play a crucial role in constraining 
and guiding the overall simulation process.

In the context of outer boundary conditions, 
two primary types are commonly applied in reservoir 
simulations. The first is the no-flow boundary, which 
typically occurs at the corners of the reservoir model or 
grid block. This condition is defined by a zero pressure 
gradient across the boundary, meaning that no fluid 
crosses it. In unsteady-state scenarios, it is referred to 
as a Neumann-type boundary condition. The second 
type is the Dirichlet-type boundary condition, which 
applies to boundaries where a specific pressure value 
is maintained. This condition represents a constant-
pressure boundary surrounding the corners or edges 
of the reservoir model, ensuring that pressure remains 
fixed throughout the simulation process (Sun & 
Ertekin, 2019).

This study focuses on solving the diffusivity 
equation for a one-phase, one-dimensional reservoir 
system using a Cartesian grid and the Explicit Finite 
Difference Method (FDM). The primary objective 
is to determine the pressure distribution over time, 
specifically the value of . A sensitivity analysis 
is conducted to evaluate the influence of several 
parameters on reservoir pressure, including grid 
spacing, time step, hydraulic diffusivity, no-flow 
boundaries, and boundary condition specifications. 

The computational analysis is performed using 
MATLAB software, where a custom program is 
developed to estimate the pressure distribution, as 
illustrated in Figure 2 (see Appendices). Additionally, 
the flowchart of the study process is presented in 
Figure 3 (see Appendices), outlining the overall 
simulation workflow.

III.	 RESULTS AND DISCUSSIONS

This study presents a numerical simulation of a 
one-dimensional, single-phase Cartesian grid system. 
The simulation develops the diffusivity equation, also 
known as the partial differential equation (PDE), using 
the finite difference method as formulated in Equation 
(13). The pressure distribution for the new time level 
is calculated through the explicit finite difference 
method, as described in Equation (15). A sensitivity 
analysis is also included to evaluate the effects of 
various parameters on the reservoir’s pressure behavior 
and overall performance. The reservoir model applied 
in this study, illustrated in Figure 4 (see Appendices), 
comprises six grid blocks representing the main 
reservoir and two additional boundary grid blocks 
positioned at the corners, modeled as fictitious grids. 
Two cases with distinct reservoir parameter values are 
analyzed to assess the influence of each factor on the 
simulation outcomes.

In Case 1, the reservoir is modeled using data 
from the base case synthesis simulation, as presented 
in Table 1 (see Appendices). Within this model, the 
flow rate is assumed to be zero in regions without 
well production or injection activity, and a no-flow 
boundary condition is applied to represent the closed 
boundaries of the reservoir. The reservoir properties 
consist of a porosity of 20 percent, permeability of 10 
millidarcies (md), viscosity of 1 centipoise (cp), and a 
total compressibility of 5.0 × 10⁻6. These parameters 
serve as the baseline conditions for evaluating pressure 
distribution and hydraulic diffusivity behavior across 
the grid system.

The reservoir in Case 1 has dimensions of 800 ft 
in length, divided into eight cells, with each cell 
occupying 100 ft along the coordinate axis. The 
simulation uses a time step of 0.05 days over a total 
duration of 10 days, with an initial reservoir pressure 
of 2500 psia at time zero (t = 0). The calculated 
stability value for this case is 0.316, confirming that 
the system is conditionally stable since the convergence 
criterion   remains below than 0.5. This stability 

condition ensures that the explicit finite 
difference method produces reliable numerical results 
within the defined temporal and spatial discretization 
parameters.

Figures 5a and 5b (see Appendices) illustrate 
the relationship between pressure distribution and grid 
blocks at each time step, providing a clear depiction 
of how pressure evolves spatially within the reservoir. 
The results indicate a continuous decline in pressure 
over time, as shown in Figure 5c (see Appendices), 
which reflects the expected depletion behavior under 
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a no-flow boundary condition. In this configuration, 
the left boundary condition (BCL) corresponds to grid 
block 1, while the right boundary condition (BCR) is 
assigned to grid block 8, which maintains a pressure 
value of zero, signifying the boundary limit of the 
reservoir model.

In Case 2, the reservoir model incorporates a 
specified boundary condition, where the flow rate is 
assumed to be zero in zones without well production 
or injection activity. The reservoir parameters are 
defined with a porosity of 26 percent, permeability of 
25 millidarcies (md), viscosity of 1.75 centipoise (cp), 
and a total compressibility of 7 × 10⁻6. The reservoir 
extends 2000 ft in length and is discretized into 8 cells, 
with each cell measuring 250 ft along each coordinate 
axis. The simulation employs a time step of 10 days, 
and the initial reservoir pressure is set at 2500 psia at 
time zero (t = 0), establishing the baseline condition 
for the numerical analysis. 

The stability analysis for Case 2 yields a value 
of 0.3975, confirming that the system is conditionally 
stable since the convergence criterion 
Figures 6a and 6b (see Appendices) illustrate the 
variation in pressure distribution across the grid blocks 
at successive time steps. As shown in Figure 6c (see 
Appendices), the reservoir pressure decreases 
progressively with increasing time steps, indicating a 
consistent pressure decline pattern. In this case, the 
BCL is defined at grid block 1, where the pressure is 
maintained at zero, while the BCR at grid block 8 
corresponds to the initial reservoir pressure of 2500 
psia.

This study incorporates a comprehensive 
sensitivity analysis to evaluate the influence of the 
reservoir model and its associated properties on 
pressure behavior. The analysis investigates multiple 
parameters, including grid length and spacing, the 
number of time steps, boundary conditions, porosity, 
permeability, viscosity, and compressibility. The data 
utilized in this analysis are derived from synthesized 
base case simulations, and the detailed outcomes are 
summarized in Table 2 (see Appendices).

The results of the sensitivity analysis indicate 
that variations in grid spacing significantly affect the 
pressure distribution within the reservoir, as seen in 
Table 3 (see Appendices). As illustrated in Figure 7a 
(see Appendices), longer grid lengths produce pressure 
distributions that increase and tend to approach the 
initial pressure. The effect of time-step variations, 
shown in Figure 7b (see Appendices), demonstrates 
that smaller time steps result in a higher pressure 
response. Meanwhile, Figure 7c (see Appendices) 
depicts the influence of the BCL, where lower pressure 
at the boundary induces a continuous pressure decline 
over time.

In addition, the sensitivity analysis of reservoir 
parameters, as illustrated in Figures 8a, 8b, 8c, and 
8d (see Appendices), shows that higher porosity, 
viscosity, and compressibility contribute to an overall 
increase in total pressure yield over time, thereby 
affecting the reservoir’s pressure profile. Conversely, 

as demonstrated in Figure 8b (see Appendices), 
reservoirs with higher permeability values exhibit a 
decrease in pressure over time. These findings confirm 
the strong dependence of pressure behavior on both 
geometric and petrophysical reservoir characteristics, 
highlighting the complex interplay between grid 
configuration, fluid properties, and flow dynamics.

This study presents a numerical solution for 
stability analysis designed to approximate the 
analytical solution of the diffusivity equation. The 
convergence of the solution depends on several 
parameters, including reservoir properties, grid 
dimensions, and time step size, all of which play a 
critical role in determining the optimal pressure 
distribution. For the explicit finite difference method 
to maintain conditional stability, the condition 

 must be satisfied. This requirement 

ensures that the numerical solution remains accurate 
and free from divergence during computation. Two 
examples are presented to illustrate the process and 
implications of instability analysis in the context of 
reservoir simulation. 

In the first example, the simulation uses data 
parameters consisting of a grid spacing of 75 ft, a time 
step of 0.008 days, a porosity of 0.15, a viscosity of 
0.45 cp, a total compressibility of 1.5 × 10⁻6 1/psi, and 
a permeability of 7 md. These parameters produce 
an α value of 0.6224 and a hydraulic diffusivity (γ)
of 2.285 × 10⁻6. As illustrated in Figure 9 (see 
Appendices), instability occurs at time steps t = 3 and 
t = 4, corresponding to the point where α exceeds the 
threshold of 0.5. This finding confirms that the explicit 
finite difference scheme becomes unstable when the 
stability condition is violated, leading to divergence in 
the pressure solution.

The second example applies a specified 
boundary condition on the left side with a pressure 
of 2500 psi. The simulation uses data parameters 
including a grid spacing of 100 ft, a time step of 0.05 
days, a porosity of 0.26, a viscosity of 15 cp, a total 
compressibility of 2.5 × 10⁻6 1/psi, and a permeability 
of 15 md. This parameters yields an α value of a = 
0.6351 and a hydraulic diffusivity (γ) of 7.872 × 10⁻6. 
As shown in Figure 10 (see Appendices), instability is 
observed at time steps t = 3 and t = 4, consistent with 
the findings from the first example. This result further 
confirms that instability arises when α exceeds 0.5, 
validating the conditionally stable nature of the explicit 
finite difference scheme in the stability analysis.

IV.	 CONCLUSIONS

This study investigates the numerical simulation 
of a petroleum reservoir system modeled as a single-
phase, one-dimensional Cartesian grid. It employs 
the explicit finite difference method to solve the 
diffusivity equation, offering a practical and efficient 
approach commonly utilized in the petroleum industry 
for reservoir modeling and performance prediction. 
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The analysis focuses on determining the pressure 
distribution under both no-flow and specified boundary 
conditions, as well as identifying reservoir parameters 
that significantly influence pressure distribution and 
system stability. This approach provides valuable 
insights into the dynamic behavior of fluid flow in 
porous media. 

The findings demonstrate that variations in 
reservoir characteristics lead to distinct pressure 
responses. An increase in grid spacing, porosity, 
viscosity, compressibility, and boundary condition 
values generally corresponds to higher total pressure, 
whereas greater permeability results in lower 
pressure. Furthermore, smaller time steps tend to 
produce a more significant pressure drop, indicating 
a sensitivity of the system to temporal resolution. The 
stability analysis confirms that convergence improves 
with adjustments in the α parameter and hydraulic 
diffusivity (γ), reinforcing the reliability of the explicit 
finite difference method in simulating transient 
reservoir behavior.

In summary, this research contributes to a 
better understanding of pressure distribution and 
flow performance in petroleum reservoir systems. 
The explicit finite difference method demonstrates 
conditional stability and computational efficiency, 
providing a consistent framework for analyzing 
reservoir dynamics. The validated analytical results 
affirm the accuracy of this numerical approach, 
supporting its use in practical engineering applications. 
Future work will expand on this foundation by 
developing the implicit finite difference method to 
improve numerical stability and comparing the results 
with commercial reservoir simulation software to 
enhance the accuracy of predictive reservoir modeling.
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APPENDICES

Table 1 Base Case Synthesis Simulation Data

Reservoir Parameter Value Unit
Pressure initial 2500 Psia
Porosity 20 Percent
Permeability 10 md
Compressibility total 2.8 1/psia
Viscosity 1
Reservoir model
Grid spacing 100 ft
Time step 0.005 days
No-flow boundary 0 Psia
Boundary Left/ Right 2500 Psia

Table 2 Numerical Simulation Case

Properties Case 1 Case 2
Reservoir model

Grid spacing, ft 100 250
Time step, days 0.05 0.5

Hydraulic Diffusivity Parameter
Porosity, % 20 26
Permeability, md 10 25
Viscosity, cp 1 1.75
Compressibility total, 1/psi

Boundary condition
No-flow boundary 0 0
Specified boundary conditions 0 PBCL = 0

PBCR = Initial Pressure

Table 3 Sensitivity Analysis Case

Reservoir Model
Grid spacing, ft 100 200 300 400 500
Time step, days 0.0025 0.005 0.01 0.025 0.05

Hydraulic Diffusivity Parameter
Porosity, % 20 22 24 26 28
Permeability, md 10 20 25 30 35
Viscosity, cp 1. 0 1. 5 1.75 2 2.25
Compressibility total, 1/psi 4.0 5.0 6.0 7.0

Boundary Condition
Presence of boundary 
conditions =BCL

2500 2250 1500 1250 500



162 ComTech: Computer, Mathematics and Engineering Applications, Vol. 16 No. 2 December 2025, 153−168

Figure 1 Schematic solution using the Explicit Method

Figure 2 The Program code for this study in MATLAB
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Start

Input Data

Solving the Diffusivity 
equation using Explicit 

Finite Difference Method

Calculating the 
Pressure Distribution 

for new time level 
(Pn+1)

Analysis the simulation Case, 
- Graph
- 3D view

Sensitivity Analysis:
- Reservoir Model
- Reservoir Properties

End

Difusivity equation for single 
pase, one dimention (ID), 

grid cartesian

Reservoir Model:
- Grid Cartesian, one dimension, Δx
- Time step, Number of time step, Δx
- Boundary condition, BCL, BCR

Reservoir Parameter:
- Pressure initial, Pi

- Reservoir Properties., ϕ, μ, k, ct

Figure 3 Flow Chart of Numerical Simulation Study

Figure 4 Reservoir Model Grid Cartesian with Boundary Condition
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(a)

(b)

(c)

Figure 5 Pressure Distribution and mesh plot for Explicit scheme with no-flow boundary 
in (a),(b), and (c) are presented, for case 1 with α = 0.3165, Dx = 100, and Dt = 0.05
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(a)

(b)

(c)

Figure 6 Pressure Distribution and mesh plot for Explicit scheme 
with Specify boundary condition = 2500 psi in (a),(b), and (c) are presented, 

for case 2 with α = 0.3975, Dx = 250, and Dt = 0.5
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(a)

(b)

(c)

Figure 7 Pressure Distribution for Sensitivity Analysis of Reservoir 
Model (a), (b), and (c) are presented, for (a) a variety of grid spacing, 
(b) a variety of time steps, and (c) a variety of boundary conditions
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(a) (b)

(c) (d)

Figure 8 Pressure Distribution for Sensitivity Analysis of Reservoir Properties (a), (b), (c), and (d) 
are presented, for (a) a variety of porosity, (b) a variety of permeability, 

(c) a variety of viscosity, and (d) a variety of compressibility

Figure 9 Unstability for Explict Scheme Example 1 with α = 0.6224, 
γ = 2.258 × 10⁻6, Dt = 0.008 days, and Dx = 75 ft
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Figure 10 Unstability for Explict Scheme Example 2 with  α = 0.6351, 
γ = 2.284 × 10⁻6, Dt = 0.05 days, and Dx = 100 ft


