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Abstract - Updating road network maps is
essential for transportation services, as incomplete
or inaccurate maps can lead to inefficiencies and
diminish service quality. The online transportation
industry generates vast amounts of GPS data as drivers
navigate, which is valuable for mapping road networks
and improving traffic management. However, since
drivers do not cover all roads, satellite imagery plays
a crucial role in identifying areas that are not mapped.
By combining GPS data as labels with satellite
imagery, the extraction of new road networks becomes
more accurate. This research employs a deep learning
Convolutional Neural Network (CNN) with the U-Net
architecture for road segmentation, allowing for the
identification of new paths. Two different encoders are
tested in this research: Inception-ResNet-V2 and a pure
U-Net encoder. The Inception-ResNet-V2 encoder
achieves an accuracy of 91.3%, while the pure U-Net
encoder achieves 90.7%. In terms of Dice Loss, the
models record values of 0.051 and 0.08, respectively.
The research highlights the effectiveness of different
U-Net encoders in road network segmentation. With
high accuracy and low Dice Loss, this approach
provides a reliable method for automatically updating
road maps. It has potential applications in navigation
systems, urban planning, and Al-driven intelligent
transportation systems.

Keywords: convolutional neural network, U-Net,
Inception-ResNet-V2, encoder, deep learning,
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I. INTRODUCTION

The update of the Road Network Map (RNM) is
crucial for providing transportation services. However,
if the map is incomplete or inaccurate, it can lead to
poor functionality and a decline in service quality.

*Corresponding Author

For instance, incorrect distance calculations can lead
to errors in price estimations and may also reveal
hazardous travel routes. In the online transportation
industry, such as Grab or Gojek, the complexity of the
road network affects how quickly drivers reach their
destinations. Consequently, drivers assigned solely
based on the shortest straight-line distance may not be
the most optimal choices. This is due to the inherent
need for slight detours within the road network, which
can result in extended travel times to pick-up locations
(Liu et al., 2022).

In addition to serving the private sector, the
road network plays a crucial role in government
planning and policy development, as it is essential
for the proper development of cities and regions. As
primary transportation facilities, roads fulfill several
essential functions. First, they facilitate the movement
of people and goods. Second, they connect activity
centers within and between cities (Luthfil et al., 2021).

To effectively support government and private
planning as well as policy development, it is essential
to frequently update the RNM, particularly in rapidly
developing urban areas like South Jakarta, Indonesia.
Additionally, the Indonesian Topographical Map,
created by the Geospatial Information Agency (Badan
Informasi Geospasial), serves as one of the primary
tools used by the city government for spatial planning.
This base map provides detailed land surface
information developed in accordance with Indonesia's
regulatory standards, ensuring the production of high-
quality and integrated planning instruments (Pinuji et
al., 2019).

To develop or update road network maps, two
standard methods are used. The first method involves
conducting field surveys, which utilize geodetic GPS
to create accurate maps. According to Joubert et al.
(2020), the accuracy levels for Low-Cost GNSS and
GPS Geodetic measurements are between 10 and 21
cm and between 7 and 60 cm, respectively, with an
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average measurement time of 65 minutes per point for
Low-Cost GNSS and 10 minutes for GPS Geodetic.
This suggests that field surveys are expensive and have
limited coverage, despite their high accuracy. The
second method involves extracting satellite imagery,
which is generally faster and more cost-effective
than direct field surveys. However, this approach has
its challenges, including difficulties in capturing a
complete road network due to obstructions from trees
and buildings, as well as potential confusion with
other similar features, such as rice fields, rivers, and
railroad tracks (Joubert et al., 2020).

To obtain accurate information, it is essential to
support satellite imagery extraction with proper data
labeling. The most common method for providing
labeled data involves manual interpretation, where
roads are drawn directly from the imagery. An
alternative approach utilizes GPS tracking data to
capture accurate road patterns. In a research conducted
in Beijing, a Convolutional Neural Network (CNN)
was employed to extract road data from satellite
imagery. This process integrated both GPS data and
satellite imagery, leading to several comparative
conclusions. The results demonstrated very high
precision for all variables involved, including satellite
imagery, GPS data, and point data (Sun et al., 2019).

High-quality digital road maps are crucial for
location-based services and smart-city applications.
The vast and accessible GPS data generated by mobile
devices is key to developing new mapping patterns.
However, automated roadmap generation presents a
challenge due to the low sampling rate and the issue
of multi-level disparity, which means that the maps
created have not yet met commercial standards (Chen
et al., 2021).

Manually drawing over imagery is a standard
practice used by some researchers. However, it
demands significant time and resources. Deep learning
technology presents new opportunities for extracting
road networks from satellite imagery. Nonetheless,
recent segmentation methods based on CNN face
serious challenges regarding road connectivity. Road
tracing techniques that rely on a single starting point
often encounter problems, as certain areas may not be
accurately identified (Wei et al., 2019).

Wei et al. (2019) conduct their research in
two stages. The first step involves determining the
starting point, which is divided into two parts: road
segmentation and starting point detection. During
this process, the Fully Convolutional Network (FCN)
algorithm is utilized. The second stage focuses on
searching for paths from multiple starting points
using the CNN algorithm. According to the research's
findings, starting points located at crossroads can
lead to a slight increase in RoadTracer's performance
(using a single starting point), with an improvement of
approximately 0.2% in Intersection over Union (IoU).
This suggests that a starting point that offers multiple
potential directions can produce slightly better
outcomes. In comparison, RoadTracer-M (utilizing
multiple starting points) demonstrates significant

advancements in road topology searches, achieving
improvements of 10.4% and 8.7% in F1-Score and
IoU, respectively. These improvements represent
relative gains of 38.6% and 51.1% when compared to
RoadTracer.

For geographic analysis, such as map inference,
matching, and traffic detection, GPS data is essential.
However, one of the main challenges is the limited
availability of this data, particularly when privacy
concerns arise. Additionally, the frequency of data
collection can vary significantly, impacting both the
quantity and quality of the information obtained.
This inconsistency in data availability highlights that
larger, higher-quality datasets are often concentrated
in specific regions, particularly in developed countries
such as China and the United States. These regions
benefit from more advanced infrastructure, which
enhances data collection and processing capabilities.
Conversely, in other parts of the world, the availability
of GPS data is often sparse or inconsistent, making it
challenging to conduct detailed geographic analyses
on a larger scale. The differences in data coverage
across various areas highlight the need for improved
global data accessibility and infrastructure to support
more comprehensive geographic studies.

Grab position data is a leading source of
information availability in Southeast Asia, particularly
in Singapore and Indonesia. As of April 2019, these
data sets boasted high accuracy with recording
intervals of one second. In addition to their large
volume, the GPS data provide valuable insights,
including accuracy levels, bearing, and speed, which
are essential for in-depth transportation analysis. They
also include information such as the driver's unique ID
and the types of vehicles and devices used (Android or
iPhone) (Xu et al., 2020).

The use of location-based services that rely on
GPS technology involves highly complex algorithms
for GPS-based map creation, which can require
substantial storage space. Research has been conducted
on the application of the Othello Coordinated method,
with the expectation that it can optimize the challenges
associated with significant raster map storage and
computational performance. In a recent experiment,
the prediction accuracy reached an impressive 99.86%
(J. Zhang et al., 2021).

This research aims to compare the accuracy
of the U-Net architecture when using Inception-
ResNet-V2 as the encoder versus when it is not. The
U-Net architecture is inherently complex, and this
modification aims to determine whether using an
alternative encoder has a significant impact on the
model's accuracy. Additionally, this research aims to
demonstrate how GPS data can be utilized as labels
to enhance the efficiency of the process, thereby
eliminating the need for manual interpretation during
the labeling phase.

II. METHODS

This research presents a six-step realignment
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method that can be repeated to enhance accuracy and
precision. The process begins with trimming the GPS
points and preparing the map for realignment. Next,
the GPS points are aligned with public road segments.
Once a GPS point is matched to a road segment, a
new road segment is generated to best fit that point.
Using these GPS-adjusted segments, the location of
the new intersection is identified. Following this, the
geometric characteristics of the original road segment
and the rail characteristics obtained from the GPS are
restored. This method aims to enhance the precision
of mapping and can be iteratively applied to achieve
better results. The overall research methodology is
visually represented in Figure 1, which outlines the
entire process in a step-by-step manner. This visual aid

enhances the understanding of how each phase of the
realignment process is interconnected, highlighting the
sequential flow of the steps involved in the research.

In this research, two types of data are utilized:
GPS data and Sentinel-2A satellite imagery. The GPS
data, obtained from the ride-hailing driver app Grab
in April 2019, consists of 84,000 paths and a total
of 88 million data points. These data are collected at
one-second intervals during driver service deliveries.
Figure 2 presents an example of the GPS data collected
in Jakarta, Indonesia. The second dataset consists of
Sentinel-2 A satellite imagery obtained from the United
States Geological Survey (USGS) Earth Explorer. The
data are presented in Figure 3 below.
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Data processing is conducted to obtain training
data for road network segmentation. GPS data is used to
gather labeled information related to the road network
traversed by Grab drivers, while Sentinel-2A satellite
imagery is utilized as the training data. The process
of integrating these two data sources is illustrated in
Figure 2 below. To convert the GPS point data into
raster data suitable for training a satellite image
segmentation model, the Kernel Density Estimation
(KDE) method is applied. This method estimates the
density distribution of the GPS points. The process
begins with collecting GPS data from Grab drivers,
which includes location points where vehicles
frequently pass. Next, KDE is employed to estimate the
density of these points by applying probability weights
around each GPS location, resulting in a continuous
representation of traffic intensity. The outcome of this
estimation is then rasterized into a pixel grid, which

reflects the density of vehicle movement in a specific
area. Finally, this rasterized data is transformed into
road labels, serving as the ground truth for training the
segmentation model.

Once the road label data is obtained, the next
step is to prepare Sentinel-2A satellite imagery as
training data. The satellite images, which cover the
same area as the GPS data, are processed using a
masking technique to ensure that only the relevant parts
corresponding to the roads are utilized. Next, both the
satellite imagery and the road labels, in raster format,
are divided into 256 x 256 pixel tiles to facilitate the
model training process. With these paired satellite
images and road labels, the segmentation model can
be trained to recognize and map road networks from
the satellite imagery automatically. This model can
later be applied for various mapping and navigation
purposes.
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Figure 3 Sentinel 2A Satellite Imagery (RGB)
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In the segmentation process, annotation or
label data is necessary to train the model. These
labels should accurately identify road pixels within
the images. There are various methods for creating
labels for road segmentation, with the most common
approach being manual interpretation and digitization,
which involves drawing directly on the imagery.

The method used in this research utilizes GPS
data as the labeling method. The purpose of using
GPS data is to ensure high accuracy, as it serves as
ground truth for the road network, collected from the
activities of ride-hailing drivers. By combining GPS
data with satellite imagery, a high-precision model
can be created, as GPS data enables the generation of
detailed road maps, illustrated in Figure 4 above.
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Figure 4 The Processing Flow of Data
to Create the Label for the Training

KDE is a non-parametric method for estimating
a density function. This approach is also used in non-
parametric regression to estimate the Regression
Function (RF). However, the choice of bandwidth
plays a significant role in determining the regression
outcomes. Research shows that very small or huge
bandwidths lead to similar and constant estimations,
respectively (Wang et al., 2022).

This research utilizes the KDE algorithm to
generate a road network based on GPS ping density.
The algorithm considers transportation activities
and pathway patterns in the specified locations. It
is represented by the following formula in Equation
(1), where K = the kernel, h > 0 = the bandwidth for
smoothing parameters, n = the number of data points,
and h = the bandwidth (Kamalov, 2020). The KDE
algorithm is commonly used for analyzing line or
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point data. However, this research focuses specifically
on the use of point data. As a result, the conversion
process generated a raster map that highlights density
information, prioritizing the depiction of the road
network pattern, as illustrated in Figure 5 below.
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Figure 5 Kernel Density Generated by KDE

U-Net is an artificial neural network architecture
designed explicitly for image segmentation
tasks, which aim to distinguish objects from their
background. This research employs the U-Net
architecture due to its tailored design for image
segmentation, which is expected to yield accurate
and precise results. The U-Net architecture features a
symmetrical structure composed of an encoder and a
decoder, enhancing its effectiveness for segmentation
tasks. The convolutional processes applied to relevant
pixels significantly improve the performance of U-Net
compared to other CNN architectures (Tuli et al.,
2021). Figure 6 below illustrates the positions of the
encoder and decoder within the U-Net architecture.

This research aims to compare the results
produced by different encoders, as illustrated in Figure
6. The first encoder used is the original encoder from the
U-Net architecture, which is compared to the second
encoder derived from Inception-ResNet-V2. The
encoder plays a crucial role in the U-Net architecture,
as it is responsible for the recognition phase of the
segmentation process. This phase converts the input
into a feature-based representation based on the pixel
values of the input (Ramba, 2020).

Inception-ResNet-V2 is an architecture
developed by Google in 2016 that integrates two
well-known frameworks: Inception and ResNet. The
objective of using this architecture in the encoder
phase is to capitalize on the strengths of Inception-
ResNet-V2 for feature recognition while preserving
U-Net's capabilities for accurate segmentation. The
design of Inception-ResNet-V2 employs Inception-
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ResNet blocks, which combine various components
using skip connection networks. These skip
connections between convolutional blocks are vital
as they carry critical features that may be lost during
the Max Pooling process, thereby helping to mitigate
the vanishing gradient problem. The application
of Inception-ResNet-V2 in the decoder phase is
illustrated in Figure 7 below.

In Figure 7, the Inception-ResNet-V2 model
plays a pivotal role by transmitting essential features to
the subsequent convolutional block, even after certain
aspects of the features have already been passed
forward through the Max Pooling process. This dual
transmission mechanism ensures that critical feature

representations are preserved, thereby improving both
the accuracy and completeness of the segmentation
task. Nevertheless, the added computational layers
increase model complexity, which may lead to slower
processing speeds compared to the original U-Net
model.

The first step in training the data is to
create a dataset that includes both images and
their corresponding labels. In this research, the
training dataset comprises 2,240 images and their
corresponding labels. The size of each image in the
training data is 256x256 pixels, which is neither too
large nor too small. This size maintains an appropriate
aspect ratio of approximately 1:1, ensuring that the
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images retain their proportions without distortion.
Figures 8 and 9 below showcase the sample dataset
and the associated data labels used in this research.

Figure 9 Satellite Imagery Data and the Label

Figure 9 shows that the road is clearly visible in
the satellite imagery, and the GPS data aligns closely
with the road pattern depicted in the imagery. The
segmentation training will utilize the imagery data,
with GPS data serving as the labels. In this research,
the training data is composed of 80% for training and
20% for validation. Table 1 below presents the details
of the training data composition.

Table 1 Table Data Training Compositions

Type % Total
Training 80 1,792
Validation 20 448

Inception-ResNet-V2..... (Bayu Yanuargi; Ema Utami)

The proper composition of training and
validation in deep learning is essential for minimizing
the risks of overfitting and underfitting, as well as
for objectively evaluating the model's performance.
As previously explained, the training will utilize two
different encoders: the original U-Net encoder and the
Inception-ResNet-V2 encoder. Both the U-Net with
the original encoder and the Inception-ResNet-V2
encoder will be trained using the same datasets. The
steps involved in the training and model development
are illustrated in Figure 10 below.
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Figure 10 Training and Model Development

Once training and model development are
complete, the next step is to evaluate the model using
the validation datasets. This evaluation employs
the Dice Loss method and a confusion matrix. The
Dice Loss is a metric used to measure the overlap
between two datasets; in this context, it compares the
segmentation results to the labels. The Dice coefficient,
also referred to as the Fl-score, combines precision
and recall into a single metric to reduce discrepancies
between the prediction results and the ground truth
(i.e., the label) during the segmentation process (Zhao
et al., 2020). The Equation (2) below presents the
formula for calculating Dice Loss.

1 — (2 = intersection
dice loss = ( )

(pred_size + true_size) )

The other method used to evaluate the model
is the confusion matrix, which illustrates the model's
accuracy in segmenting the provided image. A
confusion matrix consists of four main components:
True Positive (TP), which represents the number of
instances the model correctly predicts as positive;
True Negative (TN), which represents the number of
instances the model correctly predicts as negative;
False Positive (FP), which refers to the instances
the model incorrectly predicts as positive; and False
Negative (FN), which refers to the instances the model
incorrectly predicts as negative (Pommé et al., 2022).
Equation (3) shows the formula for calculating the
model's accuracy using the confusion matrix. Figure
11 illustrates the concept of the confusion matrix.
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Figure 11 Confusion Matrix Concept

Dice Loss and the Confusion Matrix are vital
tools for evaluating segmentation models, each
offering unique advantages. Dice Loss, which is
based on the Dice Similarity Coefficient (DSC), is
particularly effective in addressing the class imbalances
commonly encountered in segmentation tasks. Unlike
traditional loss functions, such as Cross-Entropy
Loss, which the prevalence of background pixels can
skew, Dice Loss focuses directly on optimizing the
spatial overlap between predicted and ground-truth
masks. This approach ensures that the model learns
to maximize alignment with actual segmentations,
resulting in more accurate predictions, particularly for
small or underrepresented regions. Moreover, Dice
Loss provides a smooth gradient flow, contributing
to improved model convergence and stability during
training.

The Confusion Matrix provides a detailed
breakdown of segmentation performance by
categorizing predictions into FP, FN, and TN. This
breakdown facilitates a deeper understanding of model
errors and enables the calculation of key metrics,
including Precision, Recall, F1-score, and Intersection
over Union (IoU). By analyzing the Confusion
Matrix, practitioners can pinpoint specific areas
where the model struggles, such as false detections
or missed segmentations, and make the necessary
improvements. Combining Dice Loss during training
with the Confusion Matrix for evaluation offers a
comprehensive approach to optimizing segmentation
models, ensuring both accuracy and interpretability.

III. RESULTS AND DISCUSSIONS

The model training is conducted over 100
epochs for each method. The original U-Net encoder
completed all 100 epochs, while the U-Net using
Inception-ResNet-V2 stopped training at the 85th
epoch. This early stopping occurred because the
accuracy stabilized between epochs 80 and 85. The
segmentation results are presented in Figures 12 and
13 below, showcasing the U-Net with the original

encoder and the U-Net with the Inception-ResNet-V2
encoder, respectively. The figures illustrate that the
Inception-ResNet-V2 encoder effectively segments
the road and achieves a lower Dice Loss compared to
the original U-Net encoder.

Figure 13 Segmentation Result of U-Net
with Inception-ResNet Encoder

The images above compare the segmentation
results of the Classic U-Net model (see Figure 12)
with those of the U-Net model that uses an Inception-
ResNet Encoder (see Figure 13). In Figure 12, the
segmentation results from the Classic U-Net reveal
some inaccuracies, particularly in detecting thinner
or more complex road structures. Certain areas of the
segmented map appear incomplete or exhibit noise
around the edges of the roads. This indicates that the
Classic U-Net may struggle to capture smaller and
more intricate road features in satellite imagery.

In contrast, Figure 13, which employs the U-Net
architecture with an Inception-ResNet encoder, shows
significantly improved and more precise segmentation
results in detecting road structures. This model proves
to be more effective in capturing intricate details,
especially when identifying minor roads that the
Classic U-Net previously missed. The Inception-
ResNet encoder likely enhances the model's ability
to accurately recognize patterns, thereby reducing
segmentation errors in complex areas. Overall,
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utilizing an advanced encoder like Inception-ResNet
leads to more precise and sharper results in detecting
roads from satellite images.
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Figure 14 Dice Loss Comparison between Two Models

In Figure 14 above, it is evident that the Dice
Loss generated by the CNN U-Net algorithm using
the Inception-ResNet-V2 encoder is better (i.e.,
lower) than that of the pure U-Net encoder. Initially,
the Dice Loss for the Inception-ResNet-V2 appears
higher, which can be attributed to the complexity of
its architecture in recognizing objects at the start of
the experiment. The key difference between these
two methods lies in their speed and performance.
The Inception-ResNet-V2 model, due to its more
sophisticated architecture, requires more training time
compared to the original U-Net encoder. As shown in
Figures 15 and 16 below, the Inception-ResNet-V2
encoder took eight seconds longer to train than the
U-Net encoder. This additional time is due to the
increased computational demands of the Inception-
ResNet-V2 architecture.

efficiency, both models are effective in their respective
roles. However, it is essential to consider the trade-
off between speed and complexity when selecting the
appropriate model for a specific task.

Figure 15 illustrates the computation time per
epoch for both the U-Net model and the Inception-
ResNet-V2-based U-Net model. At the beginning
of the training process, both models exhibit high
computation times, with U-Net showing slightly more
fluctuations. As training progresses, computation time
stabilizes significantly, and both models demonstrate
similar patterns. However, the Inception-ResNet-
V2-based U-Net generally maintains a lower and
more stable computation time across most epochs.
This indicates that, although both models have high
initial processing overhead, the Inception-ResNet-V2
architecture may offer better computational efficiency
as training continues.

1840

1830

1920

Retata

1910

19.00

WU-hes

IncegonResNen?

= UMel == InceptionRestNenv2

100

o0 40 [ ]

Epach

w =~

Ly

Figure 15 Computation Time on Each Epoch

In contrast, the original U-Net encoder operates
more efficiently because its simpler architecture
shortens the training time. Despite the difference in

Inception-ResNet-V2..... (Bayu Yanuargi; Ema Utami)

Figure 16 Average Speed Comparison

Figure 16 compares the average computation
speed of the two models. The results reveal that the
Inception-ResNet-V2-based U-Net has a slightly
higher average speed of 19.37 compared to the
Classic U-Net, which has an average speed of 19.26.
Although the difference is marginal, it suggests that
the Inception-ResNet-V2-based U-Net does not
significantly increase processing time despite its more
complex architecture. This trade-off between improved
segmentation accuracy, as shown in previous figures,
and a slight increase in computational speed makes the
Inception-ResNet-V2 model a more efficient choice for
tasks that require both high accuracy and reasonable
processing time. In Table 2 below, a comparison of
the two methods shows that, on average, the encoder
modification using Inception-ResNet-V2 achieves
better accuracy than the original encoder.

The accuracy comparison shown in Table 2
illustrates the performance differences between the
Classic U-Net and the U-Net model based on Inception-
ResNet-V2.  The Inception-ResNet-V2  model
consistently outperforms the Classic U-Net across all
key metrics, including accuracy, precision, recall, and
F1 score. Specifically, the Inception-ResNet-V2 model
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achieves an accuracy of 91.31%, which is slightly
higher than the 90.7% attained by the Classic U-Net.
The improvements in precision, recall, and F1 score
further indicate that the Inception-ResNet-V2 model is
more effective at correctly identifying and segmenting
target areas while minimizing false positives and false
negatives.

Table 2 Accuracy Comparison

Type U-Net Inception-
ResNet-V2
Accuracies 90.7% 91.31%
Precission 90.72% 91.4%
Recall 90.78% 91.2%
F1 score 90.75% 91.4%

The enhancements observed in the Inception-
ResNet-V2-based U-Net can be attributed to its
advanced architecture, which improves feature
extraction and pattern recognition (Wang et al., 2023).
The higher precision of 91.4% suggests that the model
is more effective at avoiding misclassifications, while
the higher recall of 91.2% indicates that it detects
actual target areas more accurately. Moreover, the
increased F1 score of 91.4% confirms that the model
maintains a strong balance between precision and
recall. These results suggest that integrating Inception-
ResNet-V2 as an encoder within the U-Net structure
enhances overall segmentation performance without
significantly increasing computational complexity,
making it a preferable choice for high-accuracy
segmentation tasks.

Table 3 Accuracy Comparison with Other Research

Research Accuracies Model
. Inception-
This Research 91.31% Resl\?e V2
This Research 90.7% U-Net
(P. Zhang et al., 2022) 87% U-Net
(Baek et al., 2024) 87.8% DeepLabV3+
(Baek et al., 2024) 90.5% U-NET
(Baek et al., 2024) 93% SIU-NET
(Wang et al., 2023) 86.28% U-NET
(Wang et al., 2023) 89.2% PSP-Net
(Wang et al., 2023) 84.3% DeepLabV3+
(Wang et al., 2023) 92.19% TransU-Net

Table 3 provides a comparative analysis
of segmentation model accuracies across various
research studies. This research achieved an accuracy of
91.31% using the Inception-ResNet-V2 architecture,

demonstrating its superior performance compared to
other models. Additionally, this research tested the
U-Net model, achieving an accuracy of 90.7%, which
remains competitive with existing research. Among
other studies, the accuracy of U-Net varies: P. Zhang
et al. (2022) reported an accuracy of 87%, while Baek
et al. (2024) achieved 90.5% using the same model.
DeepLabV3+, another widely used model, recorded
accuracies of 87.8% (Baek et al., 2024) and 84.3%
(Wang et al., 2023), indicating its effectiveness,
although it performed slightly lower than Inception-
ResNet-V2 in this research.

Thetablealsoincludesresults for SIU-NET, PSP-
Net, and TransU-Net, showcasing their competitive
accuracies. SIU-NET achieved the highest score
among these, with 93% (Baek et al., 2024), slightly
outperforming the models presented in this research.
TransU-Net (Wang et al., 2023) also demonstrated
strong performance at 92.19%, surpassing the U-Net-
based models listed in the table. In contrast, PSP-
Net, tested by Wang et al. (2023), achieved a success
rate of 89.2%, indicating moderate performance.
The variation in accuracies across studies highlights
the influence of different architectures, datasets,
and training strategies, with Inception-ResNet-V2
emerging as a strong contender for achieving high
segmentation accuracy in this research.

IV. CONCLUSIONS

This research involves a segmentation process
utilizing two different encoders within the U-Net
architecture, which is specifically tailored for
segmentation tasks. The purpose of employing these
two encoders is to compare their performance and
accuracy in detecting road networks using medium-
resolution satellite imagery. Based on the experiments
conducted for this research, the accuracies of the
U-Net original encoder and the Inception-ResNet-V2
encoder are nearly identical. The Inception-ResNet-V2
encoder achieves a higher accuracy of 91%, while the
U-Net original encoder has an accuracy of 90.7%.
Additionally, the Dice Loss for both encoders is
minimal, with only 5% for the Inception-ResNet-V2
and 8% for the original U-Net encoder. This is evident
in the U-Net architecture, where either encoder
effectively performs segmentation of the road network
using GPS data as the labeling source. The utilization
of GPS data is also beneficial, as it helps visualize the
road network pattern and aids in recognizing the road
network with medium-resolution imagery.

The limitation of this research is that it used
only 100 epochs, which may not allow the algorithm
to achieve its full potential accuracy. Some methods
might perform better with more epochs, as their
performance can stabilize with a higher number of
iterations. Conducting further experiments with an
unlimited number of epochs would be beneficial, as it
would enable the algorithm to converge and stabilize
fully. This approach would enable a fairer comparison
between algorithms, allowing us to determine when
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both methods reach stability and potentially uncover
performance differences that are currently hidden due
to the limited number of epochs.

Further research is needed to improve the
applicability and accuracy of this study. One important
area that is not addressed is the measurement of the
total road length in kilometers that can be extracted.
Current studies should focus on comparing the
extraction results from the two methods to fill this
gap. By conducting this comparison, researchers can
determine the total road length extracted by each
method and evaluate the completeness ratio. This
provides a clearer understanding of the strengths
and weaknesses of each technique, leading to more
reliable conclusions about their effectiveness. A more
comprehensive analysis also enables this research to
be applied to a broader range of fields, including urban
planning and transportation management.

AUTHOR CONTRIBUTIONS

Conceived and designed the analysis; Collected
the data; Performed the analysis, B. Y.; Contributed
data or analysis tools; Wrote the paper, B. Y. and E. U.

DATA AVAILABILITY

The data that support the findings of this study
are available from the corresponding author, [BY],
upon reasonable request. Explain the reason why the
readers must request the data.

REFERENCES

Baek, W. K., Lee, M.-J., & Jung, H.-S. (2024). Land
cover classification from RGB and NIR satellite
images using modified U-Net Model. [EEE
Access, 12, 69445—69455. https://doi.org/10.1109/
ACCESS.2024.3401416

Chen, B., Ding, C., Ren, W., & Xu, G. (2021). Automatically
tracking road centerlines from low-frequency GPS
trajectory data. ISPRS International Journal of
Geo-Information, 10(3). https://doi.org/10.3390/
1jgi10030122

Joubert, N., Reid, T. G. R., & Noble, F. (2020).
Developments in modern GNSS and its impact
on autonomous vehicle architectures. 2020 IEEE
Intelligent Vehicles Symposium (1V), 2029-2036.
https://doi.org/10.1109/1V47402.2020.9304840

Kamalov, F. (2020). Kernel density estimation based
sampling for imbalanced class distribution.
Information Sciences, 512, 1192—1201. https://doi.
org/https://doi.org/10.1016/j.ins.2019.10.017

Liu, Y., Jia, R,, Ye, J., & Qu, X. (2022). How machine
learning informs ride-hailing services: A survey.
Communications in Transportation Research, 2,
100075. https://doi.org/https://doi.org/10.1016/j.
commtr.2022.100075

Luthfil, P., Program Doktor, H., Wasanta, T., & Santosa, W.

Inception-ResNet-V2..... (Bayu Yanuargi; Ema Utami)

(2021). Pengaruh indeks infrastruktur jalan terhadap
indikator ekonomi di Indonesia. Jurnal HPJI
(Himpunan Pengembangan Jalan Indonesia), 7(2),
143-152.

Pinuji, S., Savitri, A. 1., Noormasari, M., Wijaya, D. K., &
Kurniawan, A. (2019). Efektivitas data spasial peta
Rupa Bumi Indonesia (RBI) dan Openstreetmap
dalam pengambilan keputusan menggunakan
Inasafe. Jurnal ~ Dialog  Penanggulangan
Bencana, 10(1), 22-29. https://api.semanticscholar.
org/CorpusID:238144783

Pommé, L.-E., Bourqui, R., Giot, R., & Auber, D. (2022).
Relative Confusion Matrix: Efficient comparison of
decision models. 2022 26th International Conference
Information Visualisation (IV), 98—103. https://doi.
org/10.1109/1V56949.2022.00025

Ramba, L. S. (2020). Design of a voice controlled
home automation system using Deep Learning
Convolutional ~ Neural Network (DL-CNN).
Telekontran : Jurnal Ilmiah Telekomunikasi, Kendali
Dan Elektronika Terapan, 8(1), 57-73. https://doi.
org/10.34010/telekontran.v8il.3078

Sun, T., Di, Z., Che, P, Liu, C., & Wang, Y. (2019).
Leveraging crowdsourced GPS data for road
extraction from aerial imagery. 2019 IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR), 7501-7510. https://doi.
org/10.1109/CVPR.2019.00769

Tuli, T. B., Kohl, L., Chala, S. A., Manns, M., & Ansari, F.
(2021). Knowledge-based digital twin for predicting
interactions in human-robot collaboration. 2021
26th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA ), 1-8.
https://doi.org/10.1109/ETFA45728.2021.9613342

Wang, J., Liu, Y., & Chang, J. (2022). An improved model
for Kernel Density estimation based on Quadtree and
Quasi-Interpolation. Mathematics, 10(14). https:/
doi.org/10.3390/math10142402

Wang, R., Cai, M., Xia, Z., & Zhou, Z. (2023). Remote
sensing image road segmentation method integrating
CNN-Transformer and UNet. [EEE Access,
11, 144446-144455.  https://doi.org/10.1109/
ACCESS.2023.3344797

Wei, Y., Zhang, K., & Ji, S. (2019). Road network
extraction from satellite images using CNN based
segmentation and tracing. IGARSS 2019 - 2019
IEEE International Geoscience and Remote Sensing
Symposium, 3923-3926. https://doi.org/10.1109/
IGARSS.2019.8898565

Xu, Z., Yin, Y., Dai, C., Huang, X., Kudali, R., Foflia,
J., Wang, G., & Zimmermann, R. (2020). Grab-
Posisi-L: A labelled GPS trajectory dataset for
map matching in Southeast Asia. Proceedings of
the 28th International Conference on Advances in
Geographic Information Systems, 171-174. https://
doi.org/10.1145/3397536.3422218

Zhang, J., Hu, Q., Li, J., & Ai, M. (2021). Learning from
GPS trajectories of floating car for CNN-based

137



urban road extraction with high-resolution satellite
imagery. IEEE Transactions on Geoscience and
Remote Sensing, 59(3), 1836-1847. https://doi.
org/10.1109/TGRS.2020.3003425

Zhang, P.,He, H., Wang, Y., Liu, Y., Lin, H., Guo, L., & Yang,
W. (2022). 3D urban buildings extraction based on
airborne LiDAR and Photogrammetric Point Cloud
Fusion according to U-Net deep learning model
segmentation. [EEE Access, 10, 20889-20897.
https://doi.org/10.1109/ACCESS.2022.3152744

Zhao, R., Qian, B., Zhang, X., Li, Y., Wei, R., Liu, Y., & Pan,
Y. (2020). Rethinking Dice Loss for Medical Image
Segmentation. 2020 IEEE International Conference
on Data Mining (ICDM), 851-860. https://doi.
org/10.1109/ICDM50108.2020.00094

138 ComTech: Computer, Mathematics and Engineering Applications, Vol. 16 No. 2 December 2025, 127—138



