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Abstract - Updating road network maps is 
essential for transportation services, as incomplete 
or inaccurate maps can lead to inefficiencies and 
diminish service quality. The online transportation 
industry generates vast amounts of GPS data as 
drivers navigate, which is valuable for mapping 
road networks and improving traffic management. 
However, since drivers do not cover all roads, satellite 
imagery plays a crucial role in identifying areas that 
are not mapped. By combining GPS data as labels with 
satellite imagery, the extraction of new road networks 
becomes more accurate. This research employs a deep 
learning convolutional neural network with the U-Net 
architecture for road segmentation, allowing for the 
identification of new paths. Two different encoders are 
tested in this research: Inception-ResNet-V2 and a pure 
U-Net encoder. The Inception-ResNet-V2 encoder 
achieves an accuracy of 91.3%, while the pure U-Net 
encoder achieves 90.7%. In terms of Dice Loss, the 
models record values of 0.051 and 0.08, respectively. 
The research highlights the effectiveness of different 
U-Net encoders in road network segmentation. With 
high accuracy and low Dice Loss, this approach 
provides a reliable method for automatically updating 
road maps. It has potential applications in navigation 
systems, urban planning, and AI-driven intelligent 
transportation systems.

Keywords: convolutional neural network, U-Net, 
Inception-ResNet-V2, encoder, deep learning, 
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I.	 INTRODUCTION

The update of the Road Network Map (RNM) is 
crucial for providing transportation services. However, 
if the map is incomplete or inaccurate, it can lead to 
poor functionality and a decline in service quality. 

For instance, incorrect distance calculations can lead 
to errors in price estimations and may also reveal 
hazardous travel routes. In the online transportation 
industry, such as Grab or Gojek, the complexity of the 
road network affects how quickly drivers reach their 
destinations. Consequently, drivers assigned solely 
based on the shortest straight-line distance may not be 
the most optimal choices. This is due to the inherent 
need for slight detours within the road network, which 
can result in extended travel times to pick-up locations 
(Liu et al., 2022).

In addition to serving the private sector, the 
road network plays a crucial role in government 
planning and policy development, as it is essential 
for the proper development of cities and regions. As 
primary transportation facilities, roads fulfill several 
essential functions. First, they facilitate the movement 
of people and goods. Second, they connect activity 
centers within and between cities (Luthfil et al., 2021). 

To effectively support government and private 
planning as well as policy development, it is essential 
to frequently update the road network map, particularly 
in rapidly developing urban areas like South Jakarta, 
Indonesia. Additionally, the Indonesian Topographical 
Map, created by the Geospatial Information Agency 
(Badan Informasi Geospasial), serves as one of the 
primary tools used by the city government for spatial 
planning. This base map provides detailed land surface 
information developed in accordance with Indonesia's 
regulatory standards, ensuring the production of high-
quality and integrated planning instruments (Pinuji et 
al., 2019).

To develop or update road network maps, two 
standard methods are used. The first method involves 
conducting field surveys, which utilize geodetic GPS 
to create accurate maps. According to Joubert et al. 
(2020), the accuracy levels for Low-Cost GNSS and 
GPS Geodetic measurements are between 10 and 21 
cm and between 7 and 60 cm, respectively, with an 
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average measurement time of 65 minutes per point for 
Low-Cost GNSS and 10 minutes for GPS Geodetic. 
This suggests that field surveys are expensive and have 
limited coverage, despite their high accuracy. The 
second method involves extracting satellite imagery, 
which is generally faster and more cost-effective 
than direct field surveys. However, this approach has 
its challenges, including difficulties in capturing a 
complete road network due to obstructions from trees 
and buildings, as well as potential confusion with 
other similar features, such as rice fields, rivers, and 
railroad tracks (Joubert et al., 2020).

To obtain accurate information, it is essential to 
support satellite imagery extraction with proper data 
labeling. The most common method for providing 
labeled data involves manual interpretation, where 
roads are drawn directly from the imagery. An 
alternative approach utilizes GPS tracking data to 
capture accurate road patterns. In a research conducted 
in Beijing, a Convolutional Neural Network (CNN) 
was employed to extract road data from satellite 
imagery. This process integrated both GPS data and 
satellite imagery, leading to several comparative 
conclusions. The results demonstrated very high 
precision for all variables involved, including satellite 
imagery, GPS data, and point data (Sun et al., 2019).

High-quality digital road maps are crucial for 
location-based services and smart-city applications. 
The vast and accessible GPS data generated by mobile 
devices is key to developing new mapping patterns. 
However, automated roadmap generation presents a 
challenge due to the low sampling rate and the issue 
of multi-level disparity, which means that the maps 
created have not yet met commercial standards (Chen 
et al., 2021). 

Manually drawing over imagery is a standard 
practice used by some researchers. However, it 
demands significant time and resources. Deep learning 
technology presents new opportunities for extracting 
road networks from satellite imagery. Nonetheless, 
recent segmentation methods based on CNN face 
serious challenges regarding road connectivity. Road 
tracing techniques that rely on a single starting point 
often encounter problems, as certain areas may not be 
accurately identified (Wei et al., 2019).

Wei et al. (2019) conduct their research in 
two stages. The first step involves determining the 
starting point, which is divided into two parts: road 
segmentation and starting point detection. During 
this process, the Fully Convolutional Network (FCN) 
algorithm is utilized. The second stage focuses on 
searching for paths from multiple starting points 
using the CNN algorithm. According to the research's 
findings, starting points located at crossroads can 
lead to a slight increase in RoadTracer's performance 
(using a single starting point), with an improvement of 
approximately 0.2% in Intersection over Union (IoU). 
This suggests that a starting point that offers multiple 
potential directions can produce slightly better 
outcomes. In comparison, RoadTracer-M (utilizing 
multiple starting points) demonstrates significant 

advancements in road topology searches, achieving 
improvements of 10.4% and 8.7% in F1-Score and 
IoU, respectively. These improvements represent 
relative gains of 38.6% and 51.1% when compared to 
RoadTracer.

For geographic analysis, such as map inference, 
matching, and traffic detection, GPS data is essential. 
However, one of the main challenges is the limited 
availability of this data, particularly when privacy 
concerns arise. Additionally, the frequency of data 
collection can vary significantly, impacting both the 
quantity and quality of the information obtained. 
This inconsistency in data availability highlights that 
larger, higher-quality datasets are often concentrated 
in specific regions, particularly in developed countries 
such as China and the United States. These regions 
benefit from more advanced infrastructure, which 
enhances data collection and processing capabilities. 
Conversely, in other parts of the world, the availability 
of GPS data is often sparse or inconsistent, making it 
challenging to conduct detailed geographic analyses 
on a larger scale. The differences in data coverage 
across various areas highlight the need for improved 
global data accessibility and infrastructure to support 
more comprehensive geographic studies.

Grab position data is a leading source of 
information availability in Southeast Asia, particularly 
in Singapore and Indonesia. As of April 2019, these 
data sets boasted high accuracy with recording 
intervals of one second. In addition to their large 
volume, the GPS data provide valuable insights, 
including accuracy levels, bearing, and speed, which 
are essential for in-depth transportation analysis. They 
also include information such as the driver's unique ID 
and the types of vehicles and devices used (Android or 
iPhone) (Xu et al., 2020).

The use of location-based services that rely on 
GPS technology involves highly complex algorithms 
for GPS-based map creation, which can require 
substantial storage space. Research has been conducted 
on the application of the Othello Coordinated method, 
with the expectation that it can optimize the challenges 
associated with significant raster map storage and 
computational performance. In a recent experiment, 
the prediction accuracy reached an impressive 99.86% 
(J. Zhang et al., 2021).

This research aims to compare the accuracy 
of the U-Net architecture when using Inception-
ResNet-V2 as the encoder versus when it is not. The 
U-Net architecture is inherently complex, and this 
modification aims to determine whether using an 
alternative encoder has a significant impact on the 
model's accuracy. Additionally, this research aims to 
demonstrate how GPS data can be utilized as labels 
to enhance the efficiency of the process, thereby 
eliminating the need for manual interpretation during 
the labeling phase.

II.	 METHODS

This research presents a six-step realignment 
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method that can be repeated to enhance accuracy and 
precision. The process begins with trimming the GPS 
points and preparing the map for realignment. Next, 
the GPS points are aligned with public road segments. 
Once a GPS point is matched to a road segment, a 
new road segment is generated to best fit that point. 
Using these GPS-adjusted segments, the location of 
the new intersection is identified. Following this, the 
geometric characteristics of the original road segment 
and the rail characteristics obtained from the GPS are 
restored. This method aims to enhance the precision 
of mapping and can be iteratively applied to achieve 
better results. The overall research methodology is 
visually represented in Figure 1, which outlines the 
entire process in a step-by-step manner. This visual aid 

enhances the understanding of how each phase of the 
realignment process is interconnected, highlighting the 
sequential flow of the steps involved in the research.

In this research, two types of data are utilized: 
GPS data and Sentinel-2A satellite imagery. The GPS 
data, obtained from the ride-hailing driver app Grab 
in April 2019, consists of 84,000 paths and a total 
of 88 million data points. These data are collected at 
one-second intervals during driver service deliveries. 
Figure 2 presents an example of the GPS data collected 
in Jakarta, Indonesia. The second dataset consists of 
Sentinel-2A satellite imagery obtained from the United 
States Geological Survey (USGS) Earth Explorer. The 
data are presented in Figure 3 below.

Figure 1 Research Flow
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Data processing is conducted to obtain training 
data for road network segmentation. GPS data is used to 
gather labeled information related to the road network 
traversed by Grab drivers, while Sentinel-2A satellite 
imagery is utilized as the training data. The process 
of integrating these two data sources is illustrated in 
Figure 2 below. To convert the GPS point data into 
raster data suitable for training a satellite image 
segmentation model, the Kernel Density Estimation 
(KDE) method is applied. This method estimates the 
density distribution of the GPS points. The process 
begins with collecting GPS data from Grab drivers, 
which includes location points where vehicles 
frequently pass. Next, KDE is employed to estimate the 
density of these points by applying probability weights 
around each GPS location, resulting in a continuous 
representation of traffic intensity. The outcome of this 
estimation is then rasterized into a pixel grid, which 

reflects the density of vehicle movement in a specific 
area. Finally, this rasterized data is transformed into 
road labels, serving as the ground truth for training the 
segmentation model.

Once the road label data is obtained, the next 
step is to prepare Sentinel-2A satellite imagery as 
training data. The satellite images, which cover the 
same area as the GPS data, are processed using a 
masking technique to ensure that only the relevant parts 
corresponding to the roads are utilized. Next, both the 
satellite imagery and the road labels, in raster format, 
are divided into 256 x 256 pixel tiles to facilitate the 
model training process. With these paired satellite 
images and road labels, the segmentation model can 
be trained to recognize and map road networks from 
the satellite imagery automatically. This model can 
later be applied for various mapping and navigation 
purposes.

Figure 2 GPS Data from Ride-Hailing Driver Ping

Figure 3 Sentinel 2A Satellite Imagery (RGB)
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In the segmentation process, annotation or 
label data is necessary to train the model. These 
labels should accurately identify road pixels within 
the images. There are various methods for creating 
labels for road segmentation, with the most common 
approach being manual interpretation and digitization, 
which involves drawing directly on the imagery.

The method used in this research utilizes GPS 
data as the labeling method. The purpose of using 
GPS data is to ensure high accuracy, as it serves as 
ground truth for the road network, collected from the 
activities of ride-hailing drivers. By combining GPS 
data with satellite imagery, a high-precision model 
can be created, as GPS data enables the generation of 
detailed road maps, illustrated in Figure 4 above.

Figure 4 The Processing Flow of Data 
to Create the Label for the Training

KDE is a non-parametric method for estimating 
a density function. This approach is also used in 
non-parametric regression to estimate the regression 
function (RF). However, the choice of bandwidth 
plays a significant role in determining the regression 
outcomes. Research shows that very small or huge 
bandwidths lead to similar and constant estimations, 
respectively (Wang et al., 2022).

This research utilizes the KDE algorithm to 
generate a road network based on GPS ping density. 
The algorithm considers transportation activities 
and pathway patterns in the specified locations. It 
is represented by the following formula in Equation 
(1), where K = the kernel, h > 0 = the bandwidth for 
smoothing parameters, n = the number of data points, 
and h = the bandwidth (Kamalov, 2020). The KDE 
algorithm is commonly used for analyzing line or 

point data. However, this research focuses specifically 
on the use of point data. As a result, the conversion 
process generated a raster map that highlights density 
information, prioritizing the depiction of the road 
network pattern, as illustrated in Figure 5 below.

 			      (1)

Figure 5 Kernel Density Generated by KDE

U-Net is an artificial neural network architecture 
designed explicitly for image segmentation 
tasks, which aim to distinguish objects from their 
background. This research employs the U-Net 
architecture due to its tailored design for image 
segmentation, which is expected to yield accurate 
and precise results. The U-Net architecture features a 
symmetrical structure composed of an encoder and a 
decoder, enhancing its effectiveness for segmentation 
tasks. The convolutional processes applied to relevant 
pixels significantly improve the performance of U-Net 
compared to other CNN architectures (Tuli et al., 
2021). Figure 6 below illustrates the positions of the 
encoder and decoder within the U-Net architecture.

This research aims to compare the results 
produced by different encoders, as illustrated in Figure 
6. The first encoder used is the original encoder from the 
U-Net architecture, which is compared to the second 
encoder derived from Inception-ResNet-V2. The 
encoder plays a crucial role in the U-Net architecture, 
as it is responsible for the recognition phase of the 
segmentation process. This phase converts the input 
into a feature-based representation based on the pixel 
values of the input (Ramba, 2020).

Inception-ResNet-V2 is an architecture 
developed by Google in 2016 that integrates two 
well-known frameworks: Inception and ResNet. The 
objective of using this architecture in the encoder 
phase is to capitalize on the strengths of Inception-
ResNet-V2 for feature recognition while preserving 
U-Net's capabilities for accurate segmentation. The 
design of Inception-ResNet-V2 employs Inception-
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ResNet blocks, which combine various components 
using skip connection networks. These skip 
connections between convolutional blocks are vital 
as they carry critical features that may be lost during 
the Max Pooling process, thereby helping to mitigate 
the vanishing gradient problem. The application 
of Inception-ResNet-V2 in the decoder phase is 
illustrated in Figure 7 below.

In Figure 7, the Inception-ResNet-V2 model 
plays a pivotal role by transmitting essential features to 
the subsequent convolutional block, even after certain 
aspects of the features have already been passed 
forward through the Max Pooling process. This dual 
transmission mechanism ensures that critical feature 

representations are preserved, thereby improving both 
the accuracy and completeness of the segmentation 
task. Nevertheless, the added computational layers 
increase model complexity, which may lead to slower 
processing speeds compared to the original U-Net 
model.

The first step in training the data is to 
create a dataset that includes both images and 
their corresponding labels. In this research, the 
training dataset comprises 2,240 images and their 
corresponding labels. The size of each image in the 
training data is 256x256 pixels, which is neither too 
large nor too small. This size maintains an appropriate 
aspect ratio of approximately 1:1, ensuring that the 

Figure 6 U-Net Architecture

Figure 7 Inception-ResNet-V2 As U-Net Encoder
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images retain their proportions without distortion. 
Figures 8 and 9 below showcase the sample dataset 
and the associated data labels used in this research.

Figure 8 Satellite Imagery Data for Training

Figure 9 Satellite Imagery Data and the Label

Figure 9 shows that the road is clearly visible in 
the satellite imagery, and the GPS data aligns closely 
with the road pattern depicted in the imagery. The 
segmentation training will utilize the imagery data, 
with GPS data serving as the labels. In this research, 
the training data is composed of 80% for training and 
20% for validation. Table 1 below presents the details 
of the training data composition.

Table 1 Table Data Training Compositions

Type % Total
Training 80 1,792

Validation 20 448

The proper composition of training and 
validation in deep learning is essential for minimizing 
the risks of overfitting and underfitting, as well as 
for objectively evaluating the model's performance. 
As previously explained, the training will utilize two 
different encoders: the original U-Net encoder and the 
Inception-ResNet-V2 encoder. Both the U-Net with 
the original encoder and the Inception-ResNet-V2 
encoder will be trained using the same datasets. The 
steps involved in the training and model development 
are illustrated in Figure 10 below.

Figure 10 Training and Model Development

Once training and model development are 
complete, the next step is to evaluate the model using 
the validation datasets. This evaluation employs 
the Dice Loss method and a confusion matrix. The 
Dice Loss is a metric used to measure the overlap 
between two datasets; in this context, it compares the 
segmentation results to the labels. The Dice coefficient, 
also referred to as the F1-score, combines precision 
and recall into a single metric to reduce discrepancies 
between the prediction results and the ground truth 
(i.e., the label) during the segmentation process (Zhao 
et al., 2020). The Equation (2) below presents the 
formula for calculating Dice Loss.

 		     (2)

The other method used to evaluate the model 
is the confusion matrix, which illustrates the model's 
accuracy in segmenting the provided image. A 
confusion matrix consists of four main components: 
True Positive (TP), which represents the number of 
instances the model correctly predicts as positive; 
True Negative (TN), which represents the number of 
instances the model correctly predicts as negative; 
False Positive (FP), which refers to the instances 
the model incorrectly predicts as positive; and False 
Negative (FN), which refers to the instances the model 
incorrectly predicts as negative (Pommé et al., 2022). 
Equation (3) shows the formula for calculating the 
model's accuracy using the confusion matrix. Figure 
11 illustrates the concept of the confusion matrix.
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 		     (3)

Figure 11 Confusion Matrix Concept

Dice Loss and the Confusion Matrix are vital 
tools for evaluating segmentation models, each 
offering unique advantages. Dice Loss, which is 
based on the Dice Similarity Coefficient (DSC), is 
particularly effective in addressing the class imbalances 
commonly encountered in segmentation tasks. Unlike 
traditional loss functions, such as Cross-Entropy 
Loss, which the prevalence of background pixels can 
skew, Dice Loss focuses directly on optimizing the 
spatial overlap between predicted and ground-truth 
masks. This approach ensures that the model learns 
to maximize alignment with actual segmentations, 
resulting in more accurate predictions, particularly for 
small or underrepresented regions. Moreover, Dice 
Loss provides a smooth gradient flow, contributing 
to improved model convergence and stability during 
training.

The Confusion Matrix provides a detailed 
breakdown of segmentation performance by 
categorizing predictions into True Positives, False 
Positives, False Negatives, and True Negatives. This 
breakdown facilitates a deeper understanding of model 
errors and enables the calculation of key metrics, 
including Precision, Recall, F1-score, and Intersection 
over Union (IoU). By analyzing the Confusion 
Matrix, practitioners can pinpoint specific areas 
where the model struggles, such as false detections 
or missed segmentations, and make the necessary 
improvements. Combining Dice Loss during training 
with the Confusion Matrix for evaluation offers a 
comprehensive approach to optimizing segmentation 
models, ensuring both accuracy and interpretability.

III.	 RESULTS AND DISCUSSIONS

The model training is conducted over 100 
epochs for each method. The original U-Net encoder 
completed all 100 epochs, while the U-Net using 
Inception-ResNet-V2 stopped training at the 85th 
epoch. This early stopping occurred because the 
accuracy stabilized between epochs 80 and 85. The 
segmentation results are presented in Figures 12 and 

13 below, showcasing the U-Net with the original 
encoder and the U-Net with the Inception-ResNet-V2 
encoder, respectively. The figures illustrate that the 
Inception-ResNet-V2 encoder effectively segments 
the road and achieves a lower Dice Loss compared to 
the original U-Net encoder.

Figure 12 Segmentation Result of Classic U-Net

Figure 13 Segmentation Result of U-Net 
with Inception-ResNet Encoder

The images above compare the segmentation 
results of the Classic U-Net model (see Figure 12) 
with those of the U-Net model that uses an Inception-
ResNet Encoder (see Figure 13). In Figure 12, the 
segmentation results from the Classic U-Net reveal 
some inaccuracies, particularly in detecting thinner 
or more complex road structures. Certain areas of the 
segmented map appear incomplete or exhibit noise 
around the edges of the roads. This indicates that the 
Classic U-Net may struggle to capture smaller and 
more intricate road features in satellite imagery.

In contrast, Figure 13, which employs the U-Net 
architecture with an Inception-ResNet encoder, shows 
significantly improved and more precise segmentation 
results in detecting road structures. This model proves 
to be more effective in capturing intricate details, 
especially when identifying minor roads that the 
Classic U-Net previously missed. The Inception-
ResNet encoder likely enhances the model's ability 
to accurately recognize patterns, thereby reducing 
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segmentation errors in complex areas. Overall, 
utilizing an advanced encoder like Inception-ResNet 
leads to more precise and sharper results in detecting 
roads from satellite images.

To assess the accuracy of the segmentation, 
the researcher used the Dice coefficient, commonly 
referred to as the Dice similarity coefficient or 
Dice Loss. This metric is frequently employed in 
segmentation tasks, particularly in medical image 
segmentation and satellite image processing. The 
Dice Loss measures the overlap between the predicted 
segmentation masks and the ground-truth masks. 
Figure 14 presents a comparison graph of the Dice 
Loss, illustrating the performance differences between 
the Classic U-Net and the U-Net that incorporates an 
Inception-ResNet Encoder over 100 epochs.

Figure 14 Dice Loss Comparison between Two Models

In Figure 14 above, it is evident that the Dice 
Loss generated by the CNN U-Net algorithm using 
the Inception-ResNet-V2 encoder is better (i.e., 
lower) than that of the pure U-Net encoder. Initially, 
the Dice Loss for the Inception-ResNet-V2 appears 
higher, which can be attributed to the complexity of 
its architecture in recognizing objects at the start of 
the experiment. The key difference between these 
two methods lies in their speed and performance. 
The Inception-ResNet-V2 model, due to its more 
sophisticated architecture, requires more training time 
compared to the original U-Net encoder. As shown in 
Figures 15 and 16 below, the Inception-ResNet-V2 
encoder took eight seconds longer to train than the 
U-Net encoder. This additional time is due to the 
increased computational demands of the Inception-
ResNet-V2 architecture.

Figure 15 Computation Time on Each Epoch

In contrast, the original U-Net encoder operates 
more efficiently because its simpler architecture 
shortens the training time. Despite the difference in 
efficiency, both models are effective in their respective 
roles. However, it is essential to consider the trade-
off between speed and complexity when selecting the 
appropriate model for a specific task.

Figure 15 illustrates the computation time per 
epoch for both the U-Net model and the Inception-
ResNet-V2-based U-Net model. At the beginning 
of the training process, both models exhibit high 
computation times, with U-Net showing slightly more 
fluctuations. As training progresses, computation time 
stabilizes significantly, and both models demonstrate 
similar patterns. However, the Inception-ResNet-
V2-based U-Net generally maintains a lower and 
more stable computation time across most epochs. 
This indicates that, although both models have high 
initial processing overhead, the Inception-ResNet-V2 
architecture may offer better computational efficiency 
as training continues.

Figure 16 Average Speed Comparison

Figure 16 compares the average computation 
speed of the two models. The results reveal that the 
Inception-ResNet-V2-based U-Net has a slightly 
higher average speed of 19.37 compared to the 
Classic U-Net, which has an average speed of 19.26. 
Although the difference is marginal, it suggests that 
the Inception-ResNet-V2-based U-Net does not 
significantly increase processing time despite its more 
complex architecture. This trade-off between improved 
segmentation accuracy, as shown in previous figures, 
and a slight increase in computational speed makes the 
Inception-ResNet-V2 model a more efficient choice for 
tasks that require both high accuracy and reasonable 
processing time. In Table 2 below, a comparison of 
the two methods shows that, on average, the encoder 
modification using Inception-ResNet-V2 achieves 
better accuracy than the original encoder.

The accuracy comparison shown in Table 2 
illustrates the performance differences between the 
Classic U-Net and the U-Net model based on Inception-
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ResNet-V2. The Inception-ResNet-V2 model 
consistently outperforms the Classic U-Net across all 
key metrics, including accuracy, precision, recall, and 
F1 score. Specifically, the Inception-ResNet-V2 model 
achieves an accuracy of 91.31%, which is slightly 
higher than the 90.7% attained by the Classic U-Net. 
The improvements in precision, recall, and F1 score 
further indicate that the Inception-ResNet-V2 model is 
more effective at correctly identifying and segmenting 
target areas while minimizing false positives and false 
negatives.

Table 2 Accuracy Comparison

Type U-Net Inception-
ResNet-V2

Accuracies 90.7% 91,31%
Precission 90.72% 91.4%

Recall 90.78% 91.2%
F1 score 90.75% 91.4%

The enhancements observed in the Inception-
ResNet-V2-based U-Net can be attributed to its 
advanced architecture, which improves feature 
extraction and pattern recognition (Wang et al., 2023). 
The higher precision of 91.4% suggests that the model 
is more effective at avoiding misclassifications, while 
the higher recall of 91.2% indicates that it detects 
actual target areas more accurately. Moreover, the 
increased F1 score of 91.4% confirms that the model 
maintains a strong balance between precision and 
recall. These results suggest that integrating Inception-
ResNet-V2 as an encoder within the U-Net structure 
enhances overall segmentation performance without 
significantly increasing computational complexity, 
making it a preferable choice for high-accuracy 
segmentation tasks.

Table 3 Accuracy Comparison with Other Research

Research Accuracies Model

This Research 91,31% Inception-
ResNet-V2

This Research 90.7% U-Net
(P. Zhang et al., 2022) 87% U-Net

(Baek et al., 2024) 87.8% DeepLabV3+
(Baek et al., 2024) 90.5% U-NET
(Baek et al., 2024) 93% SIU-NET
(Wang et al., 2023) 86.28% U-NET
(Wang et al., 2023) 89.2% PSP-Net
(Wang et al., 2023) 84.3% DeepLabV3+
(Wang et al., 2023) 92.19% TransU-Net

Table 3 provides a comparative analysis 
of segmentation model accuracies across various 
research studies. This research achieved an accuracy of 
91.31% using the Inception-ResNet-V2 architecture, 
demonstrating its superior performance compared to 
other models. Additionally, this research tested the 
U-Net model, achieving an accuracy of 90.7%, which 
remains competitive with existing research. Among 
other studies, the accuracy of U-Net varies: P. Zhang 
et al. (2022) reported an accuracy of 87%, while Baek 
et al. (2024) achieved 90.5% using the same model. 
DeepLabV3+, another widely used model, recorded 
accuracies of 87.8% (Baek et al., 2024) and 84.3% 
(Wang et al., 2023), indicating its effectiveness, 
although it performed slightly lower than Inception-
ResNet-V2 in this research.

The table also includes results for SIU-NET, PSP-
Net, and TransU-Net, showcasing their competitive 
accuracies. SIU-NET achieved the highest score 
among these, with 93% (Baek et al., 2024), slightly 
outperforming the models presented in this research. 
TransU-Net (Wang et al., 2023) also demonstrated 
strong performance at 92.19%, surpassing the U-Net-
based models listed in the table. In contrast, PSP-
Net, tested by Wang et al. (2023), achieved a success 
rate of 89.2%, indicating moderate performance. 
The variation in accuracies across studies highlights 
the influence of different architectures, datasets, 
and training strategies, with Inception-ResNet-V2 
emerging as a strong contender for achieving high 
segmentation accuracy in this research.

IV.	 CONCLUSIONS

This research involved a segmentation 
process utilizing two different encoders within the 
U-Net architecture, which is specifically tailored for 
segmentation tasks. The purpose of employing these 
two encoders is to compare their performance and 
accuracy in detecting road networks using medium-
resolution satellite imagery. Based on the experiments 
conducted for this research, the accuracies of the 
U-Net original encoder and the Inception-ResNet-V2 
encoder are nearly identical. The Inception-ResNet-V2 
encoder achieves a higher accuracy of 91%, while the 
U-Net original encoder has an accuracy of 90.7%. 
Additionally, the Dice Loss for both encoders is 
minimal, with only 5% for the Inception-ResNet-V2 
and 8% for the original U-Net encoder. This is evident 
in the U-Net architecture, where either encoder 
effectively performs segmentation of the road network 
using GPS data as the labeling source. The utilization 
of GPS data is also beneficial, as it helps visualize the 
road network pattern and aids in recognizing the road 
network with medium-resolution imagery.

The limitation of this research is that it used 
only 100 epochs, which may not allow the algorithm 
to achieve its full potential accuracy. Some methods 
might perform better with more epochs, as their 
performance can stabilize with a higher number of 
iterations. Conducting further experiments with an 
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unlimited number of epochs would be beneficial, as it 
would enable the algorithm to converge and stabilize 
fully. This approach would enable a fairer comparison 
between algorithms, allowing us to determine when 
both methods reach stability and potentially uncover 
performance differences that are currently hidden due 
to the limited number of epochs.

Further research is needed to improve the 
applicability and accuracy of this study. One important 
area that is not addressed is the measurement of the 
total road length in kilometers that can be extracted. 
Current studies should focus on comparing the 
extraction results from the two methods to fill this 
gap. By conducting this comparison, researchers can 
determine the total road length extracted by each 
method and evaluate the completeness ratio. This 
provides a clearer understanding of the strengths 
and weaknesses of each technique, leading to more 
reliable conclusions about their effectiveness. A more 
comprehensive analysis also enables this research to 
be applied to a broader range of fields, including urban 
planning and transportation management.
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