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Abstract - Missing values or incomplete data 
are frequently encountered in medical records. These 
issues will be a serious problem if the data must be 
provided completely for analysis. The research aimed 
to prove the performance of the Fuzzy Subtractive 
Clustering (FSC) and Fuzzy C-Means (FCM) methods 
for solving imputation problems. Both methods were 
implemented using medical data. It had been conducted 
using K-Means as a crisp clustering approach for 
imputation. In the research, fuzzy clustering—a 
distinct methodology—was applied. The primary 
research contribution was the suggested fuzzy logic 
imputation method, which took uncertainty under 
consideration. The data sample consisted of patients 
who were at least 40 years old and had a history of 
hypertension, diabetes, heart disease, stroke, or 
chronic kidney disease. The test was carried out 
by taking random portions of data from the entire 
medical record. The randomization technique used a 
probability of 10%–50%. The results of the ANOVA 
test show that the p-value is greater than ∝(=0.05). 
It means that the imputed value does not differ from 
the original value, whether implemented in the FSC 
or FCM method. The algorithm’s performance is 
evaluated using the Pearson correlation coefficient. 
According to the t-test results, the FCM method has a 
higher correlation coefficient than the FSC method. It 
implies that FCM is superior to FSC.

Keywords: Fuzzy C-Means (FCM), Fuzzy Subtractive 
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I. INTRODUCTION

Missing data in medical records are very 
probable because there are occasions when patients’ 
observations are not performed routinely or updated 
accurately (Nancy et al., 2017). When the value of 
a desired variable is not measured or recorded for 
all subjects in the sample, it is referred to as missing 
data (Austin et al., 2020). Clinical research is fraught 
with missing data. Suppose people want to know 
someone’s hemoglobin, triglyceride, High Density 
Lipoprotein (HDL), Low Density Lipoprotein (LDL), 
total cholesterol, blood sugar, creatinine, and other 
clinical data. In medical data, some attribute values 
are not always accessible. The root cause of the issue 
often lies in the existence of some missing medical 
data. Ignoring missing data has the potential to produce 
bias in parameter estimations when full data analysis 
is performed on all data attributes, such as in the case 
of predicting metabolic syndrome (Kusumadewi et al., 
2020, 2022a, 2022b). The small number of samples 
also exacerbates this issue (Blazek et al., 2021; 
Nishanth & Ravi, 2016).

Missing data can be classified into three 
categories: 1) missing values do not have a relationship 
or are independent of other data sets; 2) the missing 
value depends on another variable, but the value can 
be obtained by estimating the other complete variable; 
and 3) missing values depend on other missing values. 
Therefore, missing values cannot be estimated from 
existing data (Kumaran et al., 2019). The traditional 
approaches for missing data are deleting data points 
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with missing values during the pre-processing phase 
or estimating the missing values using the mean or 
zero values (Afghari et al., 2019). However, the first 
approach has consequences for data loss. It can be 
problematic if there is a significant amount of missing 
data, and it is extremely difficult to complete the data 
because the data cannot be retrieved simultaneously.

Solving the imputation problem in the 
traditional method has been studied using the mean 
method (Ferrer et al., 2021; Luo & Paal, 2021; Pandey 
et al., 2021), linear interpolation (Nobach, 2019; Yang 
& Hu, 2018), and regression (Crambes & Henchiri, 
2019; Roeling & Nicholls, 2020). The disadvantage 
of traditional methods is that they are deterministic, 
so they are not suitable for solving problems that 
contain uncertainty. Currently, there are several 
algorithms that are able to handle the problem of 
uncertainty, imprecision, and partial truth, known 
as soft computing. Fuzzy systems, neural networks, 
evolutionary computing, probabilistic reasoning, and 
swarm intelligence are part of soft computing.

Research on imputation using soft computing 
has been carried out by several researchers. The results 
of all the studies indicate that the soft computing 
method is capable of imputing well. Fuzzy logic is 
used for imputation by Khan et al. (2021) and Sefidian 
and Daneshpour (2019). However, the number of 
clusters cannot be obtained optimally. Then, neural 
network imputation is used by Choudhury and Pal 
(2019), Gautam and Ravi (2015), and Verpoort et al. 
(2018). Meanwhile, the example of swarm intelligence 
for imputation is Nekouie and Moattar (2019). 
Evolutionary computation is used for imputation in 
Gautam and Ravi (2015).

Imputation using the nearest neighbor idea has 
been shown to be particularly effective in dealing 
with missing data. When handling missing values, 
some imputation methods are applicable (Audigier 
et al., 2018). Multiple imputation has been proven 
to be an effective method for dealing with missing 
data and imputation ambiguity. Compared to existing 
methods, sequential imputation using weighted nearest 
neighbors may be successfully applied to various data 
circumstances and is close to the best (Faisal & Tutz, 
2021). The imputation process is also implemented on 
medical data (stroke dataset). The previous researchers 
use k-Nearest Neighbors (k-NN) and compare it with 
J48, Multilayer Perceptron (MLP), Random Forest 
(RF), and Support Vector Machine (SVM) methods. 
The results show that k-NN has the best accuracy 
(Cheng et al., 2020).

The research aims to implement Fuzzy clustering 
as a method for imputation. The implementation 
of clustering is intended to group data points with 
similar characteristics, so imputation is expected to 
focus more on a similar group. The research presents 
three primary contributions: 1) provide an innovative 
approach to imputation challenges, particularly with 
regard to medical data;  2) use Fuzzy logic in the 
proposed framework to adjust for uncertainty; and 3) 
apply the cluster approach to imputation to preserve 

the characteristics of the data properly. Two methods 
are used: Fuzzy Subtractive Clustering (FSC) and 
Fuzzy C-Means (FCM). According to Khan et al. 
(2021) and Sefidian and Daneshpour (2019), FCM 
is a dependable method for imputation. On the other 
hand, FSC is utilized to determine the ideal number 
of clusters.  Imputation is performed on medical 
record data for patients with a history of hypertension, 
diabetes mellitus, cardiovascular disease, stroke, or 
chronic kidney disease. These two methods will be 
compared to choose the best method to determine 
which is the best method for dealing with missing data 
in medical records.

II. METHODS

The research is carried out in several stages, 
as shown in Figure 1. Research begins with data 
collection. A total of 104 medical records are used 
in the research. Data are gathered from a number of 
hospitals in the Daerah Istimewa Yogyakarta (DIY) 
Province. The studied patients are at least 40 years 
old. The age requirements are chosen according to 
the beginning stages of metabolic syndrome risk. 
There are 61 complete data points in the 104 medical 
record data points used as reference data (X). The 
remaining 43 data points with missing values are 
used as evaluation data (Y’). Age, HDL, LDL, 
triglycerides, total cholesterol, fasting blood sugar, 
systolic blood pressure, and diastolic blood pressure 
are the variables/dimensions/attributes used. The data 
types for the eight variables are numeric. A history of 
hypertension, diabetes, stroke, cardiovascular disease, 
and chronic kidney disease is also regarded. The five 
variables have a Boolean data type, which means they 
are true (1) if the patient has a related history and false 
(0) if they do not.

However, not all of the data from the samples 
will be clustered. The clustering data is chosen from 
a sample of data with complete values and no missing 
values. This particular data collection is also referred 
to as the reference data (X). If n* reference data are 
obtained, n–n* data must be calculated to fill in the 
missing value. The term “evaluation data” refers to 
this incomplete dataset.

To obtain cluster center, both FSC and FCM are 
implemented on X. Let X be an (n x m) matrix, where 
n is the number of data points and m is the number of 
data dimensions. Data must be normalized first before 
the clustering process begins. For each dimension, the 
normalization method requires a lower bound (xmin) 
and an upper bound (xmax). Equation (1) can be used 
to calculate normalization for data points on the j-th 
dimension (xj).

.        (1)

Algorithm 1 shows the clustering procedure 
using the FSC technique. The clustering process starts 
by calculating the density value of each data point. The 
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density of xi (Di) can be calculated using equitation 
by Yang et al. (2021). Equation (2) has ||xt–xi|| as the 
distance between xi and r (neighborhood radius) as a 
positive constant that shows how much the influence 
of the cluster center is on each variable. Then, 
according to Nancy et al. (2017), r can be calculated 
using Equation (3).

,      (2)

.      (3)

If a data point has a lot of close neighbors, it 
will have a lot of density. The data with the greatest 
density will be chosen as the center of the cluster. The 
input data with the biggest density value is denoted as 
xti, and its density value is denoted as Dti. Next, xti is 
the first cluster (C1), and the density of the surrounding 
data will be reduced. In Equation (4), rb is a positive 
value that has the effect of reducing the data density in 
a cluster. Generally, rb is greater than r. It is calculated 
as (q)(r), where q is the squash factor in the range 1.2–
1.5. It means that the close data to the cluster center 
will decrease in density very much. As a result, it will 
be impossible for the data to become the center of the 
next cluster.

.     (4)

After the data density has been revised, the 
second cluster center (C2) will be searched. After C2 
is obtained, the density of each data will be revised 
again, and so on. The researchers can use two fractions 
as a comparison factor: accept and reject ratios. Both 
accept and reject ratios are fractional numbers with 
values from 0 to 1. The accept ratio is the lower 
limit of a candidate cluster center being allowed to 
become a cluster center. Meanwhile, the reject ratio 
is the top limit for a prospective cluster center that 
cannot become a cluster center. If a data point with 
the highest potential (e.g., xk with potential or density 
Dk) has been identified in an iteration, the iteration will 
be continued by finding the ratio of the potential data 
point with the highest potential of a data point at the 
start of the iteration (e.g., xh with potential Dh). The 
proportion is computed using .  

Three conditions can occur in an iteration. First, 
if the ratio is > accept ratio, xk will be accepted as the 
center of the new cluster. Second, if the reject ratio is 
< ratio ≤ accept ratio, xk will be accepted as the center 
of the new cluster only if the data has a long distance 
enough from the other cluster centers. Otherwise, the 
data point will not be accepted as the center of the 
cluster and will no longer be considered the center of 
the new cluster (its potential is set to zero). Third, if 
the ratio is ≤ reject ratio, there are no more data points 
to be considered as candidates for the cluster center, 
and the iteration is stopped.

After the clustering process is complete, 

Figure 1 Research Stages
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the cluster center will be obtained in a normalized 
condition. However, the cluster center needs to be 
denormalized first before proceeding to the following 
process. The denormalization for the k-th cluster 
center on the j-th variable is calculated by Equation 
(5). Next, the range of influence of cluster centers for 
each data dimension or variable (σ) can be calculated 
using Equation (6). It shows σj as range of influence of 
cluster centers for j-th dimension.

,     (5)

.       (6)

Algorithm 1: FSC Algorithm

Input: data set (X), neighborhood radius (r), squash factor (q), 

Output: cluster center (C), range of influence cluster centers for 
each data dimension ().

1: Normalize X so the data points are between (0 and 1) or (-1 
to 1).

2: Calculate the density of each data point based on Equation 
(2). 

3: Choose a data point with the most potential to be the first 
cluster center (xc1).

4: Improve the density of remaining data points around cluster 
center (xc1) based on Equation (4). 

5: Choose the remaining data point with the highest potential 
as the next cluster center (xc2). To decide whether data are 
accepted as a new cluster center, use the ratio, accept ratio, 
and reject ratio.

6: Repeat steps 4 and 5 until all data are within the cluster 
center influence range.

7: Denormalize the cluster center and calculate  based on 
Equations (5) and (6).

In the FCM data clustering method, the 
membership value indicates whether a particular point 
of data exists in a cluster. FCM is a semi-supervised 
clustering algorithm. It is necessary to first determine 
the number of clusters to determine the optimal 
number of clusters. The Average Silhouette Width 
(ASW) is a popular cluster validation index used for 
estimating the number of clusters (Batool & Hennig, 
2021), as well as Condensed Silhouette (Naghizadeh 
& Metaxas, 2020). It is not examined specifically in 
the research how many clusters there are. The primary 
idea behind FCM is to find the cluster center, which 
will be used to compute the average location of each 
cluster. The cluster center is still not precise in the 
initial situation. A membership value for each cluster 
is assigned to each data point. It will be seen that the 
cluster center will shift to the correct location if the 
cluster center and the membership value of each data 
point are improved repeatedly. This iteration is based 
on minimizing the objective function that defines the 

distance between a particular data point and the cluster 
center, weighted by the data point’s membership value.

Algorithm 2 shows the clustering procedure 
using the FCM technique. Suppose X is an (n × m) 
matrix, with n representing the number of data points 
to cluster and m representing the number of variables. 
The data will be divided into N groups. The FCM 
technique starts by creating an (n × N) matrix (U) 
containing random numbers. The membership value 
of a data point in a cluster is stored in the partition 
matrix (U). The elements of each matrix U (μik) are 
calculated using Equation (7). Next, the researchers 
repair the cluster center (C) with Equation (8). Next, 
the objective value is calculated in the first iteration 
(t=1) with Equation (9). Last, the U matrix is repaired 
based on the new cluster center with Equation (10). 
In general, w is any positive number. In this case, the 
researchers set w = 2.

,         (7)

,       (8)

    (9)

      (10)

Algorithm 2: FCM Algorithm

Input: data set (X), number of clusters (N), threshold (ξ), 
maximum iteration (MaxIter),

Output: cluster center (xc), partition matrix (U), objective value 
(P).

1: Create an n x N partition matrix (U) based on random 
numbers. 

2: Calculate the membership value for each data point in each 
cluster with Equation (7).

3: Calculate the cluster center with Equation (8).

4: Improve partition matrix U with Equation (10).

5: Calculate the objective value (P) with Equation (9).

6: Check if (P < ξ) or (iteration > MaxIter). If that is true, stop 
iterating. Otherwise, go to step 3.

After the clustering process, the cluster center 
generated by FSC is named C1, and the cluster center 
generated by FCM is named C2. The software Matlab 
carries out the clustering process. Next, the researchers 
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build a set of test data (Y) and evaluation data (Y’). 
The testing dataset consists of a reference dataset 
from which some data have been randomly removed. 
The reference data, which contain some missing data, 
will be used to assess the model’s performance. The 
following percentages of the data are chosen at random 
(p): 10%, 20%, 30%, 40%, and 50%. The process 
begins with creating a set of (n x m) random numbers, 
where m denotes the number of variables and n is the 
number of reference data. A random number denotes 
the possibility that a reference data point has been left 
out. The random number less than p is the value that 
needs to be eliminated.

Algorithm 3 illustrates this imputation 
procedure. The imputation process begins by 
determining a reference data set (X). X comes from a 
sample data set (P) that has complete values for each 
variable. Meanwhile, the researchers use incomplete 
samples, also known as missing data, as test data 
(Y’). Next, the researchers apply the FSC algorithm 
to X to determine the cluster center (C1). Similarly, 
the researchers apply the FCM algorithm to X to 
obtain the cluster center (C2). Next, the researchers 
find the cluster where the testing data is located (Y). 
Calculating the distance between each data point and 
the cluster center is to find a suitable cluster. The data 
point is located in the cluster with the shortest cluster 
center distance from the data point. The distance is 
calculated using the Euclidean distance formula in 
Equation (11). It shows dk as distance of Y to k-th 
cluster center (Ck), Ckj as value of k-th cluster center 
on j-th variable,  yj as value of data evaluated on j-th 
variable, and m* as number of variables or dimensions 
of cluster center minus 1.

     (11)

The cluster center is used to complete the 
missing data in the data set after obtaining the relevant 
cluster. Thus, the data set’s missing values can be filled 
in. The researchers label Y for this data set.

The analysis of variance is used to see if the 
means of two or more groups differ significantly. An 
ANOVA test with the same subject is used to see if 
there is a significant difference between the mean of 
the original data and the estimation findings using FSC 
and FCM. It selects the most appropriate algorithm. 
The Pearson correlation coefficient is calculated 
using the t-test. The optimal algorithm between FSC 
and FCM is chosen using this Pearson correlation 
coefficient. This correlation coefficient illustrates the 
statistical relationship that exists between the original 
and estimated values. A better algorithm is one with a 
higher Pearson correlation coefficient. 

Next, the researchers can find the cluster where 
the data evaluated (Y’) are located. Finding a suitable 
cluster by calculating the distance of the data point 
to each cluster center is obtained from the selected 
algorithm using Equation (11). Finally, the missing 

data can be filled in. The closest distance from each 
cluster center can be used to compute the imputation 
on the evaluation data. The value for missing data will 
be the cluster center value.

Algorithm 3: Imputation Algorithm

Input: sample data set (P), data evaluated (Y’)

Output: 

1: Define a reference data set (X), i.e., a sample dataset (P) that 
consists of complete values for each variable. Meanwhile, 
incomplete samples (missing data) will serve as testing data 
(Y’).

2: Implement the FSC algorithm on the reference data set (X) 
to obtain cluster center (C1) and the FCM algorithm on the 
reference data set (X) to obtain cluster center (C2).

3: Create a testing data set (Y). This is a reference data set from 
which some data have been randomly removed.

4: Based on Equation (11), determine the cluster of each data 
point in Y. Implementation of the FSC and FCM algorithms 
will lead to each data point becoming a member of a cluster.   

5: Use the ANOVA test with the same subject to determine 
whether there is a significant difference between the mean 
of the original data and the imputed results based on FSC 
and FCM.

6: Implement a t-test to obtain the Pearson correlation 
coefficient to select the best algorithm between FSC and 
FCM.

7: Determine the clusters of the individual data points in the 
set Y’ using Equation (11) and the results from the selected 
algorithm. The cluster center will be the value for missing 
data.

III. RESULTS AND DISCUSSIONS

The researchers use 61 reference data consisting 
of 30 male data and 31 female data. Table 1 (see 
Appendices) shows the profile of the data. In the FSC 
method, the researchers use a squash factor = 2.0, an 
accept ratio = 0.9, and a rejection ratio = 0.025. The 
smaller the acceptance ratio is, the more clusters are 
generated. Similarly, the smaller the reject ratio is, 
the more clusters are generated. Equation (3) shows 
the same range of influence for all variables. The 
researchers need a different influence range for each 
variable. Therefore, by eliminating the maximum 
function, the researchers slightly modify Equation (3) 
so that a unique influence range can be determined for 
each variable. 

Table 1 (see Appendices) shows the influence 
range of each variable. The smaller the influence range 
is, the more clusters are generated. Table 1 also shows 
that the influence range of the related variables is almost 
the same, between 0.4 and 0.5. According to Table 1, 
the influence range of total cholesterol (0.4) has the 
smallest value. It means that, in the total cholesterol 
variable, at least one data point has the closest distance 
to another data point. If no modifications are made to 
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Equation (3), the influence range of all variables is 0.5.
The FSC method generates 23 clusters. 

Table 2 (see Appendices) shows the cluster centers for 
each cluster. When using the FSC method, the cluster 
center is a part of the dataset rather than data obtained 
from arithmetic operations accomplished during the 
clustering process. According to the clustering results, 
there are 9 data points in Cluster 3, 8 in Cluster 2, 7 
in Clusters 1 and 4, 6 in Cluster 5, 2 in Cluster 6, 6 in 
Cluster 7, and 1 point in the last cluster.

The clusters formed as a result of FSC show 
the optimum number of clusters. The researchers will 
base FCM on this number of clusters. Therefore, in 
FCM, the researchers start clustering with 23 clusters 
based on the number of clusters generated by FSC. 
Table 3 (see Appendices) provides the cluster center 
for each cluster. According to the FCM method, the 
cluster center is generated from the average of the 
cluster members, so there must be some adjustments 
to the data format. For the age variable, the researchers 
round the value so that it is an integer. If a decimal 
value is greater than or equal to 0.5, it is rounded up. 
Meanwhile, if it is less than 0.5, it is rounded down. 
Similarly, for chronic kidney disease, diabetes mellitus, 
hypertension, cardiovascular disease, and stroke, a 
score of 1 is assigned if the decimal value is more than 
or equal to 0.5. Then, a score of 0 is assigned if it is less 
than 0.5. According to the clustering results, Cluster 1 
has the greatest number of members—8 data points—
followed by Cluster 8 with 6 data points, Cluster 3 
with 5 data points, Cluster 5, Cluster 10, Cluster 12, 
Cluster 13, Cluster 14 with 4 data points, Cluster 9 
with 3 data points, Cluster 4, Cluster 7, Cluster 20, 
Cluster 21 with 2 data points, and the other Cluster 
with 1 data point.

Figure 2 shows the cluster visualization 
obtained from FCM. The dataset has 13 dimensions, so 
it is impossible to describe them simultaneously. Thus, 
the researchers describe only three visualizations. 

Figure 2a depicts the FCM results on total cholesterol 
and fasting blood sugar. Then, Figure 2b shows a visual 
representation of the FCM results on total cholesterol 
and systolic blood pressure. Figure 2c visualizes the 
FCM results on fasting blood sugar and systolic blood 
pressure. Different colors are used to represent the 23 
clusters. For example the top legend (red) indicates 
that the data points in red are members of Cluster 1.

The test data is obtained using a random process 
of removing certain data points. Randomization 
begins by determining the probability of missing 
values (p), which are 10%, 20%, 30%, 40%, and 50%. 
Only seven variables have missing data: HDL, LDL, 
triglycerides, total cholesterol, fasting blood sugar, 
systolic blood pressure, and diastolic blood pressure. 
Then, the researchers generate a matrix (R) containing 
random numbers (between 0 and 1) with a size of (61 
× 7). If rij < p, the researchers set yij as a missing value.  

In the Y matrix, the missing values will be 
imputed by finding the closest distance from each 
data point to the cluster center. ANOVA analysis is 
performed with the same subject on the original data 
group: the set of imputed results with FSC and the 
set of imputed results with FCM. The researchers test 
whether there is a significant difference between the 
mean of the original data and the imputation results 
using FSC and FCM. Table 4 (see Appendices) shows 
the results of the ANOVA test.

According to Table 4 (see Appendices), all 
p-values for the ANOVA are greater than ∝ (=0.05). 
It means that the imputed value does not differ 
from the original value. Thus, the FSM or FCM can 
be determined to be the best choice. The Pearson 
correlation coefficient of the paired sample t-test can be 
used to determine the best method (Batool & Hennig, 
2021). Table 4 shows the results of the t-test. Table 4 
shows that for all conditions, the Pearson correlation 
coefficient obtained using the FCM method is greater 
than the Pearson correlation coefficient obtained using 

Figure 2 Cluster Visualization Using FCM: (a) Total Cholesterol and Fasting Blood Sugar; (b) Total Cholesterol and 
Systolic Blood Pressure; and (c) Fasting Blood Sugar and Systolic Blood Pressure
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the FSC method. The FCM method shows a higher 
correlation coefficient than the FSC method. Mean 
Square Error (MSE) is another method of measuring 
the performance of FSC and FCM methods. For all 
conditions, the MSE for the FCM method is lower 
than that of the FSC method. 

Incomplete medical record data is used as 
evaluated data (Y’). In this evaluation process, missing 
data is estimated using the FCM method. Table 5 (see 
Appendices) shows the evaluated data (Y’). The “-” 
symbol indicates that data are not available (missing 
values). 

Then, Equation (11) uses the Euclidean formula, 
which takes the shortest distance, to get the correct 
cluster position. Table 6 (see Appendices) shows the 
evaluation results of the incomplete data set in Table 
5 (see Appendices) after the imputation process. It 
also provides the resulting cluster number in the first 
column. For example, there is no FBS data in the first 
column. In this case, the closest cluster is Cluster 12. 
In the first row, FBS is estimated to have a missing 
value of 98 because the center of Cluster 12 for the 
FBS variable is 98.

Cluster centers in FCM are calculated by 
averaging data points that constitute the cluster. It 
means that the cluster center represents the new data 
representing the cluster’s members. It promotes FCM 
as a better method of imputation. Cluster centers in 
FSC are derived from data points with the highest 
potential, so cluster centers do not represent new data.

There are two implications for employing fuzzy 
clustering as an imputation method. First, clustering 
parameters like accept and reject ratios need to be 
set, just like in other soft computing techniques. 
Second, Fuzzy clustering still needs to be improved to 
handle outliers. By hybridizing other soft computing 
components, such as Adaptive Neuro Fuzzy Inference 
System (ANFIS) or Fuzzy genetic algorithms, both of 
these issues can be resolved.

IV. CONCLUSIONS

FSC and FCM are effective imputation 
methods. According to the ANOVA test, both methods 
are capable of handling missing data well. A paired 
sample t-test shows that the FCM method is a better 
imputation method than the FSC. This is supported by 
the FCM's MSE value, which is better than FCS. The 
nearest neighbor concept can be implemented well to 
perform the imputation of the evaluated data. Clusters 
with close neighbors have the shortest distance 
between their centers and the data evaluated.

The research is limited by the haves to justify 
multiple clustering parameters, including the accept/
reject ratios, just like with other soft computing 
techniques. Therefore, to determine the ideal 
parameters, hybridization with alternative techniques 
must be tested. Fuzzy genetic algorithms or the ANFIS 
can be applied in this way.

In the future, the research will be focused on 

predicting complications in patients by analyzing 
HDL, LDL, triglycerides, total cholesterol, fasting 
blood sugar, systolic blood pressure, and systolic 
blood pressure measurements. Hypertension, diabetes 
mellitus, cardiovascular disease, stroke, and chronic 
kidney disease are some of the possible complications. 
Medical records that have been imputation-equipped 
will be used as supporting data for predicting 
complications.
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APPENDICES

Table 1 Lower Bound, Upper Bound, and Influence Range for Each Variable

Variable Lower Bound Upper Bound Influence Range
V1 Age 43 85 0.46
V2 High-Density Lipoprotein (HDL) 22 80 0.49
V3 Low-Density Lipoprotein (LDL) 50 276 0.49
V4 Triglycerides (TG) 35 549 0.41
V5 Total Cholesterol (Chol) 69 388 0.40
V6 Fasting Blood Sugar (FBS) 65 342 0.47
V7 Systolic blood pressure (Sys) 100 210 0.50
V8 Diastolic blood pressure (Dias) 50 120 0.50
V9 Hypertension (Hyp) 0 1 0.50
V10 Diabetes Mellitus (DM) 0 1 0.50
V11 Cardiovascular Disease (CVD) 0 1 0.50
V12 Stroke 0 1 0.50
V13 Chronic Kidney Disease (CKD) 0 1 0.50

Table 2 The Cluster Center on Fuzzy Subtractive Clustering (FSC) Method

Cluster 
Variables

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 60 47.00 93.05 94.77 159.00 125 140 79 1 1 0 0 0
2 59 57.00 155.88 160.90 245.00 98 130 70 1 0 0 0 0
3 72 48.90 112.73 154.00 192.00 186 110 70 0 1 0 0 0
4 53 42.00 136.48 127.60 204.00 85 144 78 0 1 0 0 0
5 66 54.86 140.94 136.00 223.00 90 110 70 0 0 0 1 0
6 73 36.03 66.27 137.00 129.70 123 110 70 1 0 1 0 0
7 66 78.30 123.70 95.14 221.00 102 140 90 0 0 1 0 1
8 75 31.00 97.28 290.10 186.30 190 100 50 0 1 0 1 1
9 51 37.00 86.96 336.70 191.30 234 200 120 1 1 1 0 0
10 45 69.69 150.00 202.00 260.00 100 140 90 1 0 1 1 0
11 66 32.00 71.54 275.30 158.60 104 160 87 0 1 1 0 1
12 56 31.20 111.30 177.00 146.70 83 130 90 0 0 0 0 1
13 46 27.36 96.00 335.00 191.00 132 170 100 1 1 0 1 0
14 65 49.00 275.86 312.80 387.20 114 133 73 1 1 0 0 0
15 60 31.00 160.92 108.40 213.60 175 110 90 0 0 1 1 0
16 56 40.84 153.00 163.00 227.00 113 210 110 0 0 0 1 0
17 59 33.60 80.00 154.00 145.00 260 116 86 0 1 1 0 0
18 59 59.70 102.60 493.30 261.00 272 120 80 1 1 0 0 0
19 65 35.00 145.26 163.70 193.00 90 128 69 1 1 0 0 1
20 68 34.25 109.00 253.00 194.00 175 130 90 0 0 1 0 0
21 64 54.30 144.07 88.71 216.00 103 120 80 1 1 0 1 0
22 73 34.74 110.00 72.00 159.00 171 110 70 1 1 1 0 0
23 75 62.50 55.50 85.00 135.00 113 190 90 1 0 0 0 0
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Table 3 The Cluster Center on Fuzzy C-Means (FCM) Method

Cluster
Variables

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 67 34.23 108.42 254.93 193.77 177 130 88 0 0 1 0 0
2 61 47.53 91.20 97.28 158.10 123 138 79 1 1 0 0 0
3 62 53.33 143.18 90.70 215.70 106 122 81 1 1 0 1 0
4 62 62.68 97.42 97.63 179.45 141 131 74 1 1 0 0 0
5 51 52.13 177.06 139.94 257.17 312 131 81 0 1 0 0 0
6 59 59.62 102.74 492.48 260.89 272 120 80 1 1 0 0 0
7 62 49.07 126.29 209.65 217.15 129 121 80 0 1 0 0 1
8 46 67.89 150.85 201.65 259.19 101 141 89 1 0 1 1 0
9 54 45.86 179.93 216.90 270.77 114 133 89 0 1 0 0 0
10 61 34.02 99.62 456.75 224.94 138 130 90 1 1 0 0 0
11 70 42.22 126.74 127.40 194.41 189 129 88 0 1 0 0 0
12 60 55.72 156.26 161.51 244.16 98 132 70 1 0 0 0 0
13 64 54.01 103.04 104.35 177.87 121 111 71 1 0 1 0 0
14 55 42.83 135.90 129.01 203.88 89 142 78 0 1 0 0 0
15 75 40.05 152.44 224.21 237.45 147 112 70 0 1 0 0 0
16 54 43.59 120.32 237.80 211.74 166 121 80 0 1 0 0 0
17 59 51.42 186.64 227.47 283.35 193 140 80 0 1 0 0 0
18 64 50.25 97.98 136.92 175.05 127 122 88 1 0 0 0 0
19 53 41.67 122.55 127.73 189.54 133 137 84 1 1 0 0 0
20 71 48.15 113.18 152.77 191.46 186 111 71 0 1 0 0 0
21 56 39.69 130.09 241.49 218.09 179 140 89 1 1 0 0 0
22 61 64.49 108.67 332.53 239.65 180 161 100 0 0 0 1 0

23 76 43.21 157.33 153.77 231.02 114 131 80 1 1 0 0 0

Table 4 The Result of the ANOVA Test, T-Test, and Mean Square Error (MSE)

Probability of 
missing data (p)

Number of 
missing data

Level of significance 
– ANOVA test 

(p-value)

Pearson correlation coefficient on 
paired two-sample t-test

Mean Square Error (MSE)

FSC FCM FSC FCM
10% 31 0.995 0.991 0.995 0.8842 0.6987
20% 75 0.989 0.940 0.972 1.6680 1.6508
30% 124 0.943 0.920 0.967 1.8586 1.8460
40% 169 0.914 0.860 0.933 2.5440 2.3586

50% 210 0.798 0.831 0.910 2.6942 2.6284

Note: Fuzzy C-Means (FCM) and Fuzzy Subtractive Clustering (FSC)
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Table 5 The Evaluated Datasets

No HDL LDL TG Chol FBS Sys Dias

1 60.46 180.00 209.00 282.00 - 114 67
2 55.90 153.40 81.00 226.00 - 122 80
3 56.27 134.41 197.00 230.00 216 - -
4 46.25 150.35 192.00 235.00 - 120 80
5 74.40 136.82 120.00 235.00 - 142 70
6 - 63.18 - - 126 140 60
7 39.67 141.53 299.00 240.00 - - -
8 57.15 180.05 109.00 259.00 - 130 70
9 45.14 103.00 159.00 180.00 - 120 90
10 72.47 121.00 208.00 235.00 - 120 70
11 59.95 205.00 157.00 296.00 - 108 59
12 50.86 136.00 256.00 239.00 - - -
13 55.20 - 309.90 191.00 194 130 80
14 44.60 51.00 383.00 171.00 - - -
15 60.10 121.30 83.00 198.00 - 110 80
16 30.10 153.22 260.70 236.00 - 120 70
17 41.00 120.81 128.00 187.00 114 - -
18 41.40 194.59 289.30 294.00 - 140 80
19 38.00 79.84 389.90 196.00 - 120 80
20 56.57 214.00 329.00 336.00 - 140 70
21 60.90 118.28 89.11 197.00 - 120 80
22 56.40 76.72 94.27 152.00 - 110 70
23 44.20 134.92 173.10 214.00 143 - -
24 43.00 122.60 222.40 210.00 96 - -
25 45.00 166.27 260.60 263.00 - 130 80
26 35.00 95.86 236.40 178.00 - 140 80
27 44.00 97.64 124.80 166.60 - 120 60
28 49.00 207.58 88.72 275.00 - 140 90
29 42.21 109.00 184.00 188.00 - - -
30 32.00 - 548.60 234.60 164 130 80
31 44.00 138.84 164.30 215.70 - 130 90
32 51.00 137.76 120.70 212.90 - 120 80
33 71.00 155.35 65.15 239.00 - 100 70
34 37.55 154.00 111.00 213.00 124 - 110
35 40.00 - 423.90 259.40 171 140 90
36 - 57.52 112.40 - 259 140 70
37 38.00 156.89 156.20 226.00 - 150 100
38 37.00 117.86 158.20 186.00 65 - -
39 - - 452.40 212.80 214 130 80
40 36.00 71.86 199.70 147.80 - 130 90
41 48.35 96.93 82.60 - - 100 60
42 39.19 137.71 104.00 197.70 - 175 93
43 - 50.34 35.69 69.48 - - -
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Table 6 The Completed Evaluated Dataset

No Cluster number HDL LDL TG Chol FBS Sys Dias

1 12 60.46 180.00 209.00 282.00 98 114 67
2 13 55.90 153.40 81.00 226.00 121 122 80
3 16 56.27 134.41 197.00 230.00 216 121 80
4 1 46.25 150.35 192.00 235.00 177 120 80
5 12 74.40 136.82 120.00 235.00 98 142 70
6 2 47.53 63.18 97.28 158.10 126 140 60
7 15 39.67 141.53 299.00 240.00 147 112 70
8 5 57.15 180.05 109.00 259.00 312 130 70
9 22 45.14 103.00 159.00 180.00 180 120 90
10 12 72.47 121.00 208.00 235.00 98 120 70
11 12 59.95 205.00 157.00 296.00 98 108 59
12 16 50.86 136.00 256.00 239.00 166 121 80
13 17 55.20 186.64 309.90 191.00 194 130 80
14 16 44.60 51.00 383.00 171.00 166 121 80
15 22 60.10 121.30 83.00 198.00 180 110 80
16 1 30.10 153.22 260.70 236.00 177 120 70
17 18 41.00 120.81 128.00 187.00 114 122 88
18 12 41.40 194.59 289.30 294.00 98 140 80
19 10 38.00 79.84 389.90 196.00 138 120 80
20 17 56.57 214.00 329.00 336.00 193 140 70
21 18 60.90 118.28 89.11 197.00 127 120 80
22 18 56.40 76.72 94.27 152.00 127 110 70
23 3 44.20 134.92 173.10 214.00 143 122 81
24 3 43.00 122.60 222.40 210.00 96 122 81
25 7 45.00 166.27 260.60 263.00 129 130 80
26 16 35.00 95.86 236.40 178.00 166 140 80
27 22 44.00 97.64 124.80 166.60 180 120 60
28 12 49.00 207.58 88.72 275.00 98 140 90
29 19 42.21 109.00 184.00 188.00 133 137 84
30 10 32.00 99.62 548.60 234.60 164 130 80
31 18 44.00 138.84 164.30 215.70 127 130 90
32 19 51.00 137.76 120.70 212.90 133 120 80
33 12 71.00 155.35 65.15 239.00 98 100 70
34 22 37.55 154.00 111.00 213.00 124 161 110
35 10 40.00 99.62 423.90 259.40 171 140 90
36 2 47.53 57.52 112.40 158.10 259 140 70
37 22 38.00 156.89 156.20 226.00 180 150 100
38 13 37.00 117.86 158.20 186.00 65 111 71
39 10 34.02 99.62 452.40 212.80 214 130 80
40 11 36.00 71.86 199.70 147.80 189 130 90
41 3 48.35 96.93 82.60 215.70 106 100 60
42 7 39.19 137.71 104.00 197.70 129 175 93
43 2 47.53 50.34 35.69 69.48 123 138 79


