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Abstract - The Autoregressive Integrated 
Moving Average with Exogenous Variables (ARIMAX) 
method assumes a homogeneous residual variance, 
but data with high volatility can cause violations of 
this assumption. Hence, it is interesting to compare 
the forecasting accuracy of symmetric and asymmetric 
Autoregressive Conditional Heteroskedasticity 
(ARCH) models in various data conditions. The 
research aimed to compare the accuracy of the 
symmetric ARCH/ Generalized Autoregressive 
Conditional Heteroscedasticity (GARCH) and 
asymmetric TGARCH models in forecasting weekly 
Jakarta Composite Index (JCI) data on January 1st, 
2018, to April 24th, 2023, by involving the influence 
of COVID-19 as a covariate variable and applying 
several validation scenario models to training and 
testing data. Based on the best-selected model, 
forecasting was carried out from May 1st, 2023, to 
July 3rd, 2023. The data used were weekly JCI opening 
data from January 1st, 2018, to April 24th, 2023, with 
the COVID-19 period as a covariate variable. The 
analysis results show that symmetric and asymmetric 
methods can handle violations of the heteroscedasticity 
assumption in the ARIMAX model. The best model 
produced based on four data validation scenarios is the 
asymmetric ARIMAX(3,1,3)-TGARCH(1,2) model 
with an average MAPE value of 3.158%. In this model, 
the COVID-19 variable significantly influences the 
JCI movement. Forecasting is done with forecasting 
results that are stable with confidence intervals that 
widen in each period.

Keywords: Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH), forecasting accuracy, 
Jakarta Composite Index (JCI)  

I. INTRODUCTION

Forecasting is used to estimate data values in 
a period based on data values in previous periods. 
The forecasting method that is often used is the 
Autoregressive Integrated Moving Average (ARIMA) 
method. The development of the ARIMA method 
using other time series data as exogenous variables is 
called the Autoregressive Integrated Moving Average 
with Exogenous Variables (ARIMAX) method. 
The ARIMAX method assumes homoscedasticity. 
However, the unpredictable nature of volatility can 
cause heteroscedasticity (Somarajan et al., 2019). It 
needs a method that can be used to overcome violations 
of assumptions in the ARIMAX method.

The Autoregressive Conditional 
Heteroskedasticity (ARCH) method models the 
conditional variance as a function of the previous 
period’s white noise. However, this method has a 
limitation in that it requires a large order to obtain 
a suitable model. The development of the ARCH 
method is the Generalized Autoregressive Conditional 
Heteroscedasticity (GARCH) method, which 
overcomes the limitation of the ARCH method by 
modeling the conditional variance as a function of the 
previous period’s white noise and conditional variance 
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(Ekinci, 2021). However, according to Dinku and 
Worku (2022), the GARCH method needs to be better 
for modeling asymmetric volatility tendencies where 
positive shocks (good news) have a different effect 
from negative shocks (bad news). Another method 
that can be used is the asymmetric GARCH method, 
such as Threshold GARCH (TGARCH).

One data set with a tendency toward high 
volatility is found in financial data, such as the Jakarta 
Composite Index (JCI). The JCI is a crucial index that 
measures the performance of all shares listed on the 
Indonesia Stock Exchange (IDX). Investors consider 
JCI to determine investment in buying and selling 
transactions in the capital market. The JCI movement 
illustrates the movement of all stocks on the IDX, 
so an increase in the JCI will show an increase in 
the average stock on the IDX. Investors will use the 
increase in JCI to gain profits by investing (Hismendi 
et al., 2021). Investors must be able to analyze current 
economic conditions and their impact on the stocks 
in which they invest to maximize the investment. 
Therefore, an appropriate forecasting method is 
needed to help investors to plan their investments in 
the short, medium, and long term.

Several previous researchers have predicted 
JCI data. For example, Kasuma and Nugroho (2020) 
predicted daily JCI data from March 2nd, 2020, to 
August 5th, 2020, using the symmetric ARCH/GARCH 
method. The best model obtained to predict JCI data 
for this period was ARMA(1,1)-ARCH(1) with a Mean 
Absolute Percentage Error (MAPE) value of 19%. On 
the other hand, Saida et al. (2016) predicted the daily 
return of JCI data from January 2nd, 2013, to October 
30th, 2015, using the asymmetric GARCH method, 
TGARCH. The best model obtained to predict JCI 
data for this period was ARMA(3.26)-TGARCH(1.1), 
with a MAPE value of 7.17%.

Based on the previous studies, both methods 
have quite good forecasting accuracy with a MAPE 
value of less than 20%. Hence, it is interesting to 
compare the forecasting accuracy of the two methods. 
However, both methods use the Autoregressive 
Moving Average (ARMA) mean model, which only 
considers data values   from the previous period for 
forecasting. In reality, data values   for future periods 
can be influenced by previous period data values   and 
other variables outside the model. In the context of 
forecasting JCI data, the movement of JCI data is 
influenced by the JCI value for the previous period 
and other variables, such as COVID-19. According to 
Haryanto (2020), COVID-19 significantly influences 
the movement of the JCI, so forecasting JCI data 
involving the COVID-19 period should consider its 
influence in forecasting.

In addition, these two previous studies and most 
other studies using conventional methods on time series 
data only validate the model in one data condition. A 
suitable model for one data condition is not necessarily 
suitable for others. So, when comparing models, it is 
necessary to consider several data scenarios to ensure 
that the best model chosen is suitable for various data 

conditions. Based on these problems, the research aims 
to compare the forecasting accuracy of the symmetric 
ARCH/GARCH and asymmetric TGARCH models in 
forecasting weekly JCI data from January 1st, 2018, 
to April 24th, 2023, by involving the influence of 
COVID-19 as a covariate variable into the mean model 
and applying several model validation scenarios on 
training data and test data. Based on the best model 
obtained from the model validation results, JCI data 
forecasting is carried out in a specific period (May 1st, 
2023, to July 3rd, 2023).

II. METHODS

The data used in the research are opening price 
data of JCI from http://finance.yahoo.com. The data are 
weekly from January 1st, 2018, to April 24th, 2023. The 
research also uses covariate variables in the form of 
dummies to accommodate the influence of COVID-19 
on the JCI movement. The dummy variable used in 
this case is a value of one for the COVID-19 period 
and zero for others. The period of COVID-19 in the 
research is assumed to be between January 1st, 2020, 
when the first case of COVID-19 in the world was 
announced, until October 10th, 2021, after COVID-19 
cases began to subside. The data are then analyzed 
using R software, starting from data imputation. 

Data imputation is carried out to fill in missing 
data in a certain period. The imputation method 
used is linear interpolation. According to Noor et al. 
(2015), the linear interpolation formulation is shown 
in Equation (1). It has Yt as the missing value in the t 
period, YA  as the data before the missing value, YB as 
the data after the missing value, α as the period before 
the missing value, b as the period after the missing 
value, and  t as the period of the missing value.

       (1)

After missing data have been successfully 
imputed, data exploration is carried out using a time 
series plot to see patterns and characteristics of the 
data. Based on the pattern and characteristics, the 
data are split by selecting a split point where the data 
pattern before the split point is in line with the data 
pattern after the split point. In this case, data for July 
18th, 2022, is used as the split point so that the training 
data used in the research range from January 1st, 2018, 
to July 18th, 2022. The training data are then used in 
ARIMAX modeling. The ARIMAX model developed 
by Box and Tiao in 1975 is an extension of the ARIMA 
model, which adds exogenous variables as covariate 
variables (Braz et al., 2023). The exogenous variables 
added are usually dummy variables in the form of 
calendar variations. The ARIMAX model formulation 
is presented in Equation (2). It consists of ϕ as the 
autoregressive parameter, Yt-i  as the t−i period data,  
p as the autoregressive order, θ as the moving average 
parameter, et-j as the white noise of t−j period, q  as the 
moving average order, βm as the exogenous variable 



3Comparison of the Symmetric..... (Yenni Angraini et al.)

parameter, Xt-m as exogenous variables, and n as the 
number of exogenous variables.

 (2)

The ARIMAX modeling stage begins by 
conducting a data stationarity test using a time 
series plot, Autocorrelation Function (ACF) plot, 
and Augmented Dickey-Fuller (ADF) test. When the 
data are not stationary, it will be handled by making 
differences. On the other hand, when the data are 
stationary, the ARIMA model identification stage 
will be carried out based on the ACF plot, Partial 
Autocorrelation Function (PACF) plot, and Extended 
Autocorrelation Function (EACF) plot. Next, the 
ARIMA model parameter estimation stage is carried 
out using the maximum likelihood method. The best 
ARIMA model candidate selected has all significant 
parameters and the smallest Akaike’s Information 
Criterion (AIC) value. 

The next stage is to enter the dummy variable 
for the COVID-19 period as an exogenous variable 
to form the ARIMAX model. The model formed 
then enters the model diagnostic testing stage. When 
all assumptions are met, modeling continues by 
overfitting. In this case, overfitting is adding orders to 
the model used to see whether there is a better model 
(Moffat & Akpan, 2019). After overfitting, the best 
ARIMAX model is selected based on all significant 
parameters, the smallest AIC value, and the results of 
model diagnostic tests that meet the assumptions.

Next, the effect of heteroscedasticity is tested 
on the residuals of the best ARIMAX model using 
the ARCH-Lagrange Multiplier (LM) test and the 
McLeod-Li test. The null hypothesis of the ARCH-
LM test is that the residuals do not contain the ARCH 
effect. The test statistic used according to Fang et al. 
(2020) is presented in Equation (3). It has T as the 
residual length and R2 as the coefficient determination 
of the regression between the squared residual and the 
sum of the squared residual up to the tested lag.

        (3)

This null hypothesis will be rejected at the 
significance level of α if it is  where K is the 
maximum lag. The null hypothesis of the McLeod-Li 
test is that the residuals do not have a heteroscedasticity 
effect. According to Lekhal and El Oubani (2020), the 
test statistics used are listed in Equation (4). It shows 

 as the autocorrelation of the squared residual. 
Moreover, the null hypothesis will be rejected at the 
significance level of α if it is .

      (4)

When the selected model violates the 
homoscedasticity assumption, ARCH/GARCH and 

TGARCH models are carried out. The ARCH models 
the conditional variance as a function of the squared 
white noise of the previous period (Raheem et al., 
2020). According to Kyriazis et al. (2019), the ARCH 
model formulation is shown in Equation (5).

        (5)

Equation (5) has  as the conditional variance 
of the t period, ω as a constant, α as the ARCH 
parameter, et-i as the t−i period of white noise, and p 
as the ARCH order. Meanwhile, the GARCH models 
conditional variance as a function of the previous 
period’s squared white noise and conditional variance. 
The GARCH model is more useful if the lag is large. 
The GARCH model formulation according to Fang et 
al. (2019) is shown in Equation (6). It consists of β as 
the GARCH parameter, and p and q are the GARCH 
orders.

      (6)

The TGARCH model is an extension of the 
GARCH model, which uses dummy variables to model 
the possibility of asymmetric effects on data (Shahani 
& Taneja, 2022). The TGARCH model formulation, 
according to Sheng et al. (2021), is listed in Equation 
(7). It includes γ as an asymmetric parameter, p and q  
as TGARCH orders, and  as a dummy variable 
that has a zero value when  and a value of one 
when .

                                      (7)

The ARCH/GARCH and TGARCH modeling 
stages begin with identifying the model, followed 
by estimating model parameters using the maximum 
likelihood method. The best candidate model is 
then selected based on the criteria of all significant 
parameters, non-significant ARCH-LM test results, 
and the smallest AIC value. When the best candidate 
model has been selected, a model diagnostic test 
is carried out. If the model diagnostic test results 
meet the assumptions, the modeling stage continues 
with overfitting. After overfitting is carried out, the 
best model is selected by considering all significant 
parameters, insignificant ARCH-LM test results, the 
smallest AIC value, and model diagnostic test results 
that meet the assumptions.

The best model between the symmetric ARCH/
GARCH and asymmetric TGARCH models is 
determined through the model validation stage using 
four training and testing data scenarios. These four 
scenarios are formed by dividing the data other than 
training data determined in the previous step into four 
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equal parts. The training data for the first scenario is 
the same as the training data determined in the previous 
division. In contrast, the testing data for the first 
scenario is a first quarter of the data other than training 
data determined in the previous step. Furthermore, the 
second scenario training data is used in the previous 
scenario. In contrast, the second scenario testing data 
is the second quarter of the previously determined data 
other than training data and so on. A division of training 
and testing data is shown in Figure 1 (see Appendices) 
and Table 1 (see Appendices) in more detail.

In each scenario, data other than training and 
testing data are not used in the model validation process. 
The model validation process for each data scenario 
begins with estimating parameters on the training data 
using the best model obtained in the previous stage, 
followed by forecasting and calculating forecasting 
accuracy on test data using MAPE values. According 
to Montgomery et al. (2015), the formulation of the 
MAPE value is shown in Equation (8). In Equation 
(8), Yt is the actual value,  is the estimated value, and 
T is the amount of data.

       (8)

The best model chosen between the symmetric 
ARCH/GARCH model and the asymmetric TGARCH 
model is the model with the smallest average MAPE 
value from the four data scenarios. Next, forecasting 
is carried out along one test data scenario, namely 
10 periods from May 1st, 2023, to July 3rd, 2023. 
It uses the best model obtained at the model 
validation stage.

III. RESULTS AND DISCUSSIONS

Data imputation is carried out to fill in the 
missing values for June 11th, 2018, June 3rd, 2019, and 
May 2nd, 2023. The data imputation method used is 
linear interpolation. The results of data imputation 
are shown in Figure 2 (see Appendices), marked by 
a red symbol. Figure 2 shows that the JCI tended to 
fluctuate throughout 2018. This fluctuation can be due 
to domestic conditions, such as Indonesia’s economic 
growth, the weakening of the Rupiah exchange rate 
and the trade balance deficit, or foreign causes, such as 
the occurrence of a trade war between the United States 
and China and a decision to increase the Fed Funds 
Rate (FFR) by the American central bank (Ichsani 
et al., 2019). Moreover, the JCI had a non-steep 
downward trend during 2019 and a steep downward 
trend in early 2020 because of the COVID-19 
pandemic. Nonetheless, the JCI began to increase in 
the second quarter of 2020 in line with Bank Indonesia 
(BI) lowered the 7-Day Reverse Repo Interest Rate by 
125 basis points (bps). This increase continued until 
late 2021 and tended to be stable in 2022 to early 2023 
(Behera et al., 2023).

The JCI movement, which tends to fluctuate in 

each period, means that the modeling must consider 
the influence of data volatility. In addition, the steep 
downward trend at the beginning of 2020 indicates 
the need to consider the influence of other variables, 
namely COVID-19, in modeling. In this case, the 
influence of COVID-19 on the JCI movement is 
modeled using the ARIMAX mean model.

ARIMAX modeling on JCI data begins with 
checking the stationarity of the data. The time series 
plot in Figure 3 (see Appendices) shows that the data 
are not stationary, marked by a trend in data. This non-
stationarity is supported by the ACF plot in Figure 4 
(see Appendices), which decreases exponentially, and 
the ADF test with a p-value of 0.564, which is greater 
than the 5% significance level.

Nonstationary data must be handled to 
obtain stationarity as a prerequisite for determining 
autoregressive and moving average components 
using ACF and PACF (Hussain et al., 2023). The 
nonstationary data are handled by differencing (d = 1). 
After first differencing, the JCI data is stationary in the 
mean, as marked by the time series plot in Figure 
5 (see Appendices), which tends to move at a constant 
mean, and the ACF plot in Figure 6 (see Appendices), 
which is cut off after the seventh lag. This stationarity 
is reinforced by the results of the ADF test, which has a 
p-value of 0.01, which is less than the 5% significance 
level.

Identification of the ARIMA model on already 
stationary data is done by looking at the ACF, PACF, 
and EACF plots. Based on the ACF plot in Figure 
6 (see Appendices) and the PACF plot in Figure 7 
(see Appendices), there are no cuts or tails off in 
the initial lag, so a tentative model is challenging to 
determine. The identification of the ARIMA model is 
then determined based on the EACF plot by looking 
at the zero triangle pattern, where the sharp triangular 
ends of the zero triangle pattern correspond to the 
tentative ARIMA model order (Kong et al., 2023). So, 
the tentative models formed based on Figure 8 (see 
Appendices) are ARIMA(1,1,1), ARIMA(2,1,2), and 
ARIMA(3,1,3).

The tentative ARIMA model parameter 
estimates in Table 2 (see Appendices) show that the 
ARIMA(3,1,3) model has all significant parameters 
and the smallest AIC value. This model is then 
selected as the best ARIMA model candidate, which 
will be continued with ARIMAX modeling. ARIMAX 
modeling is done by adding a dummy variable for 
the COVID-19 period as a covariate variable in the 
ARIMA(3,1,3) model.

The estimation of the ARIMAX(3,1,3) 
model in Table 2 (see Appendices) shows that the 
ARIMAX(3,1,3) model has all significant parameters 
except for the dummy variables. This case is similar 
to Putera (2020). The previous research continues to 
include dummy variables that are not significant in 
the model to increase forecasting accuracy. It is also 
in line with Vukovic and Zinurova (2020) that even 
though it is not significant, adding covariate variables 
to the model will add to its goodness. The addition 
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of dummy variables to form the ARIMAX(3,1,3) 
model is proven to produce a smaller AIC value than 
the ARIMA(3,1,3) model, so in this case, dummy 
variables that are not significant are still included in 
the model.

Next, model diagnostic tests are carried 
out on the residuals of ARIMAX(3,1,3) models. 
Exploratively, the ACF plot of residuals in Figure 9 
(see Appendices) shows no significant autocorrelation 
in the first 20 lags, indicating the fulfillment of the 
assumption that residuals resemble white noise. These 
results are supported by formal testing using the 
Ljung-Box test with a p-value of 0.970, greater than 
the 5% significance level. The exploratory residual 
normality is carried out using a quantile plot. Based 
on the quantile plot in Figure 10 (see Appendices), 
the points on the plot tend not to follow the normal 
line, which indicates a violation of the normality 
assumption. This result is supported by the Shapiro-
Wilk test with a p-value of 0.000, which is less than 
the 5% significance level. Nonetheless, violations of 
this assumption can be neglected because the data 
used tend to be large (Schaffer et al., 2021).

Furthermore, the heterogeneity test of the 
variance of the residuals is carried out using the time 
series plot of ARIMAX(3,1,3) residual. The residual 
plot shown in Figure 11 (see Appendices) shows that 
the residuals of the ARIMAX(3,1,3) model tend to be 
heterogeneous because they have different bandwidths 
over several periods. These results are supported by 
the Ljung-Box test of squared residuals with a p-value 
of 0.000, greater than the 5% significance level.

The heteroscedasticity effect is then carried 
out on the residuals of the ARIMAX(3,1,3) model. 
It indicates that it violates the homoscedasticity 
assumption. This test is carried out using the ARCH-
LM and the McLeod-Li tests. Based on the ARCH-LM 
results in Table 3 (see Appendices), the p-value of the 
ARCH-LM test is significant up to the 14th lag. This result 
indicates a heteroscedasticity effect on the residuals 
of the ARIMAX(3,1,3) model. Moreover, the results 
of the McLeod-Li test in Figure 12 (see Appendices) 
are also in line with this conclusion because it has a 
p-value that is less than the 5% significance level up 
to the 15th lag. The heteroscedasticity on the residuals 
of the ARIMAX(3,1,3) model indicates the need for 
the ARCH/GARCH process to model conditional 
heteroscedasticity (Aliyev et al., 2020).

Then, identification of the ARCH/GARCH 
model on ARIMAX(3,1,3) is carried out by trial and 
error to get the best model. Based on the trial and error 
results, the ARIMAX(3,1,3)-ARCH(2) model is the 
best candidate model with all significant parameters 
and the smallest AIC value. The ARCH-LM test on 
this model produces a p-value of 0.325. It indicates 
that the violation of the homoscedasticity assumption 
in the ARIMAX model has been resolved. In this case, 
the ARCH model is better than the GARCH model 
because the significant lag in the ARCH-LM test tends 
to be less than 15 lags (Adenomon et al., 2022). The 
parameter estimation results for the ARIMAX(3,1,3)-

ARCH(2) model are then listed in Table 4 (see 
Appendices).

Diagnostic tests are performed on the 
residuals of ARIMAX(3,1,3)-ARCH(2) models. The 
autocorrelation test of residuals is carried out using 
the Ljung-Box test. It finds that the residuals are 
independent with a p-value of 0.837, greater than the 
5% significance level. The normality test of residuals 
is then carried out using the Shapiro-Wilk test. This 
test concludes that the residuals do not follow the 
normal distribution because they have a p-value of 
0.000, which is less than the 5% significance level. 
The homogeneity of variance test is carried out using 
the Ljung-Box test of the squared residuals. This 
test concludes that the variance of the residuals is 
homogeneous because it has a p-value of 0.654 as it is 
more than the 5% significance level. Thus, the ARCH/
GARCH model succeeds in overcoming violations 
of the assumption of homogeneity of variance in the 
ARIMAX model.

Overfitting is done by adding one ARCH order 
to the ARIMAX(3,1,3)-ARCH(2) model to see whether 
a better model exists. So, in this case, the candidate 
for the overfitting model is ARIMAX(3,1,3)-ARCH 
(3). Based on the results of the ARIMAX(3,1,3)-
ARCH(3) model parameter estimation in Table 5 
(see Appendices), it can be seen that there are model 
parameters that are not significant. Then, the AIC 
value of the ARIMAX(3,1,3)-ARCH(3) model is 
greater than the ARIMAX(3,1,3)-ARCH(2) model. It 
makes the ARIMAX(3,1,3)-ARCH(2) model the best 
in ARCH/GARCH modeling.

Even though ARCH/GARCH modeling 
has succeeded in overcoming violations of the 
homoscedasticity assumption, according to Lyu et al. 
(2021), economics tends to have asymmetric volatility. 
It can be seen from the histogram of the squared 
residuals of the ARIMAX(3,1,3) model in Figure 13 
(see Appendices). It tends to slant to the right. The 
existence of asymmetric volatility in the data indicates 
that TGARCH modeling needs to be done.

Identification of the TGARCH model is carried 
out by trial and error using the ARIMAX(3,1,3) mean 
model. Based on trial and error, it is found that the 
tentative model selected is the ARIMAX(3,1,3)-
TGARCH(1,2) model with all significant parameters 
and the smallest AIC value. The ARCH-LM test on 
this model produces a p-value of 0.893. It indicates 
that the violation of the homoscedasticity assumption 
in the ARIMAX model has been resolved. The 
ARIMAX(3,1,3)-TGARCH(1,2) model parameter 
estimates are shown in Table 6 (see Appendices).

A model diagnostic test is carried out on the 
residuals of ARIMAX(3,1,3)-TGARCH(1,2) models. 
Based on the Ljung-Box test, a p-value of 0.455 is 
obtained, which is greater than the 5% significance 
level. This result shows that the assumption of residual 
freedom in the ARIMAX(3,1,3)-TGARCH(1,2) 
model is fulfilled. Furthermore, the Shapiro-Wilk test 
concludes that the residuals do not follow a normal 
distribution because they have a p-value of 0.000, 
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which is less than the 5% significance level. Testing 
the homogeneity of variance using the Ljung-Box test 
from the squared residual results in the conclusion that 
the residual variance is homogeneous because it has a 
p-value of 0.520, greater than the 5% significance level. 
Thus, the TGARCH model succeeds in overcoming the 
violation of the homogeneity of variance assumption 
in the ARIMAX model.

Overfitting is done by adding one ARCH and 
GARCH order to the ARIMAX(3,1,3)-TGARCH(1,2) 
model so that the candidate overfitting models formed 
are ARIMAX(3,1,3)-TGARCH(1,3) and ARIMAX 
(3,1,3)-TGARCH(2,2). Based on the parameter 
estimates in Table 7 (see Appendices), it can be 
seen that there are insignificant parameters in the 
ARIMAX(3,1,3)-TGARCH(1,3) and ARIMAX(3,1,3)-
TGARCH(2,2) models. This result shows that the 
ARIMAX(3,1,3)-TGARCH(1,2) model is the best in 
TGARCH modeling.

Validation of the ARIMAX(3,1,3)-ARCH(2) 
model and ARIMAX(3,1,3)-TGARCH(1,2) model is 
then carried out by looking at the MAPE values   of the 
four data scenarios in Table 1 (see Appendices). Table 
8 (see Appendices) shows that in the first and fourth 
data scenarios, the ARIMAX(3,1,3)-TGARCH(1,2) 
model has better performance with a smaller MAPE 
value. However, in the second and third data scenarios, 
the ARIMAX(3,1,3)-ARCH(2) model performs better 
with smaller MAPE values. It shows that if a model 
is the best in a data condition, it will not necessarily 
remain the best in another data condition. 

In this case, the best model is determined by 
looking at the average MAPE value of the four data 
scenarios. Based on the average MAPE value of the four 
data scenarios, it is found that the best model selected 
is the asymmetric ARIMAX(3,1,3)-TGARCH(1,2) 
model. This result follows the residual exploration of 
the ARIMAX model, which tends to have a histogram 
that sticks out as an indication of asymmetric effects. 
Based on the average MAPE value obtained in this 
validation process, it can be seen that the model 
used has a very small MAPE value with a very good 
forecasting category. This accuracy indicates that the 
use of the ARIMAX model can properly accommodate 
the influence of COVID-19 on the JCI movement, and 
the use of the asymmetric GARCH model, namely 
TGARCH, can properly accommodate the effects of 
asymmetric volatility on the data.

Forecasting using the ARIMAX(3,1,3)-
TGARCH(1,2) model is done in the following ten 
periods. This period is in the range of May 1st, 2023, to 
July 3rd, 2023. Based on Figure 14 (see Appendices), 
forecasting shows stable results with an average value 
of 6824.246. This result aligns with the effects of the 
COVID-19 pandemic, which starts to wane. Hence, 
the economy, which is initially fluctuating, tends to 
become more stable. Even though forecast results tend 
to be stable, JCI movements may have an upward or 
downward trend, characterized by forecast confidence 
intervals that tend to widen in each period.

IV. CONCLUSIONS

The asymmetric GARCH model has better 
forecasting capabilities than the symmetric GARCH 
model in forecasting weekly JCI data from January 1st, 
2018, to April 24th, 2023, based on model validation 
using several data scenarios. The asymmetric GARCH 
model obtained in this case is ARIMAX(3,1,3)−
TGARCH(1, 2). Adding a covariate variable in the form 
of the COVID-19 period into this model significantly 
influences the JCI movement even though the covariate 
variable parameters in the ARIMAX(3,1,3) model 
are not significant. This model produces outstanding 
forecasting accuracy because it has an average MAPE 
value of less than 10% from four data scenarios. 

The result can be a consideration in future 
research to prefer an asymmetric model over a 
symmetric model when predicting JCI data. In this 
analysis, forecasting JCI data from May 1st, 2023, 
to July 3rd, 2023, using this model tends to be stable 
with confidence intervals that widen in each period. 
Even though the resulting forecast is excellent, the 
model only uses the COVID-19 variable as a covariate 
variable. Future research can consider COVID-19 
as an intervention using other mean models, such as 
ARIMA intervention. Future research can also use 
other variance models, such as exponential GARCH 
and integrated GARCH. Apart from that, the model in 
the research is still limited in carrying out long-term 
forecasting. Future research can use machine learning 
methods, such as Recurrent Neural Networks (RNN) 
and Long Short-Term Memory (LSTM) to overcome 
the model’s limitations in the research.

 
REFERENCES

Adenomon, M. O., Maijamaa, B., & John, D. O. (2022). The 
effects of COVID-19 outbreak on the Nigerian Stock 
Exchange performance: Evidence from GARCH 
models. Journal of Statistical Modeling & Analytics 
(JOSMA), 4(1), 25–38. https://doi.org/10.22452/
josma.vol4no1.3

Aliyev, F., Ajayi, R., & Gasim, N. (2020). Modelling 
asymmetric market volatility with univariate 
GARCH models: Evidence from Nasdaq-100. The 
Journal of Economic Asymmetries, 22. https://doi.
org/10.1016/j.jeca.2020.e00167

Behera, H., Gunadi, I., & Rath, B. N. (2023). COVID-19 
uncertainty, financial markets and monetary policy 
effects in case of two emerging Asian countries. 
Economic Analysis and Policy, 78, 173–189. https://
doi.org/10.1016/j.eap.2023.03.001

Braz, M. S., Sáfadi, T., Ferreira, R. A., Morais, M. H. F., 
Silva, Z., & Da Rocha, C. M. B. M. (2023). Temporal 
relationship between human and canine visceral 
leishmaniasis in an urban area in southeastern Brazil: 
An application of the ARIMAX model. Preventive 
Veterinary Medicine, 215. https://doi.org/10.1016/j.
prevetmed.2023.105921



7Comparison of the Symmetric..... (Yenni Angraini et al.)

Dinku, T., & Worku, G. (2022). Asymmetric GARCH models 
on price volatility of agricultural commodities. SN 
Business & Economics, 2. https://doi.org/10.1007/
s43546-022-00355-7

Ekinci, A. (2021). Modelling and forecasting of growth 
rate of new COVID-19 cases in top nine affected 
countries: Considering conditional variance and 
asymmetric effect. Chaos, Solitons & Fractals, 151. 
https://doi.org/10.1016/j.chaos.2021.111227

Fang, J., Gozgor, G., Lau, C. K. M., & Lu, Z. (2020). The 
impact of Baidu index sentiment on the volatility of 
China’s stock markets. Finance Research Letters, 
32. https://doi.org/10.1016/j.frl.2019.01.011

Haryanto. (2020). Dampak COVID-19 terhadap pergerakan 
nilai tukar rupiah dan Indeks Harga Saham Gabungan 
(IHSG). The Indonesian Journal of Development 
Planning, 4(2), 151–165. 

Hismendi, Masbar, R., Nazamuddin, Majid, M. S. A., 
& Suriani. (2021). Sectoral stock markets and 
economic growth nexus: Empirical evidence from 
Indonesia. The Journal of Asian Finance, Economics 
and Business, 8(4), 11–19. https://doi.org/10.13106/
jafeb.2021.vol8.no4.0011

Hussain, F., Ali, Y., Li, Y., & Haque, M. M. (2023). 
Real-time crash risk forecasting using artificial-
Intelligence based video analytics: A unified 
framework of generalised extreme value theory and 
autoregressive integrated moving average model. 
Analytic Methods in Accident Research, 40, 1–21. 
https://doi.org/10.1016/j.amar.2023.100302

Ichsani, S., Mariana, C., & Andari, D. (2019). Does the 
Indonesia composite index get affected by the 
Asia composite index? International Journal of 
Innovation, Creativity and Change, 6(7), 1–13.

Kasuma, K. A. P., & Nugroho, Y. D. (2020). Tinjauan kasus 
terkonfirmasi positif COVID-19 terhadap iklim 
investasi di Indonesia: Peramalan dan korelasi. In 
Seminar Nasional Official Statistics (pp. 190–195). 
https://doi.org/10.34123/semnasoffstat.v2020i1.720

Kong, Q., Han, J., Jin, X., Li, C., Wang, T., Bai, Q., & 
Chen, Y. (2023). Polar motion prediction using 
the combination of SSA and ARMA. Geodesy 
and Geodynamics, 14(4), 368–376. https://doi.
org/10.1016/j.geog.2022.12.004

Kyriazis, Ν. A., Daskalou, K., Arampatzis, M., Prassa, P., 
& Papaioannou, E. (2019). Estimating the volatility 
of cryptocurrencies during bearish markets by 
employing GARCH models. Heliyon, 5(8), 1–8. 
https://doi.org/10.1016/j.heliyon.2019.e02239

Lekhal, M., & El Oubani, A. (2020). Does the adaptive 
market hypothesis explain the evolution of emerging 
markets efficiency? Evidence from the Moroccan 
financial market. Heliyon, 6(7), 1–12. https://doi.
org/10.1016/j.heliyon.2020.e04429

Lyu, Y., Wei, Y., Hu, Y., & Yang, M. (2021). Good volatility, 
bad volatility and economic uncertainty: Evidence 
from the crude oil futures market. Energy, 222. 
https://doi.org/10.1016/j.energy.2021.119924

Moffat, I. U., & Akpan, E. A. (2019). White noise analysis: 
A measure of time series model adequacy. Applied 
Mathematics,10(11), 989–1003. https://doi.
org/10.4236/am.2019.1011069

Montgomery, D. C., Jennings, C. L., & Kulahci, M. (2015). 
Introduction to time series analysis and forecasting. 
John Wiley & Sons. 

Noor, N. M., Abdullah, M. M. A. B., Yahaya, A. S., & Ramli, 
N. A. (2015). Comparison of linear interpolation 
method and mean method to replace the missing 
values in environmental data set. Materials Science 
Forum, 803, 278–281. https://doi.org/10.4028/www.
scientific.net/MSF.803.278

Putera, M. L. S. (2020). Non-cash payment transaction 
projection using ARIMAX : Efect of calendar. 
Jurnal Matematika, Statistika dan Komputasi, 16(3), 
296–310. https://doi.org/10.20956/jmsk.v16i3.8546

Raheem, S. H., Alhusseini, F. H. H., & Alshaybawee, T. 
(2020). Modelling volatility in financial time series 
using ARCH models. International Journal of 
Innovation, Creativity and Change, 12(7), 248–261.

Schaffer, A. L., Dobbins, T. A., & Pearson, S. A. (2021). 
Interrupted time series analysis using Autoregressive 
Integrated Moving Average (ARIMA) models: A 
guide for evaluating large-scale health interventions. 
BMC Medical Research Methodology, 21, 1–12. 
https://doi.org/10.1186/s12874-021-01235-8

Shahani, R., & Taneja, A. (2022). Dynamics of volatility 
behaviour and spillover from crude to energy crops: 
Empirical evidence from India. Energy Nexus, 8, 
1–8. https://doi.org/10.1016/j.nexus.2022.100152

Sheng, C., Zhang, D., Wang, G., & Huang, Y. (2021). 
Research on risk mechanism of China’s carbon 
financial market development from the perspective 
of ecological civilization. Journal of Computational 
and Applied Mathematics, 381. https://doi.
org/10.1016/j.cam.2020.112990

Somarajan, S., Shankar, M., Sharma, T., & Jeyanthi, R. 
(2019). Modelling and analysis of volatility in time 
series data. In J. Wang, G. Reddy, V. Prasad, & V. 
Reddy (Eds.), Advances in intelligent systems and 
computing (pp. 609–618). Springer. https://doi.
org/10.1007/978-981-13-3393-4_62

Vukovic, B. D., & Zinurova, R. Y. (2020). Competitive 
advantages and sustainable development of Russian 
agrarian sector. In M. Radović-Marković, B. 
Đukanović, & N. Vuković (Eds.), Economy and 
ecology: Contemporary trends and contradictions 
2020 (pp. 203–207).



8 ComTech: Computer, Mathematics and Engineering Applications, Vol. 15 No. 1 June 2024, 1−15

APPENDICES

Figure 1 Illustration of the Division of Training and Testing Data

Figure 2 Imputed Time Series Plot

Figure 3 The Jakarta Composite Index (JCI) Time Series Plot Before Differencing
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Figure 4 The Autocorrelation Function (ACF) Plot Before Differencing

Figure 5 The Jakarta Composite Index (JCI) Time Series Plot After Differencing

Figure 6 The Autocorrelation Function (ACF) Plot After Differencing
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Figure 7 The Partial Autocorrelation Function (PACF) Plot After Differencing

Figure 8 The Extended Autocorrelation Function (EACF) Plot After Differencing

Figure 9 The Autocorrelation Function (ACF) Plot of ARIMAX(3,1,3) Residuals
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Figure 10 The Quantile Plot of ARIMAX(3,1,3) Residuals

Figure 11 The Time Series Plot of ARIMAX(3,1,3) Residuals

Figure 12 P-Value of McLeod-Li Test
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Figure 13 Histogram of Squared Residuals

Figure 14 Result of Jakarta Composite Index (JCI) Forecasting on May 1st, 2023 to July 3rd, 2023
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Table 1  Period of Training and Testing Data of Each Scenario

Scenario Training Data Testing Data
1 Jan. 1st, 2018–July 18th, 2018 July 25th, 2022–Sept. 26th, 2022
2 Jan. 1st, 2018–Sept. 26th, 2022 Oct. 3rd, 2022–Dec. 5th, 2022
3 Jan. 1st, 2018–Dec. 5th, 2022 Dec. 12th, 2022–Feb. 13th, 2023
4 Jan. 1st, 2023–Feb. 13th, 2023 Feb. 20, 2023–April 24th, 2023

Table 2 Parameter Estimation of ARIMA and ARIMAX Models

Model Parameter Coefficient P-Value AIC
ARIMA
(1,1,1)

AR(1) -0.004 0.999 2998.72
MA(1) -0.005 0.999

ARIMA
(2,1,2)

AR(1) -0.010 0.363 2997.77
AR(2) -0.996 0.000
MA(1) 0.026 0.142
MA(2) 0.999 0.000

ARIMA
(3,1,3)

AR(1) 0.919 0.000 2996.29
AR(2) 0.866 0.000
AR(3) -0.930 0.000
MA(1) -0.896 0.000
MA(2) -0.913 0.000
MA(3) 0.982 0.000

ARIMAX
(3,1,3)

AR(1) 0.697 0.000 2993.50
AR(2) 0.731 0.000
AR(3) -0.856 0.000
MA(1) -0.755 0.000
MA(2) -0.755 0.000
MA(3) 0.999 0.000

Dummy -122.846 0.133

Note: Autoregressive Integrated Moving Average (ARIMA), Autoregressive Integrated Moving Average 
with Exogenous Variables (ARIMAX), and Akaike’s Information Criterion (AIC).

Table 3 Result of Autoregressive Conditional 
Heteroskedasticity-Lagrange Multiplier (ARCH-LM) Test

Lag P-Value
4 0.000
8 0.002
14 0.041
16 0.061
20 0.143



14 ComTech: Computer, Mathematics and Engineering Applications, Vol. 15 No. 1 June 2024, 1−15

Table 4   Parameter Estimation of ARCH/GARCH Model

Model Parameter Coefficient P-Value AIC

ARIMAX(1,1,1) - ARCH(2)

AR(1) 1.871 0.000

12.561

AR(2) -1.757 0.000
AR(3) 0.863 0.000
MA(1) -1.919 0.000
MA(2) 1.860 0.000
MA(3) -0.947 0.000

Dummy -8.602 0.019
ω 12472.132 0.000
α1 0.168 0.000
α2 0.086 0.044

Note: Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX), Akaike’s Information Criterion (AIC),
 ω (asymmetric constant), α1 (first order of ARCH parameter), and α2 (second order of ARCH parameter).

Table 5  Parameter Estimation of Overfitting ARCH/GARCH Model

Model Parameter Coefficient P-Value AIC

ARIMAX(1,1,1) - ARCH(3)

AR(1) -0.341 0.000

13.153

AR(2) -0.119 0.000
AR(3) -0.592 0.000
MA(1) 0.127 0.000
MA(2) 0.045 0.000
MA(3) 0.915 0.000

Dummy 36.184 0.997
ω 3.250 0.000
α1 0.251 0.000
α2 0.293 0.000
α3 0.454 0.000

Note: Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX), Akaike’s Information Criterion (AIC), ω 
(asymmetric constant), α1 (first order of ARCH parameters), α2 (second order of ARCH parameters), and α3 (third order of ARCH 
parameters).

Table 6  Parameter Estimation of TGARCH Model

Model Parameter Coefficient P-Value AIC

ARIMAX(1,1,1) - TGARCH(1,2)

AR(1) 2.172 0.000

12.477

AR(2) -1.480 0.000
AR(3) 0.256 0.000
MA(1) -2.240 0.000
MA(2) 1.620 0.000
MA(3) -0.325 0.000

Dummy 25.100 0.011
ω 41.956 0.000
α1 0.207 0.000
β1 0.331 0.025
β2 0.169 0.035
γ1 1.000 0.000

Note: Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX), Threshold Generalized Autoregressive 
Conditional Heteroscedasticity (TGARCH), Akaike’s Information Criterion (AIC), ω (asymmetric constant), β1 (first order of 
GARCH parameters), β2 (second order of GARCH parameters), and γ1 (first order of asymmetric parameters).
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Table 7  Parameter Estimation of Overfitting TGARCH Model

Model Parameter Coefficient P-Value AIC

ARIMAX(1,1,1) -TGARCH(1,3)

AR(1) 1.139 0.000

12.497

AR(2) -1.219 0.000
AR(3) 0.913 0.000
MA(1) -1.084 0.000
MA(2) 1.226 0.000
MA(3) -0.853 0.000

Dummy 19.393 0.283
ω 48.856 0.000
α1 0.262 0.000
β1 0.029 0.793
β2 0.000 1.000
β3 0.390 0.003
γ1 1.000 0.000

ARIMAX(1,1,1), TGARCH(2,2)

AR(1) 0.932 0.000

12.476

AR(2) 0.882 0.000
AR(3) -0.959 0.000
MA(1) -0.914 0.000
MA(2) -0.022 0.000
MA(3) 1.001 0.000

Dummy 25.501 0.036
ω 38.427 0.000
α1 0.224 0.000
β1 0.000 0.999
β2 0.208 0.115
β3 0.306 0.028
γ1 1.000 0.000
γ2 0.083 0.988

Note: Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX), Threshold Generalized Autoregressive 
Conditional Heteroscedasticity (TGARCH), Akaike’s Information Criterion (AIC), ω (asymmetric constant), α1 (first order of 
ARCH parameters), α2 (second order of ARCH parameters), β1 (first order of GARCH parameters), β2 (second order of GARCH 
parameters), γ1 (first order of asymmetric parameters), and γ2 (second order of asymmetric parameters).

Table 8  MAPE Value of Each Scenario

Scenario
MAPE Value

ARIMAX(3,1,3)-ARCH(2) ARIMAX(3,1,3)-TGARCH(1,2)
1 6.830% 5.994%
2 2.159% 2.193%
3 3.203% 3.245%
4 1.906% 1.199%

Average 3.525% 3.158%

Note: Autoregressive Integrated Moving Average with Exogenous Variables (ARIMAX), Autoregressive 
Conditional Heteroskedasticity (ARCH), Mean Absolute Percentage Error (MAPE), and Threshold 
Generalized Autoregressive Conditional Heteroscedasticity (TGARCH).


