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Abstract—Multi-task machine learning approaches in-
volve training a single model on multiple tasks at once to
increase performance and efficiency over multiple single-
task models trained individually on each task. When such
a multi-task model is trained to perform multiple unre-
lated tasks, performance can degrade significantly since
unrelated tasks often have gradients that vary widely
in direction. These conflicting gradients may destruc-
tively interfere with each other, causing weights learned
during the training of some tasks to become unlearned
during the training of others. The research selects three
existing methods to mitigate this problem: Project Con-
flicting Gradients (PCGrad), Modulation Module, and
Language-Specific Subnetworks (LaSS). It explores how
the application of different combinations of these methods
affects the performance of a convolutional neural network
on a multi-task image classification problem. The image
classification problem used as a benchmark utilizes a
dataset of 4,503 leaf images to create two separate tasks:
the classification of plants and the detection of disease
from leaf images. Experiment results on this problem
show performance benefits over singular mitigation meth-
ods, with a combination of PCGrad and LaSS obtaining
a task-averaged F1 score of 0.84686. This combination
outperforms individual mitigation approaches by 0.01870,
0.02682, and 0.02434 for PCGrad, Modulation Module,
and LaSS, respectively in terms of F1 score.

Index Terms—Gradient Conflict Mitigation Methods,
Multi-Task Learning, Project Conflicting Gradients (PC-
Grad), Modulation Module, Language-Specific Subnet-
works (LaSS)

I. INTRODUCTION

IT is possible for humans to utilize knowledge
gained while learning to perform one task to learn

to perform other related tasks. For example, experi-
enced musicians are likely to learn new instruments
faster than those without prior music experience. This
inherent human ability has inspired the development
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of a machine learning approach called Multi-Task
Learning (MTL) [1]. MTL approaches train one sin-
gular machine learning model to solve a multitude of
tasks, leveraging information in related tasks to achieve
better performance relative to multiple classic Single-
Task Learning (STL) models trained individually on
each task. MTL-based approaches are also utilized
to improve overall computation efficiency by jointly
performing training only once on the entire set of
tasks [2].

Machine learning models incorporating MTL have
outperformed STL models in supervised classifica-
tion [3–5], visual scene understanding [6], image
retrieval [7, 8], parameter auto-tuning [9], forecast-
ing [10, 11], data upscaling [12], sentiment analy-
sis [13], and speech recognition [14], among other
tasks. While MTL is designed specifically to leverage
information contained in related tasks [1], previous
research has also shown performance benefits dur-
ing training of unrelated tasks [15]. However, dur-
ing such applications, a phenomenon known as de-
structive gradient interference may arise [16]. This
phenomenon, caused by conflicting directions in the
optimization gradient of multiple tasks, may lead to
significantly degraded performance relative to single-
task learning approaches. Existing research has pro-
duced multiple approaches that attempt to mitigate this
phenomenon [3, 7, 13, 16, 17].

Previous research has attempted to quantify the exact
cause of the destructive effects of gradient interference
with regard to model performance. It is explained
that significant performance degradation may arise
when three different conditions forming the so-called
tragic triad occur [16]. The first condition, conflicting
gradients, arises when the optimization gradient for
different tasks differs significantly in direction. The
second condition, dominating gradients, arises when
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the optimization gradient for different tasks differs
significantly in magnitude. When the second condition
occurs along with the first condition, the task with the
larger magnitude will dominate the average gradient.
The third condition, high curvature, compounds the
negative effects of the previous two conditions by
creating an environment. It is easy to overestimate the
performance improvement gained by the dominating
task and vice versa.

Along with this analysis, the previous presents a
general approach, called Project Conflicting Gradients
(PCGrad), for minimizing the performance degradation
caused by the aforementioned conditions [16]. This
approach involves projecting the optimization gradient
of a given task onto the normal plane of another
task whenever conflicting gradients are found. This
approach does not alter the gradients of non-conflicting
tasks, meaning it makes no assumptions regarding the
form of the model itself, allowing network architec-
tures with both shared and unshared parameters to also
benefit from this approach. It also presents experiment
results that highlight the success of their proposed
approach on various tasks, including supervised and
reinforced MTL [16].

Moreover, another previous research has likened the
destructive gradient interference problem to the inter-
ference of waves in physics [7]. Their approach to mit-
igating this, called the Modulation Module, adds lay-
ers containing task-specific weights in between other
layers in neural network-based models. It effectively
creates a hybrid model consisting of elements from
both MTL and STL. These layers act as a channel-wise
weighted scaling filter for the weights of the immediate
previous layer. This scaling process uses task-specific
weights that are unchanged during the training of other
tasks. This approach notably requires relatively few
additional parameters.

Multilingual machine translation models have also
been shown to suffer from similar problems. It at-
tributes performance degradation during joint train-
ing of multiple language pairs to parameter interfer-
ence [17]. It presents Language-Specific Subnetworks
(LaSS), an approach that attempts to alleviate this inter-
ference without increasing model capacity by finding
subnetwork patterns that are implicitly learned during
joint training of multiple language pairs. These patterns
are searched using heuristics derived from neural net-
work weight pruning approaches. Further fine-tuning
and joint training are performed, not distorting weights
outside the subnetwork relevant to the current language
pair.

There have also been attempts to avoid the gradient
interference problem entirely by designing neural net-
work architectures specific to the task at hand. In one

instance, previous research has used two attention-like
modules to explicitly learn the relationships between
tasks and output classes in a multi-task classifica-
tion problem [3]. One module learns the relationship
between tasks, while another learns the relationship
between the classes of every task. The outputs of
these two modules are concatenated and fed into task-
specific branches consisting of four fully connected
neural network layers. The resulting model manages
to perform better than models built using single-task
approaches.

Based on the explanation mentioned earlier, the
research aims to explore the effects of applying combi-
nations of some existing mitigation approaches to the
performance of a neural network. The researchers hy-
pothesize that combining some approaches will achieve
better performance than a single approach. The re-
searchers pick three previously developed mitigation
methods and perform experiments on all eight possible
mathematical combinations of the methods mentioned
earlier on a supervised MTL classification dataset. The
performance figures obtained from these experiments
are then used to analyze and validate the hypothesis.

II. RESEARCH METHOD

Three previously developed conflict mitigation ap-
proaches are described. It consists of PCGrad [16],
Modulation Module [7], and LaSS [17]. The method
used to combine these previous approaches and test the
validity of the hypothesis is also outlined.

A. Methods Used

PCGrad gradient update algorithm is proposed to de-
conflict interfering weight update gradients by directly
altering the gradients themselves [16]. The algorithm
iterates over the gradient gt (the original gradient of
the current task t) of each task and checks whether
it conflicts with the gradient of other tasks g0 (the
original gradient of another task o, which is the task
toward which gt is projected). If such a conflict is
found, gt is replaced with its projection towards the
normal plane of g0.

It conceptually removes the conflicting parts from
the gradient of each task, as illustrated in Fig. 1.
The altered gradients are then passed to a gradient-
based optimizer and handled normally. Algorithm 1
details this process in a programmatic way for ease of
understanding.

As described in previous research [7], a Modulation
Module is a layer that is inserted between convolu-
tional layers in neural networks to perform channel-
wise vector scaling of the output of the immediate
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Fig. 1. How Project Conflicting Gradients (PCGrad) affecting conflicting gradients. It shows g0 as the original gradient of another task
o, which is the task toward which gt is projected and gpct as the gradient of task t in gpc (variable used to store task gradients after
projection).

Algorithm 1 PCGrad gradient update algorithm
1: Let T ← tasks
2: Let g ← gradients
3: gpc ← g
4: for t ∈ T do
5: for o ∈ T in random order do
6: if gpct · go < 0 then
7: gpct ← gpct −

gpc
t ·go

||go||2 go
8: end if
9: end for

10: end for
11: g ← gpc

12: Pass g to optimizer

previous convolutional layer using trainable per-task
independent weights.

Figure 2 shows an overview of the computation in
a scaling layer during the feed-forward phase of a
neural network. The research only implements vector
scaling instead of full matrix scaling in accordance
with the assertion of previous research [7] that full
matrix scaling leads only to marginal improvements
while increasing complexity.

Let O (output of the layer before the scaling layer)
be the output of the previous layer of the shape
C × N ×M . It shows C (depth of O), N (height of
O), and M (width of O). Every scaling layer contains
a weight matrix W (weight matrix contained in the
scaling layer) of the shape T ×C, where T is the total
number of tasks. Let Wt (part of the weight matrix W
that is used for scaling the current task t) be the per-
task weights of the scaling layer for the current task
t.

Then, following equation, the researchers calculate
the scaled output O′ and pass it along to the next layer.
It has O′

(i,j,k) as element of the scaled output matrix at
index i, j, k, O(i,j,k) as element of the original output

matrix at index i, j, k, and W(t,i) as element of the
weight matrix W , corresponding to the current task t
at index i.

O′
i,j,k = Oi,j,k ×Wt,i.

Intuitively, the per-task nature of the weights learned
in these scaling layers allows the neural network to
learn how to adjust its outputs better to suit the current
task. In other words, it modulates those outputs with
regard to the current task. The addition of these layers
in between the convolutional layers of a neural network
helps to alleviate the problem of gradient interference
by allowing information that will otherwise be lost due
to gradient interference to be retained inside the task-
specific weights.

This concept is essentially a simplified version of
creating separated and unshared branches specific to
each task and merging their outputs back together into
the main shared branch. In fact, it is possible to see
that attempting to insert these scaling layers in between
the non-convolutional layers of a neural network will
scale the weights of each neuron in each layer in a task-
specific manner, leading to the creation of a separate
unshared branch that merges back together into the
next shared layer.

Next, LaSS, originally designed for multilingual
translation, is the approach used to explicitly find
subnetwork masks for every task, which are then
utilized to improve the performance of jointly-trained
models [17]. A subnetwork mask is a task-specific
binary matrix Mt ∈ 0, 1, where Mw

t = 1 means that
the weight w corresponding to that mask is relevant
in the current subnetwork. It shows Mt as binary
matrix M for the current task and Mw

t as element
of matrix Mt that corresponds to the weight w. For
brevity, the researchers describe the general outline of
this approach in simplified terms as follows:

1) Start with a neural network θ0 (weights of neural
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Fig. 2. Overview of computation flow in a scaling layer. It consists of O (output of the layer before the scaling layer), C (depth of O),
N (height of O), M (width of O), W (weight matrix contained in the scaling layer), Wt (part of the weight matrix W that is used for
scaling the current task t), t (the current task), and O′ (the scaled output after going through the Modulation Module).
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Fig. 3. Computing θt from θg and Mt.

network after joint training) jointly trained on all
tasks.

2) For each task t, fine-tune the network using data
specific to t to obtain the task-specific fine-tuned
network θt (weights of neural network after fine
tuning for task t). It is explained that this step
amplifies the magnitude of important weights to
the current task t while diminishing unimportant
ones [17].

3) Prune the lowest α percent of the weights in θt
(weights of neural network after fine tuning for
task t).

4) Build a subnetwork mask Mt for θt by setting the
mask value to 0 if the corresponding weight was

pruned in the previous step or 1 otherwise.
The obtained subnetwork mask is then used during

further training and inference to ignore unimportant
weights to the current task t by replacing the global
weight matrix θg (global weight matrix that will be
replaced by θt during inference of task t) with θt,
where θt = θg ×Mt. This process can also be utilized
for, e.g., zeroing out gradients during back-propagation
of gradients. Figure 3 illustrates this process.

The utilization of LaSS alters the standard joint
training process of a neural network by splitting it into
two distinct parts. The first part, referring to the pre-
mask phase, is performed to obtain θ0 prior to finding
the subnetwork masks. The second part, the post-mask
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TABLE I
EVERY POSSIBLE COMBINATION OF THE THREE APPROACHES.

Approach PCGrad Modulation Module LaSS

A No No No
B No No Yes
C No Yes No
D No Yes Yes
E Yes No No
F Yes No Yes
G Yes Yes No
H Yes Yes Yes

Fig. 4. Sample images taken from the dataset. The blemishes on
the left leaf are a telltale sign that the leaf is diseased.

phase, is performed after subnetwork masks based on
the previously obtained θ0 weights are found. This part
utilizes the task-specific subnetwork mask Mt to mask
weights deemed unimportant to the current task while
preventing important weights to other tasks from being
affected during back-propagation. It aligns with the
potential uses of subnetwork masks described in the
previous paragraph.

B. Validation Design

To empirically validate the hypothesis, the re-
searchers design an experiment to benchmark the per-
formance of seven different approaches. Each utilizes a
subset of the three mitigation methods described in the
Methodssection. Along with these approaches, a base-
line approach without any mitigation methods is also
tested for comparison. Table I describes these eight
approaches. The approach of H deconflicts gradients
using PCGrad, incorporating scaling layers in between
convolutional layers and utilizing subnetworks during
joint training to illustrate the meaning of Table I.

The experiment utilizes the dataset of available leaf
images in previous research [18]. The dataset consists
of 4,503 leaf images from 12 different plants. Of the
4,503 leaves featured in the dataset, 2,278 are healthy,
while 2,225 are not. A sample of two images taken
from the dataset is shown in Fig. 4. From this dataset,
the researchers create an MTL image classification
problem consisting of two tasks: classifying which of
the 12 given plant species the leaf belongs to and
classifying whether the current leaf is diseased or not.
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Fig. 5. Baseline model architecture.

The baseline approach solves this MTL image clas-
sification problem using the convolutional neural net-
work model, illustrated in Fig. 5. For approaches in-
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TABLE II
PERFORMANCE STATISTICS OF THE TESTED APPROACHES.

Approach Accuracy F1 Accuracy F1 Average Average
in Task 1 in Task 1 in Task 2 in Task 2 Accurracy F1

A 0.70169 0.69532 0.85162 0.85671 0.77666 0.77602
B 0.77722 0.78359 0.85917 0.86145 0.81820 0.82252
C 0.77187 0.76522 0.86673 0.87486 0.81930 0.82004
D 0.77810 0.77360 0.86029 0.87123 0.81920 0.82241
E 0.78522 0.79088 0.86272 0.86545 0.82397 0.82816
F 0.82075 0.82243 0.86361 0.87129 0.84218 0.84686
G 0.79587 0.79742 0.85429 0.85840 0.82508 0.82791
H 0.78410 0.79721 0.85340 0.85789 0.81875 0.82755

corporating methods, the researchers apply each given
method on top of the baseline model. In E to H
approaches, PCGrad is applied by wrapping the base
optimizer in an open-source PyTorch PCGrad imple-
mentation [19]. In approaches C–D and G–H, Mod-
ulation Module layers are inserted directly after ev-
ery convolutional layer. For approaches incorporating
LaSS, the researchers consider the first half of training
to be the pre-mask phase and use the weights obtained
during that phase as θ0 to find the subnetwork masks
used in the later half of training during the post-mask
phase. Following the implementation of the original
authors, the researchers only apply LaSS masking to
weights contained in fully connected layers.

III. RESULTS AND DISCUSSION

A. Experiment Settings

The images in the dataset are first resized to a
dimension of 64×64 pixels, utilizing zero padding
to keep their original ratios. These images are then
grouped into batches with a batch size of 32. Joint
training is run on the aforementioned batches for a
total of 100 epochs using the PyTorch Adam optimizer
with a learning rate of 5 × 10−4. Where applicable,
the α value used during the pruning process to obtain
subnetwork masks is set to 0.5. The researchers utilize
5-fold cross-validation and average the accuracy values
and weight-averaged F1 scores obtained from the test
partition of every fold for analysis.

B. Experiment Results

Looking at Table II, it is possible to infer that the
baseline approach of A suffers from significant gradi-
ent interference. As seen in Fig. 6, a very significant
gap exists between the performance of Task 1 and Task
2 relative to other approaches. It matches the analysis
presented by previous research [16], which states that
the gradients of one task may become dominated by the
gradients of another task if a severe difference exists in
direction and magnitude between them. For illustrative
purposes, a human observer will take into account the

Fig. 6. Difference between the F1 score of Task 1 and Task 2 for
each model.

shape of the leaf to solve Task 1. Meanwhile, in Task
2, they will visually look for blemishes in the color of
the leaf. These two tasks are not necessarily related.
Therefore, their gradients may differ significantly in
direction and magnitude.

Applying any gradient interference mitigation
method successfully reduces the aforementioned gap,
as seen in the performance of B, C, and E approaches
in Table II. It is also possible to see in Fig. 7 that
the approach of F, which combines the methods used
in approaches B and E, significantly outperforms all
other methods on Task 1. However, Fig. 8 shows
that this approach performs slightly worse on Task
2 than approach B. It may be caused by PCGrad
changing the direction of the training gradients slightly
away from Task 2 during its gradient projection phase,
improving the overall task-averaged performance of the
model significantly at the cost of the aforementioned
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Fig. 7. Performance of each approach in Task 1.

Fig. 8. Performance of each approach in Task 2.

slight performance degradation on one task. Overall,
the approach of F performs the best in task-averaged
accuracy and F1 score out of all the combinations
tested in this experiment, as can be seen in Table II
and Fig. 9. The result is in line with the hypothesis
that a combination of mitigation methods outperforms
its individual constituent methods.

However, the D, G, and H approaches fail to provide

significant improvements in performance compared
to the subsets of the methods they incorporate. For
example, the approach of H performs worse than F on
both tasks, while the approach of G does not perform
as well as E does on average despite having less of
a performance gap between Task 1 and Task 2. The
performance in approaches of E, F, G, and H suggests
the existence of a destructive incompatibility issue
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Fig. 9. Performance of each approach, averaged across both tasks.

between PCGrad and Modulation Module. PCGrad
alters gradients in the shared layers of the model, and
it is possible that the weights learned in these layers
may not interact well with the weights learned using
unaltered gradients inside the layers of the Modulation
Module.

With regard to approaches of D and H, it is pos-
sible that the lower per-task capacity of the model,
a natural outcome of the usage of LaSS’ per-task
subnetwork masks, may have negated the additional
capacity gained by incorporating Modulation Module
layers into the model. Along with this, the utilization of
subnetwork masks may have also caused the weights
learned in the Modulation Module layers during the
pre-mask phase of training to become unlearned as
the neural network attempts to adjust its weights to
accommodate the zeroed-out neurons during the post-
mask phase. It may be possible to solve this problem
by tuning the α value used during the computation
of subnetwork masks so as not to zero out too many
neurons to promote constructive interaction between
these two mitigation methods.

Specifically, a hybrid approach combining PCGrad
and LaSS manages to achieve a task-averaged F1 score
of 0.84686 on an MTL image classification prob-
lem, outperforming individual mitigation approaches
by 0.01870, 0.02682, and 0.02434 for PCGrad, Modu-
lation Module, and LaSS respectively. Comparatively, a
baseline convolutional neural network with an identical
architecture but without any gradient conflict mitiga-
tion methods only achieves an F1 score of 0.77602,

which is 0.07084 below the best hybrid approach.
Furthermore, the research also notes the existence and
provides possible explanations for destructive inter-
actions between combinations of mitigation methods.
Such interaction is the addition of Modulation Module
layers to a model incorporating PCGrad and LaSS,
which results in a degradation in the F1 score of the
model by 0.01931.

IV. CONCLUSION

Using MTL-based neural networks to solve unre-
lated tasks may lead to performance degradation of
one or even all tasks. Fortunately, previously devel-
oped mitigation approaches exist and effectively alle-
viate this problem. The research benchmarks different
combinations of three previously developed mitigation
approaches. It empirically verifies the possibility of
gaining significant performance improvements by com-
bining a subset of these approaches in accordance with
the hypothesis that motivates the research.

The results open an avenue for future research
to analyze how different mitigation methods interact.
Such research may further lead to the discovery of
better hybrid gradient conflict mitigation approaches.
It can suggest the possibility of achieving increased
performance across many MTL models by preventing
performance degradation caused by unrelated tasks.
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