
CommIT Journal 17(2), 245–258, 2023

Web Server Load Balancing Mechanism with
Least Connection Algorithm and Multi-Agent

System
Afiyah Rifkha Rahmika1∗, Zulkifli Tahir2, Ady Wahyudi Paundu3, and Zahir Zainuddin4

1−4Informatics Engineering Department, Universitas Hasanuddin
Makassar 90245, Indonesia

Email: 1rahmikaar19d@student.unhas.ac.id, 2zulkifli@unhas.ac.id, 3adywp@unhas.ac.id,
4zahir@unhas.ac.id

Abstract—Demands for information over the Internet
massively increase through the continuous expansion of
website applications. Therefore, generating powerful and
efficient server architecture for web servers is a must to
satisfy Internet users and avoid the overloaded system.
The research focuses on developing a new mechanism for
load balancing to distribute incoming HTTP requests in
website applications by combining the Least Connection
algorithm and Multi-Agent System (LC-MAS). The pro-
posed mechanism distributes the request based on load
condition and the fewest number of active connections.
The research applies virtualization technology to build
servers on this proposed mechanism. The architecture is
built inside a physical server with Proxmox as virtualiza-
tion management and Linux Debian 7.11 as an operating
system. Then, the research is tested in two scenarios (LC-
MAS and LC) using 500, 1,000, and 1,500 requests. The
performance of this proposed mechanism is measured
through the values of average response time, throughput,
and error percentage. The results show that the proposed
mechanism (LC-MAS) distributes the workload more
equally than LC, with an average response time for 1,500
requests of 1338.8 milliseconds, 20.07% error, and 125
transactions per second. The LC-MAS makes the website
application performance much better when the request
increases. The LC-MAS helps in the utilization of system
resources and improves system robustness.

Index Terms—Web Server, Load Balancing Mecha-
nism, Least Connection Algorithm, Multi-Agent System

I. INTRODUCTION

THE massive use of the Internet has become a new
habit in this digital era. A website is one of the

Internet services that is widely involved in every aspect
of human daily lives, with millions of users accessing it
from everywhere. The website presents various kinds

Received: Aug. 16, 2022; received in revised form: Jan. 10, 2023;
accepted: Jan. 11, 2023; available online: Sept. 18, 2023.
*Corresponding Author

of information content needed by children to adults.
Unfortunately, the number of users accessing websites
worldwide causes a web server that provides a website
to down or overload [1].

Websites, such as e-commerce services, even receive
millions of connections from Internet users simultane-
ously in one day. Due to some conditions, the website
is frequently visited. For example, it happens when e-
commerce provides big promotions at the end of the
year or on certain dates or new students register in the
information system platform.

As a result, web servers have become a crucial part
of Internet infrastructure. Building a proper, good, and
reliable web server architecture is important to manage
a huge increase in traffic and requests to protect the
business from the risk of system failure, transactional
data loss, and error messages process. Being down for
a brief moment can make the website application lose
a lot of money. It becomes a serious thing [2]. The
workload of a web server increases as the number of
website visitors increases, leading to an overloading
condition. This situation triggers the need for load
balancing, which is a method that equally distributes
the loads among the available virtual machines [3].

Load balancing can be applied to balance the load
between servers. It is a technology to distribute the
workload of service on a cluster of servers or network
devices in a balanced way when there is a request from
the user. This technique can increase the throughput,
reduce response time, and give better resource utiliza-
tion so the system can achieve the best performance.
Besides, if one server fails, the system can still run
using other available servers because many servers
work to handle the requests [4]. Load balancing has
methods and algorithms for balancing the load on the
system to maintain and consume the available system
capabilities. Hence, it optimizes service performance

mailto:rahmikaar19d@student.unhas.ac.id
mailto:zulkifli@unhas.ac.id
mailto:adywp@unhas.ac.id
mailto:zahir@unhas.ac.id

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.
to satisfy the demand. Load balancing algorithms are
categorized as static and dynamic [5, 6].

However, one of the problems in load balancing
is that it does not provide any method to monitor
the condition of server resources by default. Resource
monitoring is needed when developing a system with a
large number of requests [7]. Monitoring can be done
by checking the condition of server resources, e.g.,
memory usage, CPU percentage, disk performance
metrics, and others. Additionally, server resource mon-
itoring needs to use other methods that combine with
load balancing algorithms to distribute requests equally
and reach better resource utilization.

Monitoring server conditions in developing a load
balancing mechanism has been carried out in the
research model of load balancing using a reliable
algorithm with a Multi-Agent System (MAS) [8]. The
model is tested by sending a total of 1,800 HTTP
requests for 10 s to be distributed to only three web
servers. The total time interval for each request is
0.005 seconds (10/1800) which is unreasonable for a
web server to handle all requests simultaneously. The
results of the test parameters are still not good because
they sacrifice response time and the number of errors.

Previous research proposes a network design to
measure the performance of web server load balancing
using LC and Round-Robin algorithm to each load bal-
ancer for performance comparison [4]. HAProxy with
default KeepAlive (KA) configuration and NGINX is
applied as the load balancer. Then, the environment is
built using three computers as the web server and one
computer as a load balancer and tested with several
examinations, i.e., load and stress test, time test, click
test, and benchmark test. The LC algorithm produces
better results for tests like request per second and
transfer rate (KB/sec).

Another previous study discusses the efficiency of
three different load balancing algorithms, such as
Round Robin, LC, and Least Loaded [9]. It uses the
OPNET tool to simulate the proposed system architec-
ture that consists of 1 load balancer, 8 HTTP servers,
and 112 users. The result shows that the Least Loaded
algorithm consumes more CPU load than others. The
LC algorithm distributes the request more fairly than
others to balance the load among servers.

In previous research, the developed load balancing
algorithm addresses the load imbalance issue among
agents in MAS using Software Performance Engi-
neering (SPE) approach [10]. The proposed algorithm
is built using Java Agent Development Framework
(JADE) as a MAS development tool, and the results
are obtained by considering the proposed algorithm
and using the first-come, first-serve method. It is
observed that the response time of the agents has

improved. Agents work with their maximum capability.
The agents in MAS utilize the system resources, such
as CPU capacity, memory, and bandwidth.

Previous research investigates the performance of
several load balancing tools like HAProxy and NGINX
over a cloud computing environment and finds that
congestion is one of its main problems [11]. The
LC algorithm is tested through HAProxy and NGIN
tools to examine its behavior. The results show that
HAProxy is faster than NGINX in terms of handling
requests, but NGINX provides less CPU utilization.

Previous research also builds a web server service
using Desktop Personal Computer (PC) to replace the
server computer task carried [12]. The environment
is built using three Desktop PCs as a load balancer.
It uses two different algorithms applied to the load
balancer. It is tested twice. The first test uses a common
algorithm, i.e., the Round Robin algorithm, for the
load balancer. The second test is done by using the
LC algorithm. Several metrics measure performance,
such as request loss, successful transactions, through-
put, transaction rate, longest transactions, and response
time. The results show that the task of a computer
server can be replaced by a Desktop PC at a cheaper
cost. The LC algorithm is more reliable than others
in terms of throughput, successful transaction, request
loss, and longest transaction.

The model of load balancing using a reliable algo-
rithm with MAS proposes a reliable load balancing
system using the Least Time First Byte (LFB) algo-
rithm combined with the resource information from
a mobile agent [8]. There are two testing scenarios
in the previous research. The first scenario applies
the Weighted Least Connection (WLC) algorithm, and
the second uses the LFB algorithm to distribute the
requests. The system is tested with 1,800 requests for
10 seconds. The results show that the LFB algorithm is
more stable in dealing with many requests. The WLC
algorithm is successfully completed within 78.99% of
requests, while the LFB algorithm reaches 100% over
1,800 requests. LFB algorithm sacrifices the response
time, throughput, and other parameters.

Previous research also proposes the Self-Based Load
Balancing (SGA LB) algorithm in a cloud environ-
ment [13]. It aims to reach proper balancing of work-
load on virtual machines by maximizing the avail-
ability, throughput, scalability, and reliability of the
system. The algorithm comprises three agents: in-
house, external, and migration. The agent concept is
built with the JADE library in the CloudSim frame-
work. The results deal with distributing the workload
in terms of memory and utilization of resources in
the cloud environment. When the MAS concept is
used, it produces a better workload and considerable

246

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.
improvement in overall performance and efficiency.

Another previous research proposes a dynamic load
balancing algorithm by considering the server’s static
and dynamic load factor to calculate the weight of
the closest server real-time performance parameters to
calculate the server’s load [14]. The composite load
is calculated based on response time and number of
connections of each node. The larger the weight of the
node is, and the smaller the composite is, the greater
probability it will be assigned in the request. It can be
concluded that NGINZ’s built-in algorithm has prob-
lems balancing the distribution load. The result shows
that the proposed algorithm is better than NGINX’s
built-in two algorithms, such as Round Robin and LC,
regarding response time and requests processed value.

Moreover, in previous studies, the number of virtual
machines used is very small. Hence, the research adds
more virtual machines so that more nodes can work to-
gether to handle HTTP requests. The Least Connection
(LC) algorithm is chosen to eliminate the calculation
process on the first byte of incoming HTTP requests
as it becomes a trigger in increasing the response time
of previous research.

The research proposes a load balancing mechanism
to balance requests on the server by considering server
resource conditions, i.e., a load of CPU and memory to
produce better system performance. This mechanism
combines the Least Connection algorithm and MAS
(LC-MAS) method to distribute the requests equally
to the server and monitor the server resource condition
periodically to achieve maximum resource utilization.
The proposed mechanism will distribute the requests
based on load condition and the fewest number of
active connections as the existing research does not
consider resources condition in developing load bal-
ancing mechanisms. In the research, the performance
of the proposed mechanism is compared with a system
that uses LC only.

II. RESEARCH METHOD

A. Research Stages
The first stage collects some references related to

problems on the previous web server load balancing
mechanism and determines the focus on the perfor-
mance parameters. The stages of research are described
in Fig. A1 in Appendix. Parameter values are analyzed
to determine whether the proposed mechanism is run-
ning. If not, it will be back to the second stage. The
second stage prepares the mechanism environment to
make sure that there are no deficiencies in the hardware
and software that prevents the system from running
properly. However, if the proposed mechanism runs
properly, the next step is to take the parameter values
to analyze and prepare reports.

5

Figure 1 Research stages.

B. Least Connection (LC) Algorithm

The load balancing mechanism proposed in the research uses the LC algorithm to distribute the

request load to the servers. This algorithm divides the request load based on the number of

active connections in real-time. It chooses the servers with the smallest active connections.

Pseudocode for the LC algorithm is shown in Algorithm 1.

Algorithm 1 Least Connection Algorithm Pseudocode

1.for (j=0; j<n; j++) {
2. for (i=j+1; i<n; i++) {
3. if (C(Si) < C(Sj))
4. m=i;
5. }
6. return Sj;
7.}
8. return NULL;

The algorithm works with two loops. The first loop repeats the process as much as the number

of incoming requests based on line 1. Meanwhile, the second loop repeats the process to count

the number of active connections from each server based on line 2. Moreover, S represents a

group of servers, and C is the number of connections from S at the moment. As for line 3, the

algorithm compares the number of active connections and stores the result. Then, it chooses the

fewest number of active connections from server S and returns the value to Sj. The Sj value is

the current server with the fewest number of active connections. When there are no incoming

Commented [A1]: Ada di file terpisah

B. Least Connection (LC) Algorithm

The load balancing mechanism proposed in the
research uses the LC algorithm to distribute the request
load to the servers. This algorithm divides the request
load based on the number of active connections in
real-time. It chooses the servers with the smallest
active connections. Pseudocode for the LC algorithm
is shown in Algorithm 1.

The algorithm works with two loops. The first
loop repeats the process as much as the number of
incoming requests based on line 1. Meanwhile, the
second loop repeats the process to count the number
of active connections from each server based on line
2. Moreover, S represents a group of servers, and C
is the number of connections from S at the moment.
As for line 3, the algorithm compares the number
of active connections and stores the result. Then, it
chooses the fewest number of active connections from
server S and returns the value to Sj. The Sj value
is the current server with the fewest number of active
connections. When there are no incoming requests, the
value returned is NULL, or no process is running.
However, the number of connections the server handles
is inversely proportional to the load conditions, so
this algorithm makes uneven load distribution. The
researchers do not use NGINX’s built-in LC algorithm.

C. Multi-Agent System (MAS)

The researchers use two types of agents with differ-
ent functions in the research. The main agent functions
to request information on backend server resources.
Meanwhile, a reporting agent functions to receive the
request and provide resource information to the main
agent. Agents are built using JADE which is a Java
library. The workflow of two types of agents can be
seen in Fig. A2 in Appendix.

The main agent checks the number of active agents
when it starts to run on the system. This behavior loops
until the main agent stops running. Reporting agents
on each backend server register themselves to the
Directory (Yellow Pages). Yellow Pages information
is then sent to the main agent to check how many

247

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

FIG 3

Fig. 1. Load balancing architecture.

reporting agents are active. Then, the main agent sends
a request for resource information while the reporting
agent is in charge of providing that information every
500 milliseconds to the main agent. Reporting agent
starts to collect information about the percentage of
CPU and memory usage from web servers and cal-
culate the number of active connections. The number
of active connections calculated by the reporting agent
uses the LC algorithm, described in Algorithm 1, to
reduce the delay when that process has to move to other
virtual machines. After the information is complete,
the reporting agent starts to calculate the load of
a web server by multiplying the CPU and memory
percentages and dividing those by the smallest number
of active connections. The formula is written in Fig. A2
in Appendix on the reporting agent’s side.

D. Architecture

The researchers use virtualization technology to
build servers in this proposed mechanism. The archi-
tecture is built inside a physical server with Proxmox
as virtualization management and Linux Debian 7.11
as an operating system. Then, the researchers deploy
virtual machines as servers.

Inside the virtual machines, the researchers create
two types of service: one service for the load balancer
and five services for the web server. Web servers are
built using NGINX. Web server service contains stan-
dard Content Management System (CMS) WordPress
application content. Figure 1 shows the architecture

in the research. The researchers also use five virtual
machines to add nodes that work in parallel to handle
incoming requests simultaneously to shorten execution
time. Existing research mostly only uses a relatively
small number of virtual machines, such as three or
four.

E. Testing Scenarios

The proposed load balancing mechanism is tested
with two scenarios. The researchers use Apache JMeter
as a tool to create testing plans. Apache JMeter gen-
erates HTTP traffic to the web server cluster. Apache
JMeter sends 500, 1,000, and 1,500 HTTP requests to
both scenarios. Each scenario has a ramp-up time of
10 seconds for each number of requests.

The first scenario tests the load balancing mech-
anism using the LC algorithm combined with MAS
(LC-MAS). This scenario uses six agents: one main
agent and five reporting agents. The main agent is
located on the load balancer server while the reporting
agent is on each backend server. Figure A3 in Ap-
pendix shows the flowchart for the LC-MAS scenario.

The main agent categorizes the resource load con-
ditions as normal or overloaded based on the backend
server resource information sent by the reporting agent.
It is the first process in this scenario. The load is cal-
culated based on CPU and memory percentage values
and divided by the number of incoming requests. The

248

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.
formula is as follows [15].

load =
%CPU ×%Memory

Nrequest
.

It must not exceed the threshold value that has been
set, i.e., 80%. This value is agreed as a “sweet spot”
for monitoring the server resource when it comes to
load problems. Load is categorized as normal when
the value is below or equal to 80%. It is an overload
when the value is higher than 80%. Then, backend
servers with normal categories are grouped to count
the number of active connections they are currently
handling. The backend server IP address with the
smallest number of active connections is sent to the
load balancer server to execute the requests.

The load balancer server is only tasked to forward
the requests to the elected backend server. The entire
calculation and decision-making process is carried out
by the agents. It aims to reduce the waiting time caused
by several processes when calculating the number of
active connections that must move to the load balancer
virtual machine.

The second scenario tests the load balancing mech-
anism using the LC algorithm only to distribute the
requests. The LC algorithm distributes requests to the
backend server with the smallest number of active
connections. The load balancer counts the number
of active connections from five backend servers and
compares those with each other. The smallest number
of active connections is selected to execute the request.
Figure 2 shows the flowchart for the LC scenario.

III. RESULTS AND DISCUSSION

Testing parameters in the research are the values of
response time, throughput, and error percentage. These
parameters analyze the performance of the proposed
mechanism and represent the effectiveness of the sys-
tems after performing load balancing. The result of
testing parameters can describe the performance of the
system in terms of resilience in dealing with a large
number of requests.

The research focuses on load testing. A load test
is a performance test that checks how systems func-
tion under a large number of concurrent virtual users
performing transactions over a certain period. In other
words, the test measures how systems handle heavy
load volumes.

A. Average Response Time

Response time is calculated starting when the re-
quest is sent until it is finished to execute. It represents
the minimum time of a system that applies a specific
load balancing algorithm to respond. The response time

Fig. 2. Least Connection (LC) scenario.

value should be small for better performance of the
system. Average response time is the total response
time divided by the number of incoming requests. This
parameter is calculated in milliseconds. Figure 3 shows
the graph of the average response time from two testing
scenarios.

The average response time for LC is smaller than
LC-MAS when executing 500 and 1,000 requests. The
difference is quite large. It is 306.61 milliseconds
for 500 requests and 484.62 milliseconds for 1,000
requests. Several factors affect higher average response
time in LC-MAS. First, the backend server that exe-
cutes requests always changes based on load conditions
and the smallest number of active connections. This ac-
tivity makes the system very busy, so a delay affects the
time for the following request to be executed. Second,
log data show that requests have response times above
1,000 milliseconds executed by the backend server

249

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

10

Figure 6 Average response time graph.

The average response time for LC is smaller than LC-MAS when executing 500 and 1,000

requests. The difference is quite large. It is 306.61 milliseconds for 500 requests and 484.62

milliseconds for 1,000 requests. Several factors affect higher average response time in LC-

MAS. First, the backend server that executes requests always changes based on load conditions

and the smallest number of active connections. This activity makes the system very busy, so a

delay affects the time for the following request to be executed. Second, log data show that

requests have response times above 1,000 milliseconds executed by the backend server with

the highest load. Meanwhile, requests that have response times below 500 milliseconds are

executed by a new backend server with a small load and a number of connections.

Nevertheless, the average response time of LC-MAS is smaller than LC when executing 1,500

requests. A higher average response time for the LC scenario caused by the load balancer

distributes the requests only based on the currently active connections. It is without considering

whether the load condition is normal or overloaded.

B. Throughput (TPS)

Throughput testing aims to find out how many transactions or requests can be processed by the

server’s amount of time. In the research, throughput value information provides knowledge of

how tough the servers are in processing requests in one second. The time is calculated from

the beginning of the first request to the end of the last request. It also includes the interval

between the requests. A greater throughput value indicates that the system works well. Figure

7 shows the throughput graph of both scenarios.

341.92

518.23

1022.73

35.31 33.61

1618.83

0

200

400

600

800

1000

1200

1400

1600

1800

500 1000 1500

A
v

e
ra

g
e

 R
e

sp
o

n
se

 T
im

e
 i

n
 m

s

Number of Requests

Average Response Time

Scenario 1 Scenario 2

Fig. 3. Average response time graph.

11

Figure 7 Throughput graph.

The throughput value of LC is indeed greater than LC-MAS. Backend servers can serve more

requests in one second, so the duration needed to execute entire requests is shorter than LC-

MAS. However, high throughput values lead to higher response time. The number of requests

per second for each scenario is shown as follows. First, it is for 500 requests. The ramp-up time

set to send 500 requests is 10 seconds, where the time interval for each request is 0.02 seconds

(10/500). Figures 8 and 9 show the number of requests per second that the backend server of

each scenario can execute. Based on the graphs, the average number of requests executed by

the two scenarios is 50 per second.

Figure 8 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 500

requests.

50.46 96

123.72

50.87

104.19

219.59

0

50

100

150

200

250

500 1000 1500T
h

ro
u

g
h

p
u

t
in

 t
ra

n
sa

ct
io

n
 p

e
r

se
co

n
d

Number of requests

Throughput (TPS)

Scenario 1 Scenario 2

Fig. 4. Throughput graph.

with the highest load. Meanwhile, requests that have
response times below 500 milliseconds are executed by
a new backend server with a small load and a number
of connections.

Nevertheless, the average response time of LC-MAS
is smaller than LC when executing 1,500 requests.
A higher average response time for the LC scenario
caused by the load balancer distributes the requests
only based on the currently active connections. It
is without considering whether the load condition is

normal or overloaded.

B. Throughput (TPS)

Throughput testing aims to find out how many trans-
actions or requests can be processed by the server’s
amount of time. In the research, throughput value infor-
mation provides knowledge of how tough the servers
are in processing requests in one second. The time
is calculated from the beginning of the first request
to the end of the last request. It also includes the

250

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

11

Figure 7 Throughput graph.

The throughput value of LC is indeed greater than LC-MAS. Backend servers can serve more

requests in one second, so the duration needed to execute entire requests is shorter than LC-

MAS. However, high throughput values lead to higher response time. The number of requests

per second for each scenario is shown as follows. First, it is for 500 requests. The ramp-up time

set to send 500 requests is 10 seconds, where the time interval for each request is 0.02 seconds

(10/500). Figures 8 and 9 show the number of requests per second that the backend server of

each scenario can execute. Based on the graphs, the average number of requests executed by

the two scenarios is 50 per second.

Figure 8 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 500

requests.

50.46 96

123.72

50.87

104.19

219.59

0

50

100

150

200

250

500 1000 1500T
h

ro
u

g
h

p
u

t
in

 t
ra

n
sa

ct
io

n
 p

e
r

se
co

n
d

Number of requests

Throughput (TPS)

Scenario 1 Scenario 2

Fig. 5. Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 500 requests.

12

Figure 9 Least Connection (LC) transaction per second for 500 requests.

Second, the ramp-up time set to send 1,000 requests is 10 seconds, where the time interval

for each request is 0.01 seconds (10/1,000). Figures 10 and 11 show the number of requests

per second that the backend server of each scenario can execute. Based on the graphs, the

average number of requests executed by the two scenarios is 100 per second.

Figure 10 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,000

requests.

Fig. 6. Least Connection (LC) transaction per second for 500 requests.

interval between the requests. A greater throughput
value indicates that the system works well. Figure 4
shows the throughput graph of both scenarios.

The throughput value of LC is indeed greater than
LC-MAS. Backend servers can serve more requests
in one second, so the duration needed to execute
entire requests is shorter than LC-MAS. However, high
throughput values lead to higher response time. The
number of requests per second for each scenario is
shown as follows. First, it is for 500 requests. The
ramp-up time set to send 500 requests is 10 seconds,
where the time interval for each request is 0.02 seconds
(10/500). Figures 5 and 6 show the number of requests

per second that the backend server of each scenario
can execute. Based on the graphs, the average number
of requests executed by the two scenarios is 50 per
second.

Second, the ramp-up time set to send 1,000 requests
is 10 seconds, where the time interval for each request
is 0.01 seconds (10/1,000). Figures 7 and 8 show the
number of requests per second that the backend server
of each scenario can execute. Based on the graphs,
the average number of requests executed by the two
scenarios is 100 per second.

Third, it has 1,500 requests. The ramp-up time
set to send 1,500 requests is 10 seconds, with the

251

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

12

Figure 9 Least Connection (LC) transaction per second for 500 requests.

Second, the ramp-up time set to send 1,000 requests is 10 seconds, where the time interval

for each request is 0.01 seconds (10/1,000). Figures 10 and 11 show the number of requests

per second that the backend server of each scenario can execute. Based on the graphs, the

average number of requests executed by the two scenarios is 100 per second.

Figure 10 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,000

requests.

Fig. 7. Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,000 requests.

13

Figure 11 Least Connection (LC) transaction per second for 1,000 requests.

Third, it has 1,500 requests. The ramp-up time set to send 1,500 requests is 10 seconds,

with the time interval for each request being 0.007 seconds (10/1,500). Figures 12 and 13

illustrate the number of requests per second that the backend server of each scenario can

execute. Based on the graphs, the average number of requests executed by LC-MAS

scenario is 125 requests per second. Meanwhile, LC scenario is 250 requests per second.

Figure 12 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,500

requests.

Fig. 8. Least Connection (LC) transaction per second for 1,000 requests.

time interval for each request being 0.007 seconds
(10/1,500). Figures 9 and 10 illustrate the number of
requests per second that the backend server of each
scenario can execute. Based on the graphs, the average
number of requests executed by LC-MAS scenario is
125 requests per second. Meanwhile, LC scenario is
250 requests per second.

The backend server’s ability to execute requests
increases along with the increased number of requests.
The distribution of requests handled by each server
per second is more equal in both scenarios for 500
and 1,000 requests. It proves that the presence of
a load balancing mechanism has succeeded in dis-
tributing requests equally without any of the servers

being overloaded. However, when executing 1,500
requests, the distribution of requests in scenario 2
(LC) is unequal. The number of requests executed in
the first, second spikes high and decreases drastically
in the next second. It is caused by the distribution
process based only on the number of active connections
without considering the condition of server resources.
The server that executes the request becomes burdened
because only one node works to execute all requests in
the first second. This imbalance causes some requests
to fail to be executed and leads to higher error values.

252

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

13

Figure 11 Least Connection (LC) transaction per second for 1,000 requests.

Third, it has 1,500 requests. The ramp-up time set to send 1,500 requests is 10 seconds,

with the time interval for each request being 0.007 seconds (10/1,500). Figures 12 and 13

illustrate the number of requests per second that the backend server of each scenario can

execute. Based on the graphs, the average number of requests executed by LC-MAS

scenario is 125 requests per second. Meanwhile, LC scenario is 250 requests per second.

Figure 12 Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,500

requests.

Fig. 9. Least Connection algorithm and Multi-Agent System (LC-MAS) transaction per second for 1,500 requests.

14

Figure 13 Least Connection (LC) transaction per second for 1,500 requests.

The backend server’s ability to execute requests increases along with the increased number of

requests. The distribution of requests handled by each server per second is more equal in both

scenarios for 500 and 1,000 requests. It proves that the presence of a load balancing mechanism

has succeeded in distributing requests equally without any of the servers being overloaded.

However, when executing 1,500 requests, the distribution of requests in scenario 2 (LC) is

unequal. The number of requests executed in the first, second spikes high and decreases

drastically in the next second. It is caused by the distribution process based only on the number

of active connections without considering the condition of server resources. The server that

executes the request becomes burdened because only one node works to execute all requests

in the first second. This imbalance causes some requests to fail to be executed and leads to

higher error values.

C. Error (%)

Error testing checks whether the system can handle errors that may occur in the future. Error

testing refers to the number of failed requests or not processed by the system. The error value

is obtained from the number of failed requests to be executed divided by the total requests

multiplied by 100%. There is no error in both scenario when executing 500 and 1,000 requests.

However, errors in both scenarios occur when the system handles 1,500 requests. Figure 14

shows the error percentage in the LC-MAS scenario.

Fig. 10. Least Connection (LC) transaction per second for 1,500 requests.

C. Error (%)

Error testing checks whether the system can handle
errors that may occur in the future. Error testing refers
to the number of failed requests or not processed
by the system. The error value is obtained from the
number of failed requests to be executed divided by
the total requests multiplied by 100%. There is no
error in both scenario when executing 500 and 1,000
requests. However, errors in both scenarios occur when
the system handles 1,500 requests. Figure 11 shows the
error percentage in the LC-MAS scenario.

The total number of failed requests to be processed
by backend servers is 301 over 1,500 requests. The
type of error is 502 Bad Gateway, which occurs in

HTTP protocol. It is caused by several conditions,
such as overloaded servers due to a high number of
visitors trying to access the website simultaneously
and agent activity, affecting CPU and memory usage.
Agent activity in every 500 milliseconds communicates
with each other to monitor the load condition, affecting
the percentage of CPU and memory usage. A high
percentage value can produce a large response time and
lead to system failure in handling requests because it
takes too long to respond to requests. Reporting agents
must report the backend server resources condition
every three seconds, and the main agent must receive
that continuously, so the server is too busy when a
request comes. It causes the requests to be unable to

253

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

FIG 14

Fig. 11. Least Connection algorithm and Multi-Agent System (LC-
MAS) error percentage.

FIG 15

Fig. 12. Least Connection (LC) error percentage

be executed, and response time will become higher.

Figure 12 shows the error percentage in the LC
scenario. The total number of failed requests to be pro-
cessed by backend servers is 310, over 1,500 requests.
The type of errors is categorized into three types, as
shown in Table I. First, the load balancer address fails
to respond because the server is very busy serving
incoming requests. The load balancer is busy mapping
incoming requests, which should be handled next. The
load balancer also has to count the smallest number of
active connections, so it has too many tasks. Second,
the connection reset is caused by Apache JMeter. It
fails to receive responses to requests sent. Connection
times are out while requests are processed, so it needs
to be repeated to complete the entire request. Third,
it occurs when the network connection is not stable.
This error message indicates that the server does not
wait for any data from a client. It is rare and cannot
be predictable. In some cases, rebooting or restarting
the system is one of the options to solve this problem.

TABLE I
ERROR TYPES IN LEAST CONNECTION (LC) SCENARIO.

No Error Message Number of Error %

1 Non-HTTP response message:
10.163.12.122:80 failed to re-
spond

268 17.87

2 Non-HTTP response message:
Connection reset

39 2.60

3 Non-HTTP response message:
Software caused connection
abort: receive failed

3 0.20

Total 310 20.67

IV. CONCLUSION

The research develops a new mechanism for bal-
ancing server workloads on website applications by
combining the LC algorithm and MAS (LC-MAS),
and the result is compared with the LC algorithm.
The proposed mechanism is tested by sending several
requests to determine the performance of the mech-
anisms. Parameters used to measure the performance
are the average value of response time, throughput, and
error percentage.

Based on the results and analysis, it can be con-
cluded that the new mechanism developed using the
LC-MAS has successfully distributed the workloads
and resources more than the LC algorithm. The com-
bination is proven to perform better regarding response
time and error percentage when the number of requests
increases. The number of requests that the servers
execute is also equally distributed every second. Ad-
ditionally, the error value is much smaller than in
other scenarios. It indicates that it is more resilient
in handling increasing requests. Utilization of system
resources becomes more efficient than before without
burdening any of the servers.

The LC mechanism produces better response times
and higher throughput when executing 1,000 requests.
However, the performance of this mechanism decreases
as the number of requests increases. LC-MAS scenario
provides an average response time for 1,500 requests
with 1338.8 milliseconds. It has a 20.07% error and
125 transactions per second. However, the LC-MAS
makes the website application performance much bet-
ter when the requests increase. When distributing re-
quests, the server resource condition is not considered,
so the servers become burdened. This mechanism is
more suitable for small environments with the same
specification.

There are some limitations to the research. The
environment is still local so the testing results are
not in real-time condition and the hardware capacity
must be increased to get better storage sharing. The
research can be improved by testing the mechanism

254

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.
with more parameters, such as scalability and master
and slave concept. It is better to add more testing
scenarios and increase the number of users tested. For
the next challenge, it is recommended to implement
the cloud environment for a better experience.

REFERENCES

[1] D. Arnaldy and T. S. Hati, “Performance analysis
of reverse proxy and web application firewall
with telegram bot as attack notification on web
server,” in 2020 3rd International Conference on
Computer and Informatics Engineering (IC2IE).
Yogyakarta, Indonesia: IEEE, Sept. 15–16, 2020,
pp. 455–459.

[2] M. R. M. Bella, M. Data, and W. Yahya, “Web
server load balancing based on memory utiliza-
tion using Docker swarm,” in 2018 International
Conference on Sustainable Information Engineer-
ing and Technology (SIET). Malang, Indonesia:
IEEE, Nov. 10–12, 2018, pp. 220–223.

[3] N. K. C. Das, M. S. George, and P. Jaya, “Incor-
porating weighted round robin in honeybee algo-
rithm for enhanced load balancing in cloud en-
vironment,” in 2017 International Conference on
Communication and Signal Processing (ICCSP).
Chennai, India: IEEE, April 6–8, 2017, pp. 0384–
0389.

[4] L. H. Pramono, R. C. Buwono, and Y. G. Wask-
ito, “Round-Robin algorithm in HAProxy and
Nginx load balancing performance evaluation: A
review,” in 2018 International Seminar on Re-
search of Information Technology and Intelligent
Systems (ISRITI). Yogyakarta, Indonesia: IEEE,
Nov. 21–22, 2018, pp. 367–372.

[5] P. Geetha and C. R. R. Robin, “A comparative-
study of load-cloud balancing algorithms in cloud
environments,” in 2017 International Conference
on Energy, Communication, Data Analytics and
Soft Computing (ICECDS). Chennai, India:
IEEE, Aug. 1–2, 2017, pp. 806–810.

[6] K. S. Chaudhury, S. Pattnaik, H. S. Moharana,
and S. Pradhan, “Static load balancing algorithms
in cloud computing: Challenges and solutions,” in
Soft Computing and Signal Processing: Proceed-
ings of 2nd ICSCSP 2019. Hyderabad, India:
Springer, June 21–22, 2020, pp. 259–265.

[7] S. Jain and A. K. Saxena, “A survey of load
balancing challenges in cloud environment,” in
2016 International Conference System Modeling
& Advancement in Research Trends (SMART).
Moradabad, India: IEEE, Nov. 25–27, 2016, pp.
291–293.

[8] M. Afriansyah, M. Somantri, and M. A. Riyadi,
“Model of load balancing using reliable algorithm

with multi-agent system,” in IOP Conference
Series: Materials Science and Engineering, vol.
190, no. 1. IOP Publishing, 2017, pp. 1–8.

[9] M. E. Mustafa, “Load balancing algorithms
Round-Robin (RR), leastconnection, and least
loaded efficiency,” Computer Science & Telecom-
munications, vol. 51, no. 1, pp. 25–29, 2017.

[10] S. Ajitha, “Methodology for load balancing in
multi-agent system using SPE approach,” in Se-
curity issues and privacy concerns in Industry 4.0
applications. Wiley Online Library, 2021, ch. 11,
pp. 207–227.

[11] S. K. Saeid and T. A. Yahiya, “Load balancing
evaluation tools for a private cloud: A compara-
tive study,” ARO-The Scientific Journal of Koya
University, vol. 6, no. 2, pp. 13–19, 2018.

[12] I. K. A. and Y. Rosmansyah, “Web server farm
design using Personal Computer (PC) desktop,”
in 2018 10th International Conference on Infor-
mation Technology and Electrical Engineering
(ICITEE). Bali, Indonesia: IEEE, July 24–26,
2018, pp. 106–111.

[13] J. M. Faustina, B. Pavithra, S. Suchitra, and
P. Subbulakshmi, “Load balancing in cloud envi-
ronment using self-governing agent,” in 2019 3rd

International Conference on Electronics, Com-
munication and Aerospace Technology (ICECA).
Coimbatore, India: IEEE, June 12–14, 2019, pp.
480–483.

[14] L. Zhu, J. Cui, and G. Xiong, “Improved dy-
namic load balancing algorithm based on least-
connection scheduling,” in 2018 IEEE 4th Infor-
mation Technology and Mechatronics Engineer-
ing Conference (ITOEC). Chongqing, China:
IEEE, Dec. 14–16, 2018, pp. 1858–1862.

[15] J. Cao, Y. Sun, X. Wang, and S. K. Das, “Scal-
able load balancing on distributed web servers
using mobile agents,” Journal of Parallel and
Distributed Computing, vol. 63, no. 10, pp. 996–
1005, 2003.

APPENDIX

The Appendice can be seen in the next page.

255

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

Fig. A1. Research stages.

256

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

 FIG 2

Fig. A2. Multi-Agent System workflow.

257

Cite this article as: A. R. Rahmika, Z. Tahir, A. W. Paundu, and Z. Zainuddin, “Web Server Load Balancing
Mechanism with Least Connection Algorithm and Multi-Agent System”, CommIT Journal 17(2), 245–258,
2023.

 FIG 4 Fig. A3. Least Connection algorithm and Multi-Agent System (LC-MAS) scenario.

258

	Introduction
	Research Method
	Research Stages
	Least Connection (LC) Algorithm
	Multi-Agent System (MAS)
	Architecture
	Testing Scenarios

	Results and Discussion
	Average Response Time
	Throughput (TPS)
	Error (%)

	Conclusion

