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Abstract—Human-Computer Interaction (HCI) nowa-
days mostly uses physical contact, such as people using
the mouse to choose something in an application. How-
ever, there are certain problems that people face in using
conventional HCI. The research tries to overcome some
problems when people use conventional HCI using the
computer vision method. The research focuses on creating
and evaluating the object detection model for classifying
hand symbols. The research applies the fifth version of
YOLO with the architecture of YOLOv5m to classify
hand symbols in real time. The methods are divided into
three steps. Those steps are dataset creation consisting of
100 images in each class, training phase, and performance
evaluation of the model. The hand gesture classes made
in the research are ‘ok’, ‘cancel’, ‘previous’, ‘next’, and
‘confirm’, the dataset is made by the researchers custom.
After the training phase, the validation results show 93%
for accuracy, 99% for precision, 100% for recall, and
99% for F1 score. Meanwhile, in real-time detection, the
performance of the model for classifying hand symbols
is 80% for accuracy, 95% for precision, 84% for recall,
and 89% for F1 score. Although there are differences, it
still acceptable for the research and can be improved in
future research.

Index Terms—Hand Symbol Classification, Human-
Computer Interaction, YOLO Fifth Version, Object De-
tection

I. INTRODUCTION

HAND gestures are a medium of communica-
tion used by people with disabilities but can

also be used with computers for some purposes [1].
Communication with computers is generally known
as Human-Computer Interaction (HCI). It typically
requires physical contact, such as using a mouse,
keyboard, and touch screen [2, 3]. However, along
with the development of conventional HCI technology,
there are several obstacles, such as wet or dirty hands
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touching the device. As a result, it can cause the
device to be cloudy or even damaged. Contactless
HCI can overcome these problems. Several methods
can be used for contactless HCI, such as computer
vision techniques, voice control using speech recogni-
tion, wearable devices, and external sensors like radar
sensors.

Hand gesture recognition can also take advantage of
wearable devices, such as smartwatches, radar sensors,
speech recognition, and others. The smartwatch has
several sensors, one of which is Inertial Measurements
Units (IMU). Its data can be used to detect hand move-
ments. Then, the specific algorithms can recognize the
data to determine the class of hand symbol [4]. The
radar sensor detects the movement of the hand and
converts the data into a 3D image. Then, the data are
classified to determine the hand symbols that detected
class [2]. Moreover, speech recognition is quite popular
to be applied in HCI. It uses artificial intelligence to
process what people say to translate it into words or
take some action on the computer or application [5].

The utilization of computer vision to recognize hand
gestures by utilizing a camera includes object detec-
tion, image segmentation, and pose estimation [6].
The object detection algorithm works by detecting
objects and classifying them by class. Meanwhile,
image segmentation detects the color of the hand and
classifies the type. Then, pose estimation detects points
from the human skeleton, such as the hand and body
skeleton.

Object detection is one of the most used computer
vision methods to recognize hand gestures and sign
language. For example, the third version of You Only
Look Once (YOLO) is used to recognize Indonesian
sign language using a pre-trained weight which is
darknnet53 [7]. The fourth version of YOLO controls
the music player application by recognizing hand ges-
tures [8]. The latest YOLO version, YOLOv5s (small),
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is used to recognize hand gestures. YOLOv5s is the
second smallest version of the fifth version of YOLO.
The performance is quite fast, but the accuracy is not
too high. So, modifying the backbone structure can
improve accuracy [9].

Hand segmentation has a workflow in that hand
color segmentation is performed on the image using
a glove. Then, the algorithm predicts the detected
hand shape to find the probability of a class and
the likelihood of being closest to a class. The algo-
rithm translates for action on the computer [10, 11].
Meanwhile, the algorithm of hand pose estimation
works by detecting the skeleton of the human hand
and measuring the relationship between the points
on the hand [12]. The object detection method for
hand symbol recognition in previous studies is YOLO
version 3 [1].

The hand symbol detection technique that has be-
come state-of-the-art uses computer vision. This tech-
nique is widely used to detect hand symbols because
users do not need to use wearable devices to move
freely. A computer vision algorithm can recognize the
movement of hand symbols through a camera, infrared
sensor, and depth sensor [6]. In addition, computer
vision algorithms are developing rapidly over time.

The researchers use computer vision with an object
detection method to recognize hand symbols in the
research. Computer vision is also quite popular these
days for its many applications, and it is still developed
further to support daily life. Object detection is a
computer vision method to recognize objects in an
image or video [13]. Types of object detection are
divided into two, namely single-stage and two-stage
detectors. The main difference lies in the computa-
tional load, which causes different speed and accuracy
performances. The single-stage detector has faster per-
formance than the two-stage detector algorithm, but the
accuracy of the two-stage detector is better [14]. The
single-stage detector also has a weakness. It does not
detect small objects very well [15]. Object detection
has two processes: object recognition and classification
processes against classes [10].

The object detection algorithm used in the research
is a single-stage detector, YOLO, instead of the two-
stage detector method. The researchers have a vi-
sion that this model can be applied to the Single
Board Computer (SBC) for the following research.
YOLO has a direct working stage initially. YOLO
will resize the image pixels, and the convolutional
network process is carried out on the resized image
results. The final output produced is the detected object
confidence [16]. Another reasonably popular single-
stage detector algorithm is the Mobnet SSD developed
by Tensorflow [9, 14]. The research objectives are to
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A. Dataset Creation 

The hand symbol dataset is created using an external webcam with a resolution of 1080 px. 

The dataset of the hand symbols consists of five classes, namely ‘ok’, ‘cancel’, ‘previous’, 

‘next’, and ‘confirm’. The creation of the hand symbol dataset is not based on the hand symbol 

used by persons with disabilities, but rather the researchers define the hand symbol themselves. 

Those five classes are chosen because they are general actions that the application has. The 

hand symbols visualization is shown in Figure 2. 

 

Fig. 1. Diagram block of the research.

create and evaluate the object detection model, the
fifth version of YOLO, to recognize and classify hand
symbols.

The contributions of the research are as follows.
First, it implements the fifth version of the YOLO algo-
rithm for hand symbol detection. Second, the research
can prove that YOLO can be further developed for
HCI. Third, it is the creation of a dataset hand symbol
to support HCI.

II. RESEARCH METHOD

A. Object Recognition Method

YOLO is a state-of-the-art single-stage detector.
Each version of YOLO has its advantages, namely
yolov1, as a first step to detecting objects in real-
time [16]. Next, the development of YOLO has be-
come YOLOv2 which increases its speed and accuracy
while making inferences [17]. Then, the subsequent
improvement in YOLOv3 is the model’s accuracy [18].
Moreover, the YOLOv4 has also been enhanced in
terms of the speed and accuracy of the model [19]. The
latest development of YOLO is YOLOv5. YOLOv5
uses a different framework, PyTorch. Meanwhile, the
previous version uses DarkNet. In addition, YOLOv5
has one architecture difference. The YOLOv5 uses a
focus structure with CSPdarknet53 for the backbone,
while YOLOv3 uses Darknet53, and YOLOv4 uses
CSPdarknet53. The focus structure has an effect that
can reduce the use of CUDA memory, reduce layers,
and increase forward propagation and backpropaga-
tion [20].

YOLO has a working method of dividing an image
into several small pieces: s × s grids. Each grid will
be responsible for the center point of the objects in
each grid. The algorithm gives a bounding box and
the confidence value of the detected object class in
the grid. When detecting an object, the confidence
value is the same as the Intersection Over Union (IOU)
obtained from the calculation between the bounding
box predictions and ground truth [15, 16].

B. Research Stage

The process for the research is shown in Fig. 1. It
is divided into three main processes: dataset creation,
training dataset, and model evaluation. Dataset creation
is the process of capturing images and labeling images
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Figure 2 (i) Cancel symbol, (ii) Previous symbol, (iii) Next symbol, (iv) Ok symbol, and (v) Confirm symbol. 

 

Figure 2 shows several symbols. First, all the fingers are up in the cancel symbol, and the palm 

faces the camera. Second, the previous symbol has the index finger pointed to the opposite of 

the hand. For example, when using the right hand, the person points to the left and vice versa. 

The remaining fingers are folded, and the back of the hand faces the camera. Third, in the next 

symbol, the thumb finger is up. The index finger is pointed to the opposite of the hand, and the 

remaining fingers are folded. The back of the hand also faces the camera. The difference 

between the previous and the next symbol is in the thumb finger. Fourth, the ok symbol shows 

the thumb and index finger shaping like O. The middle, ring, and little fingers are up, and the 

palm faces the camera. Last, in confirm symbol, the thumb finger is up, and the remaining 

fingers are folded. Then, the knuckle of the hand faces the camera. 

The researchers make their dataset of approximately 100 photos for each class. Then, 

datasets are divided for training and validation. The researchers created their dataset because 

there are not many datasets for hand symbols for HCI purposes according to the needs. The 

dataset is also made using the left and right hands to detect hand symbols from both hands. The 

comparison of the dataset between training and validation is 80%:20%. Then, after dividing 

into training and validation datasets, the researchers perform the labeling process using 

labelImg. The process of labeling is in every image captured by the webcam. All the labeled 

images are used in the training phase. 

 

Fig. 2. (i) Cancel symbol, (ii) Previous symbol, (iii) Next symbol,
(iv) Ok symbol, and (v) Confirm symbol.

into their classes. Then, all the labeled images are
trained using a pre-trained model with some param-
eters. The researchers separate the dataset into training
and validation data. Hence, the process of training
the dataset begins. Training the dataset uses the pre-
trained weight of the fifth version of YOLO. After the
training end, the researchers evaluate the model for
its performance. The evaluation process compares the
training data validation and inference process. Then,
the researchers give some conclusions regarding the
model’s performance from the evaluation step.

III. RESULTS AND DISCUSSION

A. Dataset Creation

The hand symbol dataset is created using an external
webcam with a resolution of 1080 px. The dataset of
the hand symbols consists of five classes, namely ‘ok’,
‘cancel’, ‘previous’, ‘next’, and ‘confirm’. The creation
of the hand symbol dataset is not based on the hand
symbol used by persons with disabilities, but rather
the researchers define the hand symbol themselves.
Those five classes are chosen because they are general
actions that the application has. The hand symbols
visualization is shown in Fig. 2.

Figure 2 shows several symbols. First, all the fingers
are up in the cancel symbol, and the palm faces the
camera. Second, the previous symbol has the index
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data of x, y, w, and h. Those values represent where the hand symbol is in the image. An 

example of those  

 

 
 

Figure 4 Result of the labeling process. 

 

B. Dataset Training 

The training phase is executed after all images have already been labeled according to their 

class. The training data process is carried out using Google Collab utilizing the Graphics 

Processing Unit (GPU). Google Collab provides a service for users to train models on the cloud. 

Besides GPU, there is also Tensor Processing Unit (TPU).  

The pre-training model used for the training is yolov5m with the following specifications: 

• Image size = 640 px 

• Mean Average Precision (mAP) 0.50:0.95 = 45.20 (0.5:0.95 means IoU threshold 

between 0.5 and 0.95) 

• Mean Average Precision (mAP) 0.5 = 63.9 (0.5 means the IoU threshold of 0.5) 

• Size: 40.7 M (size of the model) 

Then, the training process is carried out with the following parameters: 

• Image size = 416 px 

• Batch-size = 4 

• Epoch = 300 

• Weights = yolov5m.pt 

Fig. 3. Image labeling using labelImg.

finger pointed to the opposite of the hand. For example,
when using the right hand, the person points to the left
and vice versa. The remaining fingers are folded, and
the back of the hand faces the camera. Third, in the
next symbol, the thumb finger is up. The index finger is
pointed to the opposite of the hand, and the remaining
fingers are folded. The back of the hand also faces
the camera. The difference between the previous and
the next symbol is in the thumb finger. Fourth, the
ok symbol shows the thumb and index finger shaping
like O. The middle, ring, and little fingers are up, and
the palm faces the camera. Last, in confirm symbol,
the thumb finger is up, and the remaining fingers are
folded. Then, the knuckle of the hand faces the camera.

The researchers make their dataset of approximately
100 photos for each class. Then, datasets are divided
for training and validation. The researchers created
their dataset because there are not many datasets for
hand symbols for HCI purposes according to the needs.
The dataset is also made using the left and right hands
to detect hand symbols from both hands. The com-
parison of the dataset between training and validation
is 80%:20%. Then, after dividing into training and
validation datasets, the researchers perform the labeling
process using labelImg. The process of labeling is in
every image captured by the webcam. All the labeled
images are used in the training phase.

The labeling process is shown in Fig. 3. It begins
with blobbing the area of the hand symbol in the image
to specify the class. Then, the process is repeated for
every image. The blobbing area should be as minimum
as possible. So, training the model’s dataset is not
distracted by the background with too many images.
The labeling process is carried out for each image and
saved in .txt format to perform training models using
YOLO. The file contains class data of x, y, w, and h.
Those values represent where the hand symbol is in the
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image. An example of those values is shown in Fig. 4.

B. Dataset Training

The training phase is executed after all images
have already been labeled according to their class.
The training data process is carried out using Google
Collab utilizing the Graphics Processing Unit (GPU).
Google Collab provides a service for users to train
models on the cloud. Besides GPU, there is also Tensor
Processing Unit (TPU).

The pre-training model used for the training is
YOLOv5m with the following specifications:

• Image size = 640 px
• Mean Average Precision (mAP) 0.50:0.95 = 45.20

(0.5:0.95 means IoU threshold between 0.5 and
0.95)

• Mean Average Precision (mAP) 0.5 = 63.9 (0.5
means the IoU threshold of 0.5)

• Size: 40.7 M (size of the model)
Then, the training process is carried out with the

following parameters:
• Image size = 416 px
• Batch-size = 4
• Epoch = 300
• Weights = YOLOv5m.pt
• Cache = True
• Optimizer = Stochastic Gradient Descent (SGD)
• Data = Yet Another Markup Language (YAML)

file containing directory path of train, validation,
and hand symbol classes

YOLOv5m’s architecture shown in Fig. 5 consists
of three main parts: backbone, neck, and head. In
the backbone, YOLOv5m uses multiple convolutional
layers and C3 modules (which can be regarded as the
specific implementation of Cross Stage Partial Net-
work). Spatial Pyramid Pooling Fast (SPPF) layers are
used between the neck and head part. Finally, the head
part uses multiple convolutional layers, up-sampling
resolution, concatenation operations, C3 modules, and
detection layer. The hyperparameters are as follows.

• lr0= 0.01
• lrf= 0.1
• momentum= 0.937
• weight decay= 0.0005
• warmup epochs= 3.0
• warmup momentum= 0.8
• warmup bias lr= 0.1
• box= 0.05
• cls= 0.5
• cls pw= 1.0
• obj= 1.0
• obj pw= 1.0

• iou t= 0.2
• anchor t= 4.0
• fl gamma= 0.0
• hsv h= 0.015
• hsv s= 0.7
• hsv v= 0.4
• degrees= 0.0
• translate= 0.1
• scale= 0.5
• shear= 0.0
• perspective= 0.0
• flipud= 0.0
• fliplr= 0.5
• mosaic= 1.0
• mixup= 0.0
• copy paste = 0.0

The parameter of the training phase uses 416 px
instead of 640 px because it can reduce the computa-
tion process, so the model’s speed of classifying hand
symbols is faster. The parameter cache is assigned true
because it can make the training phase process faster.
Then, the data parameter is used to determine the
path of the training, validation data, and hand symbol
classes. The remaining parameters are defaulted by the
documentation. The duration of the training process
with 300 epochs completed in 4.412 hours or 4 hours
24.72 minutes.

After the training process is carried out, it will
produce a graph of precision, recall, F1 score, and
mAP. These graphs can interpret the performance of
the introduced model to recognize hand symbols. Pre-
cision is used to assess the model’s ability to recognize
hand symbols according to their class. For example, the
webcam capture ‘ok’, and the model can classify the
hand symbol correctly as ‘ok’. Then, mAP assesses
the model’s accuracy when making inferences with
certain IOU thresholds. The recall is used to assess
the model’s ability to recognize hand symbol objects
when they appear in the image. For example, the model
can classify ‘cancel’ correctly when the hand symbols
are captured on the webcam many times. The F1 score
assesses the balance of precision and recall. This metric
can be adjusted depending on the needs. For example,
if the model needs to be sensitive, the recall must be
higher.

Figure 6 is a metric of the overall training results and
a graph of the error reduction in object detection as the
training progresses. Table I shows in detail the metric
values shown in Fig. 6. It shows that the model has
accuracy in hand symbol detection of 0.927 (92.7%)
overall, with an IOU threshold between 0.5 and 0.95.
Then, a precision of 0.99 (99.90%) shows the model’s
ability to classify hand symbols according to their

46



Cite this article as: S. Wibowo and I. Sugiarto, “Hand Symbol Classification for Human-Computer Interaction
Using the Fifth Version of YOLO Object Detection”, CommIT Journal 17(1), 43–50, 2023.

5 

 
Figure 3 Image labeling using labelImg. 

 

The labeling process is shown in Figure 3. It begins with blobbing the area of the hand 

symbol in the image to specify the class. Then, the process is repeated for every image. The 

blobbing area should be as minimum as possible. So, training the model's dataset is not 

distracted by the background with too many images. The labeling process is carried out for each 

image and saved in .txt format to perform training models using YOLO. The file contains class 

data of x, y, w, and h. Those values represent where the hand symbol is in the image. An 

example of those  

 

 
 

Figure 4 Result of the labeling process. 

 

B. Dataset Training 

The training phase is executed after all images have already been labeled according to their 

class. The training data process is carried out using Google Collab utilizing the Graphics 

Processing Unit (GPU). Google Collab provides a service for users to train models on the cloud. 

Besides GPU, there is also Tensor Processing Unit (TPU).  

The pre-training model used for the training is yolov5m with the following specifications: 

• Image size = 640 px 

• Mean Average Precision (mAP) 0.50:0.95 = 45.20 (0.5:0.95 means IoU threshold 

between 0.5 and 0.95) 

• Mean Average Precision (mAP) 0.5 = 63.9 (0.5 means the IoU threshold of 0.5) 

• Size: 40.7 M (size of the model) 

Then, the training process is carried out with the following parameters: 

• Image size = 416 px 

• Batch-size = 4 

• Epoch = 300 

• Weights = yolov5m.pt 

Fig. 4. Result of the labeling process.

6 

• Cache = True 

• Optimizer = Stochastic Gradient Descent (SGD) 

• Data = Yet Another Markup Language (YAML) file containing directory path of train, 

validation, and hand symbol classes 

 

Figure 5 The yolov5m architecture adapted from [21]. 
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be regarded as the specific implementation of Cross Stage Partial Network). Spatial Pyramid 
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Fig. 5. The YOLOv5m architecture adapted from [21].

class. Meanwhile, a recall value of 1 (100%) indicates
the model’s ability to detect hand symbols in an image.
It interprets the model’s ability to predict each time
an object appears. Then, an F1 score of 0.99 (99%)
means the balance of the value of precision and recall
so that it is close to 100%. However, the results of these
metrics will decrease if the real-time inference is used
for several factors, such as different environmental
conditions (light, background, and others).

C. Inference Process
After completing the training, a model is produced

and ready to be used for inference. The inference
process is carried out on a laptop with the following
specifications. Then, the inference process is executed
using Visual Studio Code Terminal.

TABLE I
TRAINING DATASETS RESULT.

Class Precision Recall mAP mAP F1
@0.5 @0.5:0.95 Score

Cancel 0.998 1 0.995 0.984 0.999
Confirm 0.999 1 0.995 0.913 0.999
Next 0.999 1 0.995 0.949 0.999
Ok 1.000 1 0.995 0.878 1.000
Previous 0.998 1 0.995 0.909 0.999

All 0.999 1 0.995 0.927 0.999

• CPU: Intel(R) Core(TM) i7-8565U CPU @
1.80GHz 1.99 GHz

• RAM: 12.0 GB
• OS: Windows 10 Pro
• Webcam Supported
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D.  Discussion 

Fig. 6. Training result graph.

D. Discussion

The experiment is conducted by inference through a
live image from a webcam by testing each class from
a hand symbol 30 times. Tests are carried out at 1-
second intervals for each detection, and the dominant
class detected is determined. The experiment uses the
researchers’ hand, and it is also used for dataset cre-
ation in the same environment. The inference process is
run through the terminal with the following command:

• Source = 0 indicates the image source from the
webcam in real-time. It can be changed to an
image or video path,

• Weights = signLanguage v2.2.pt is the weight,
which is the result of the training process.
This model is based on the pre-trained model
YOLOv5m that is already declared in the training
phase.

• Img-size = 256 pixels is an adjustable image.
The value is less than the training phase because
the researchers need the model to classify hand
symbol classes as fast as possible. As a note, the
less value of img-size is, the faster the model
classifies the class. However, the accuracy of the
model can also decrease.

• Conf-thres = 0.70 is the threshold for confidence
level when classifying classes.

• Iou-thres = 0.70 is the threshold for IOU when
detecting an object that is stacked. This value

is assigned based on the training results that the
model has a high accuracy within the range of the
IoU threshold between 0.50 and 0.95.

Next, an experiment is conducted to measure several
data. It includes True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN).
These data are used to calculate accuracy, precision,
recall, and F1 scores. The calculation uses Eqs. (1)–
(4).

Accuracy =
TP + TN

TP + FP + FN + TN
, (1)

Precision =
TP

TP + FP
, (2)

Recall =
TP

TP + FN
, (3)

F1 Score = 2 ∗ Recall ∗ Precision
Recall + Precision

. (4)

Figure 7 shows the results metrics evaluation of
experiments carried out. Those metrics show that the
model sometimes classifies the wrong class. For ex-
ample, the webcam captures ‘cancel’, but the model
cannot recognize it. Furthermore, those metrics can be
calculated as accuracy, precision, recall, and F1 score.
The results of the calculations are shown in Table II.

The results show an accuracy level of 0.80 (80%). It
shows the model’s ability to predict the class correctly.
Then, the precision result is 0.95 (95%), which means
the model can classify hand symbols according to their
class quite well. Moreover, a recall of 0.84 (84%)
shows the model’s ability to detect hand symbols when

48



Cite this article as: S. Wibowo and I. Sugiarto, “Hand Symbol Classification for Human-Computer Interaction
Using the Fifth Version of YOLO Object Detection”, CommIT Journal 17(1), 43–50, 2023.

9 

The experiment was conducted by inference through a live image from a webcam by testing 

each class from a hand symbol 30 times. Tests were carried out at 1-second intervals for each 

detection, and the dominant class detected is determined. The experiment used the researchers’ 

hand, and it was also used for dataset creation in the same environment. The inference process 

is run through the terminal with the following command. 

 

python detect.py --source 0 --weights "signLanguage_v2.2.pt" --img-size 256 --conf-thres 

0.70 --iou-thres 0.70 --save-crop 

 

• Source = 0 indicates the image source from the webcam in real-time. It can be changed 

to an image or video path, 

• Weights = signLanguage_v2.2.pt is the weight, which is the result of the training 

process. This model is based on the pre-trained model yolov5m that is already declared 

in the training phase. 

• Img-size = 256 pixels is an adjustable image. The value is less than the training phase 

because the researchers need the model to classify hand symbol classes as fast as 

possible. As a note, the less value of img-size is, the faster the model classifies the class. 

However, the accuracy of the model can also decrease. 

• Conf-thres = 0.70 is the threshold for confidence level when classifying classes. 

• Iou-thres = 0.70 is the threshold for IOU when detecting an object that is stacked. This 

value is assigned based on the training results that the model has a high accuracy within 

the range of the IoU threshold between 0.50 and 0.95. 

 

Next, an experiment is conducted to measure several data. It includes True Positive (TP), 

True Negative (TN), False Positive (FP), and False Negative (FN). These data are used to 

calculate accuracy, precision, recall, and F1 scores. The calculation uses Eqs. (1)−(4). 

Accuracy =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 (1) 

 

Precision =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2) 

 

Recall     =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3) 

 

F1 Score =  2 ∗
𝑅𝑒𝑐𝑎𝑙𝑙 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
 (4) 

 

 
 

Figure 7 Multiclass confusion matrix. 

 

Error! Reference source not found.  

Cancel Confirm Next Ok Previous Background

Cancel 25 0 0 0 0 5

Confirm 0 26 4 0 0 0

Next 0 0 23 1 0 6

Ok 2 0 0 19 0 9

Previous 0 0 0 0 27 3

Background 0 0 0 0 0 0

Actual

Predicted

Fig. 7. Multiclass confusion matrix.

TABLE II
MODEL PERFORMANCE BASED ON EVALUATION METRICS

INFERENCE PROCESS.

Class Accuracy Precision Recall F1 Score

Cancel 0.83 1.00 0.83 0.91
Confirm 0.87 0.87 1.00 0.93
Next 0.77 0.96 0.79 0.87
Ok 0.63 0.90 0.68 0.77
Previous 0.90 1.00 0.90 0.95

Summary 0.80 0.95 0.84 0.89

TABLE III
COMPARISON OF TRAINING AND INFERENCE METRICS.

Metrics Validation After Training Inference from Webcam

Accuracy 0.93 0.8
Precision 0.99 0.95
Recall 1.00 0.84
F1 Score 0.99 0.89

it appears many times. Then, an F1 score of 0.89 (89%)
indicates that the precision value is higher than recall.
Therefore, the classification of hand symbols based on
class is more prioritized.

Table III compares the training results with the re-
sults of inference via a webcam directly. The accuracy
value of the training results is obtained from the mAP
value with a range of 0.50:0.95. When viewed from the
total metric comparison, the model’s performance has
decreased in accuracy from 92.70% to 80%. Then, it
also shows the precision from 99% to 95%, the recall
from 100% to 84%, and the F1 score from 99.90%
to 89%. The decrease in the model’s performance is
natural because sometimes the environment can affect
the process, such as light level, background color,
and others. Some solutions to increase the model’s
performance include increasing dataset creation for
each class, varying the angle of the image dataset,
using different hand sizes and colors, using different
backgrounds, and others.

IV. CONCLUSION

Hand symbols recognition using the object detection
method can be implemented for HCI purposes. The

researchers choose the fifth version of YOLO algo-
rithm to recognize hand symbols. The classes of the
hand symbols are ‘ok’, ‘cancel’, ‘previous’, ‘next’,
and ‘confirm’. The researchers use the pre-trained
model YOLOv5m and train it with the dataset of left-
right hands. The performance of the trained model for
classifying hand symbols is 80% for accuracy, 95% for
precision, 84% for recall, and 89% for F1 score.

Nevertheless, the research has limitation. The dataset
contains only the researchers’ hand characteristics,
whereas various hand characteristics should be added
to make the model more robust and accurate. Then,
in future research, the researchers can develop further
by adding datasets with different hands’ colors and
sizes (characteristics), environments, hyperparameters,
the latest yolo version architectures, and algorithms. In
addition, further research can also focus on making the
interface of the application that can be controlled using
hand gestures. Future research can add more classes of
hand symbols so it can support the advanced system.
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