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Abstract—The development of autonomous cars is
currently increasing along with the need for safe and
comfortable autonomous cars. The development of au-
tonomous cars cannot be separated from the use of
deep learning to determine the steering angle of an
autonomous car according to the road conditions it faces.
In the research, a Vision Transformer (ViT) model is
proposed to determine the steering angle based on images
taken using a front-facing camera on an autonomous
car. The dataset used to train ViT is a public dataset.
The dataset is taken from streets around Rancho Palos
Verdes and San Pedro, California. The number of images
is 45,560, which are labeled with the steering angle
value for each image. The proposed model can predict
steering angle well. Then, the steering angle prediction
results are compared using the same dataset with existing
models. The experimental results show that the proposed
model has better accuracy regarding the resulting MSE
value of 2,991 compared to the CNN-based model of
5,358 and the CNN-LSTM combination model of 4,065.
From the results of this experiment, the ViT model can
replace the existing model, namely the CNN model and
the combination model between CNN and LSTM, in
predicting the steering angle of an autonomous car.

Index Terms—Steering Angle Prediction, Autonomous
Car, Vision Transformer (ViT)

I. INTRODUCTION

HE development of autonomous cars today can-

not be separated from the search for models that
can provide safety and comfort for passengers [1, 2].
Autonomous cars are expected to run according to
road conditions and traffic ahead. For this reason,
the correct prediction of the autonomous car steering
angle is essential in presenting a safe and comfortable
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autonomous car to avoid a collision. Several previous
studies in the field of autonomous cars present pre-
dictions of steering angle using deep learning models.
The most widely used deep learning model is the
Convolutional Neural Network (CNN) model [3, 4].

Several previous studies use CNN to predict the
steering angle of autonomous cars [5-8]. In their
research, they directly predict the steering angle of an
autonomous car based on a sequence of raw images
captured by the front-facing camera. In their research,
CNN is used to extract spatial features and predict the
steering angle based on the feature extraction results.
A road image dataset with steering angle labels for
each image is used to train the CNN model. After the
training process, a CNN model obtained can predict the
steering angle based on road images taken using the
front-facing camera mounted on an autonomous car.

Although CNN is reliable and widely used for
image processing and extracting spatial feature tasks, it
performs poorly in processing time series data related
to temporal feature extraction. The process of detecting
and classifying time series data images cannot be car-
ried out properly by the CNN standard model [9, 10].
Several improvements to the CNN model in predicting
the steering angle have been made [11-13]. It com-
bines CNN with Long Short-Term Memory (LSTM) to
enhance the performance of autonomous car models.
Their research uses CNN to extract spatial features and
LSTM to extract temporal features. Their results show
that the combination of CNN and LSTM improves the
accuracy of the steering angle prediction model.

The development of deep learning models to predict
the steering angle of autonomous cars does not stop
here as deep learning models develop. Moreover, the
image data captured by the front-facing camera of an
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autonomous car is a large amount of time series data
and updates continuously. These image data are used
to predict the steering angle of the autonomous car.
The search for more accurate deep learning models
and low resources is still carried out. For this reason,
the research question can be formulated: What is the
most accurate deep learning model that requires low re-
sources to predict the steering angle of an autonomous
car?

The Transformer model, a sequence-to-sequence
model, was first introduced in 2017 [14]. Initially,
the Transformer model is used for Natural Language
Processing (NLP), such as machine translation [15,
16] and sentiment analysis [17, 18]. However, the
sequence-to-sequence model of this Transformer is
very suitable for processing time series data. In its
development in 2020, Vision Transformer (ViT) for
image processing, such as image detection and classi-
fication, was developed [19]. The ViT produces higher
accuracy with lower computational resources than the
pre-trained CNN ResNet model. Several previous stud-
ies using ViT for image processing and classification
have been carried out [20-23]. From the previous
research results, ViT can be used as a promising
alternative method to replace CNN with results that
are not inferior to CNN.

From the literature review mentioned, the ViT model
has never been used to predict the steering angle of an
autonomous car. The research discusses using the ViT
to predict steering angle based on road images taken
using a camera. Then, the research also compares the
results with the state-of-the-art model of the end-to-end
steering angle prediction model developed [5, 12].

II. RESEARCH METHOD

The proposed end-to-end model for predicting the
steering angle of an autonomous car using ViT can
be seen in Fig. 1. The images from the front-facing
camera mounted on the autonomous car are extracted
for its features related to steering angle prediction, such
as the cars in front, the roads, and the guardrails. The
steering angle is predicted for each image based on the
extraction results. The steering angle prediction result
and the corresponding image are displayed sequentially
on the simulator to form a video showing the road
and steering angle prediction. The predicted value is
compared with the actual value to see the accuracy
of the prediction results through the resulting Mean
Square Error (MSE) value.

The feature extraction process and steering angle
prediction are fully carried out by ViT. The ViT
architecture, as proposed by previous research [19], can
be seen in Fig. 2. Images captured by the autonomous
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Fig. 1. End-to-end steering angle prediction proposed model.

car’s camera are then patched and processed into ViT
sequentially.

It is assumed that the street image sequence is
S = {z;y;}}—,, where x is the street view image, and
y is the label of each image in the form of steering
angle value. The incoming image sequence is patched
into several parts. For each z-sized street view image
with certain dimensions of ¢ X h X w, it has ¢ as the
number of channels, h as the image height, and w
as the width of the image. Image patch processing is
carried out with certain dimensions of ¢ X p x p. It
consists of p as the patch size. The patch results are
made sequentially through the flattening process. This
patch forms a sequence of tokens (z1, x2, ..., x,)
with length n, where it is n = ’;—7“2”. The flattened
patch is reduced in size without losing any important
features. Then, the reduced flattened patch is converted
into a vector sequence by linear embedding, which can
be calculated by Eq. (1). It shows E as the learnable
embedding matriX, Z..ss as learnable classification
token, and .5 as positional information.

Z(] = [xclass; xlE; {EQE; e 7£UnE]+
Epos, E € RP-*D [ e RUHDZD (1)

)

The positional information (/) is added to main-
tain the spatial arrangement of each patch to be the
same as the original image. It represents the patch
position in the form of a serial number on each patch.
The output of the positional embedding is then fed
into the standard Transformer Encoder for feature
extraction.

The Transformer Encoder consists of Multi-Head
Attention (MHA) and Multi-Layer Perceptron (MLP),
where it previously places two layers in Layer Normal-
ization (LN), one before MHA and MLP. The LN is
used to speed up the training process through statistical
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Fig. 3. Attention mechanism [14].

data estimation [24]. The MLP consists of two dense

layers and uses the GeLu activation function. The

output of MHA can be represented by Eq. (2). Then,
the output of MLP can be shown by Eq. (3).

=MHA (LN (zp-1))+ Zy—1, L=1...L, (2)

= MLP (LN (2}))+ 2z, £=1...L, 3)

y=LN (z}). )

The output of the Transformer Encoder is written
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in Eq. (4). It has L. as the number of identical lay-
ers on the Transformer Encoder. The output of the
Transformer Encoder is then fed into the head of MLP
for detection or classification and prediction process.
The Transformer Encoder, as proposed by previous
research [14], cannot be separated from the nature of
the Transformer, namely the attention mechanism. The
attention mechanism has an architecture, as shown in

Fig. 3.
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Fig. 4. VIiT training process.

The attention mechanism performs vector mapping
of each image patch by weighting queries (@), keys
(K), and values (V). The output of the attention mech-
anism is the scaled-dot-product. It can be calculated
using Eq. (5) [19].

Attention (@, K, V') = softmax (QKT) V. (%)
s Vi )

Next, the use of MHA which is useful for improving
the performance of attention mechanisms is carried out
by combining attention mechanisms in parallel. MHA
can be calculated using Eq. (6). It shows W as the
weight matrices.

MultiHead(Q, K, V') = Concat
(head;, heads, . . ., head, )W,
head; = Attention(QW°, KW/, VWY).  (6)

ViT must be trained using a street image dataset
equipped with the actual steering angle label value to
obtain a steering angle prediction model based on street
image. Then, it can determine the steering angle in
each image captured by the camera. Details of the ViT
training process to predict steering angle can be seen
in Fig. 4.

The image used for the training process must be
preprocessed to remove unnecessary parts, such as
trees, buildings, and the sky, so that the prediction
process focuses more on the road and the objects in
it. In addition, resizing is also done to reduce the
pixel size of the image dataset without losing important
information in it. This resizing is useful for saving
storage space and speeding up the training process.
In the preprocessing step, image augmentation, such
as darkening and blurring, is also carried out to add to
the dataset combination. Hence, the model can predict
the steering angle at night, in bad weather, or on dusty
roads well. By adding these combinations, the model
can generalize better [25]. The complete preprocessing
steps can be seen in Fig. 5.

After the ViT model is trained, the ViT model can
predict the steering angle. It is according to the order
of the incoming street image sequence captured via a
front-facing camera on an autonomous car, as shown
in Fig. 6.

Street images Cropping and Darkening and

dataset " resizing [ blurring
Fig. 5. Preprocessing steps.
Street images Trained ViT Steering angle
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Fig. 6. ViT model for steering angle prediction.

III. RESULTS AND DISCUSSION

The results of the seven experiments are presented.
The first five experiments predict steering angle using
ViT and its modifications to find the most optimal
model. The most optimal model is compared with
two existing models. It consists of the CNN model
of end-to-end steering angle prediction developed by
NVIDIA [5] and the end-to-end CNN-LSTM com-
bination model developed by previous research [12]
through the sixth and seventh experiments.

The ViT model used is the 12-layer ViT-Base model
developed [19]. ViT-Base has 12 layers with a total
hidden size of 768, MLP size of 3.072, 12 heads, and
86M parameters. The reason for using this model is
because it has the fewest layers, with 12 layers. More-
over, the modifications use 9 Transformer Encoder
layers until 5 Transformer Encoder layers with 4 heads.
The expected optimal model has fewer layers and can
reduce the resulting latency. It is very suitable for the
steering angle prediction process, considering that the
amount of image data captured by the autonomous car
camera will change very quickly sequentially.

A public dataset (https://github.com/SullyChen/
driving-datasets) is used for the training process. The
dataset is taken from streets around Rancho Palos
Verdes and San Pedro, California. The number of
images is 45,560, which have been labeled with the
steering angle value for each image, as shown in Fig. 7.
Each image is 455x256 pixels.

Next, Fig. 8 shows the results of preprocessing the
dataset. The original image from the data set is cropped
and reduced in pixel size so that only the road image
remains. Then, the augmentation process is carried out
through darkening and blurring.

Using an Intel Core 17-3632QM 2.2GHz CPU, 8GB
RAM, and NVIDIA GeForce GT 620M GPU, the
training process lasts seven hours until a ViT model is
obtained to predict steering angle. The algorithm used
for ViT can be seen in Algorithm 1. The dataset used
is divided into several batch sizes. Then, each image in
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Fig. 7. Image datasets and label examples.

Algorithm 1 Vision Transformer
Vision Transformer (ViT)
Input: Street images with labels {xl.yi}?_1
Output: Predicted steering angle labels from the Street
images test
1. Setepoch to 300, set batch size to 25, learning rate to
0.001, Loss function Sparse Categorical Cross
Entropy, activation function Adam
2. Set image size to 32, patch size to 6, number of patch
= (image size : patch size)*2
3. Augmentation Process
4. For epoch = 1: number of epochs
4.1. For batch = 1: number of batches of training
datasets
e  Generate another batch of training datasets.
e  Train the ViT model.
e  Backpropagate the loss.
e Update VIiT parameter.
4.2. Update steering angle model prediction
5.  Steering angle label prediction

(b)

the dataset is reduced in size to speed up the training
process without losing important features in it.

Figure 9 shows the results of the image patch that
has been done. The image size is changed to 32x32,
Fig. 8. Dataset preprocessing results: (a) original, (b) cropped, (¢) ~and the patch size used is 6x6. It results in 25 patches
blur, and (d) dark. per image and 108 elements per image. Using a smaller
patch size increases the sequence length, which affects
latency [22].

Using the Adam activation function and Sparse

(d)
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Image size: 32 X 32
Patch size: 6 X 6
Patches per image: 25
Elements per patch: 108
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Fig. 9. Patch image results.

Categorical Cross Entropy loss function, 80% of the
dataset is used for training, 20% is for validation, and
the number of epochs used is 300. The training and
validation results can be seen in Table I and Fig. Al
in Appendix. The training results are highly convergent
for the modified ViT-Base with 8 Transformer Encoder
layers and the modified ViT-base model into 7 Trans-
former Encoder layers. There is no underfitting [26] or
overfitting [27]. It shows that the model can generalize
well [28]. In addition, there is a slight overfitting for the
modified ViT-Base model into 9, 6, and 5 Transformer
Encoder layers. Of the five models, modified ViT-Base
to 7 Transformer Encoder layers is the most optimal
model with the highest training and validation accuracy
value. The following experiment will use a modified
ViT-Base in 7 Transformer Encoder layers.

The examples of visualization results from the at-
tention map of each image can be seen in Fig. A2
in Appendix. The image on the left shows the original
image, while the image on the right shows the attention
map. The classification results focus on street views
on the road, such as road markings, traffic lights, road
fences, and cars. It can happen due to the augmentation
process during the training process.

Next, using a simple Python program, a simulator

TABLE I

TRAINING AND VALIDATION RESULTS.

Model Training Validation
Accuracy Loss  Accuracy Loss
1 ViT-Base modified to 0.778  0.506 0.787  0.461
4 heads and 9 Trans-
former Encoder layers
2 ViT-Base modified to 0.812  0.403 0.797  0.399
4 heads and 8 Trans-
former Encoder layers
3 ViT-Base modified to 0.813  0.405 0.810 0413
4 heads and 7 Trans-
former Encoder layers
4 ViT-Base modified to 0.813 0416 0.799  0.548
4 heads and 6 Trans-
former Encoder layers
5  ViT-Base modified to 0.803  0.395 0.792  0.535
4 heads and 5 Trans-
former Encoder layers
TABLE II
FPS RESULTS.
Model FPS
1 9 Transformer Encoder layers 23
2 8 Transformer Encoder layers 24
3 7 Transformer Encoder layers 24
4 6 Transformer Encoder layers 25
5 5 Transformer Encoder layers 25

is created to measure the performance of the proposed
model. This simulator does not use live images taken
through the camera but uses dataset images that have
been used for the training process. The simulator
displays dataset images sequentially to be displayed
like a video. It also displays the actual steering angle
values and predicts steering angle values complete with
steering wheel images to visualize steering angle pre-
dictions according to the sequence images displayed.
The simulator display can be seen in Fig. A3 in
Appendix.

The resulting Frames per Second (FPS) are also
compared for the five ViT models to see the fastest
processing time. The results are in Table II. The
resulting video output can reach more than 15 FPS
for all models. The modified ViT-Base into 6 and 5
Transformer Encoder layers have the highest FPS due
to the least number of layers. Thus, the prediction
results are real-time, so there are no problems with
processing time [29].

Next, the steering angle prediction results and its
comparison with the actual value can be seen in
Fig. 10. From the results of the graph comparison, it
can be seen that the predicted results of the steering
angle are close to the actual results based on the dataset
labels in each image.

Using the Mean Squared Error (MSE) calculation
according to Eq. (7), the MSE value is 2.991. It shows
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Fig. 10. Steering angle prediction result from the proposed model vs. actual steering angle.

n as the number of frames, Y as the actual value of
the steering angle, and Y as the prediction value of the
steering angle. This result is compared with existing
models to see the level of accuracy of this proposed
model.

n

MSE:%Z(m—ﬁ)Q.

i=1

)

A comparison of the MSE values is carried out using
two previously developed models, namely the model
developed by NVIDIA [5] and the model developed
by previous research [12], to find out the performance
of the proposed model more objectively. The NVIDIA
model uses a CNN model with nine layers consisting
of one LN, five convolutional layers, and three fully
connected layers. Meanwhile, the model by previous
research [12] has a combination of CNN with LSTM.
CNN extracts spatial features from image input se-
quences, and LSTM captures temporal information
from the image input. The network consists of five
convolutional layers, an LSTM layer, and three fully
connected layers.

The previous research [12] also compares the results
with a model developed by NVIDIA using real-world
datasets from Udacity. Although the research also
makes a comparison between the model proposed by
Jiang et al. [12] and developed by NVIDIA indirectly,
the datasets used are different and may affect accu-
racy [22, 30]. The results of comparing the predicted
steering angles of the three models with the actual
values can be seen in Table III and Fig. 11.

From Table III , the proposed model has the lowest
MSE value. It means the model has higher accuracy
than the model proposed by NVIDIA and Jiang et
al. [12] using the same dataset. The FPS generated are
all over 15 FPS, so there is no problem with processing

M O W = ~~N MO AN MO g MODODW oSN LW
A O NN OANOUWOMMNO S 0NN WO Oo
NS NN d NSO NMST OO o
N O AN OO0 AN N OMN0O NM S
S ANAN NN NN NN N MMM N N M S st s <
Frame

Our Model

TABLE IIT

COMPARISON RESULTS BETWEEN THE PROPOSED AND
PREVIOUS MODELS.

No  Model MSE  FPS
1 The proposed model 2.991 24
2 Jiang et al. [12] 4.065 24
3 NVIDIA 5.358 25

time. It can be used in real-time for autonomous
cars [29]. The sequence-to-sequence model from ViT
can be used to process time series image data to predict
the steering angle of an autonomous model in real-
time. It has higher accuracy than the CNN model
developed by NVIDIA and the combination of CNN
and LSTM developed by Jiang et al. [12].

IV. CONCLUSION

The proposed model can predict steering angle well
with an MSE value of 2.991 through a modified ViT-
Base model into 7 Transformer Encoder layers. Using
the same dataset, the proposed model gets better MSE
results compared to the model proposed by NVIDIA
and previous research. It is well received in terms of
processing time as it can reach 24 FPS for the research
model and model in previous research. Meanwhile,
the model developed by NVIDIA reaches 25 FPS.
From the results of this experiment, the ViT model
can be used to replace the existing model, namely
the CNN model and the combination model between
CNN and LSTM, in predicting the steering angle of
an autonomous car.

As a research limitation, this model is developed
in a simulator environment. Although this simulator
uses real road videos, it needs further adjustments,
such as model response speed in predicting steering
angles based on road conditions when applied to real
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Fig. 11. Comparison of the predicted steering angle results from the three models with the actual value: (a) all frame and (b) frame number

30,200-30,500 in detail.

autonomous cars. It is possible to add speed labels to
the dataset used. The model can predict not only the
steering angle but also the expected speed using dual
MLP outputs.

Further research can also be carried out using
datasets for different locations with more complex ob-
ject complexity on the street. For example, it can use a
larger number of vehicles and pedestrians. In addition,
further experiments can also be carried out during rainy
or dusty road conditions to see the resulting prediction
in predicting the steering angle.
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Fig. A3. Autonomous car simulator: (a) straight ahead; (b) turn left; (c) turn right.
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