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Abstract—Every country in the world needs to re-
port its fish production to the Food and Agriculture
Organization of the United Nations (FAO) every year.
In 2018, Indonesia ranked top five countries in fish
production, with 8 million tons globally. Although it ranks
top five, the fisheries in Indonesia are mostly dominated
by traditional and small industries. Hence, a solution
based on computer vision is needed to help detect and
classify the fish caught every year. The research presents
a method to detect and classify fish on mobile devices
using the YOLOv3 model combined with ResNet18 as a
backbone. For the experiment, the dataset used is four
types of fish gathered from scraping across the Internet
and taken from local markets and harbors with a total
of 4,000 images. In comparison, two models are used:
SSD-VGG and autogenerated model Huawei ExeML. The
results show that the YOLOv3-ResNet18 model produces
98.45% accuracy in training and 98.15% in evaluation.
The model is also tested on mobile devices and produces
a speed of 2,115 ms on Huawei P40 and 3,571 ms on
Realme 7. It can be concluded that the research presents
a smaller-size model which is suitable for mobile devices
while maintaining good accuracy and precision.

Index Terms—Fish Classification System, YOLOv3-
ResNet18 Model, Mobile Phone

I. INTRODUCTION

ACCORDING to the Food and Agriculture Orga-
nization of the United Nations (FAO), Indonesia

ranked top five countries in fish production with 8
million tons in 2018 [1]. All countries must monitor
and report fish caught every year to FAO to avoid
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overfishing. Although Indonesia is a maritime country
with 62% of the area covered by the sea, it is still
dominated by small-scale industries that use traditional
ships and equipment [2]. Hence, manual calculation is
still used to determine the total and type of caught fish.
It makes the report inaccurate.

To make the data and report more reliable and
accurate, computer vision, one of the famous research
topics, can help sailors and the Indonesian government
to calculate and classify the fish produced by small
industries. Computer vision is already used in other
fields, such as facial expression [3], healthcare [4,
5] and agriculture [6, 7]. Then, many researchers
propose their methods. The examples are Region-
Based Convolutional Neural Network (R-CNN) [8],
Fast R-CNN [9], Faster R-CNN [10] that use the Re-
gion Proposal Network method, Single Shot Detector
(SSD) [11], and You Only Look Once (YOLO) [12].
YOLO is one of favorite topics because it has fast
detection speed and retains good accuracy. It predicts
objects using a single neural network that divides into
multiple regions and predicts a boundary box for an
object in an image.

Many studies have also analyzed fish. For example,
YOLOv3 is used to detect underwater object recog-
nition [13]. Another research applies MobileNetv1 as
a backbone to detect and classify fish to produce
a more accurate and lightweight model [14]. Then,
there is an improved model of YOLOv3 by using
four detection scales, k-means ++ clustering, and
novel transfer learning [15]. Other improvements for
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YOLO, like YOLO Nano [16], YOLO-LITE [17],
YOLOv3-Lite [18], and YOLOv3 Tiny [19], make it
more suitable for low computational devices. However,
these methods are never really tested on low compu-
tational devices. Another method, ResNet, uses skip
connections to solve the vanishing gradient problem
in Deep Neural Networks [20]. With this method,
ResNet produces a significant accuracy. The inception
of ResNet V2 produces an accuracy of 96.12% in de-
tecting expiry date on food label [21]. Another research
also shows that ResNet-101 has 82.17% accuracy and
ResNet-152 has 82.12% accuracy on the PASCAL
VOC dataset [22].

The model that has been discussed before is mainly
optimized to be used on high computational devices.
Usually, when it comes to low computational devices,
such as mobile phones, it will significantly affect per-
formance. However, mobile phones have also become
more potent for computational tasks as technology
grows. The multi-core processor and dedicated GPUs
help mobile phones to become more capable of han-
dling the process of machine learning than before.
Currently, many high-end mobile devices have serious
computational overhead and battery drain when run-
ning a machine learning task.

There are several studies focused on low compu-
tational devices. The Tiny-YOLOv3 model is com-
pared on several platforms, such as TensorFlow Lite,
OpenCV, and SNPE on Android, and has an accuracy
of 33.1% on the COCO dataset and 33.8 MB file
size [23]. Another experiment tests YOLOv3 and Tiny-
YOLOv3 SSD models on DJI Drone and Android with
55.3% and 33.1% accuracy with 248 MB and 35.4
MB file sizes [24]. Then, Alexnet and Googlenet are
compared on the smartphone with 57.4% and 59.3%
accuracy with the Art Sculpture dataset [25]. Another
approach using SSD running on the smartphone to de-
tect 3D assets is conducted by achieving 75% accuracy
with a 22 MB file size [26]. Although it is possible
to achieve a model for low computational devices,
the research conducted by the previous researchers
shows that the small file size model that is suitable
for the smartphone but still has low accuracy. Hence,
the accuracy needs to be improved while retaining the
file size.

The research contributes to producing an accurate
and compatible model for mobile devices. The current
YOLOv3 model is modified to achieve the solution
by implementing the ResNet18 backbone to replace
the Darknet53. The model is also evaluated on mobile
devices to compare the inference time and memory
usage.
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modified to achieve the solution by implementing the ResNet18 backbone to replace the Darknet53. The model is also evaluated 
on mobile devices to compare the inference time and memory usage. 

II. RESEARCH METHOD 

The research method carried out in the experiment is explained. The YOLOv3 model with the Darknet53 backbone network 
is changed into the ResNet18 backbone to perform fish detection in the image dataset. The YOLOv3 model is famous for its 
detection speed, and the ResNet18 model has significant accuracy while having a smaller backbone than the YOLOv3 model 
[20][27]. 

A. You Only Look Once (YOLO) 

The convolution enables to compute prediction of an object in an image in an optimized way. This solution avoids using a 
sliding window to compute and predict the object. On the other hand, YOLO detects the object in the image by creating a 
bounding box for each detected object using a single neural network instead of predicting the box of the entire image [12][27][28]. 
YOLO uses the equations [1]-[4] to predict the bounding box. Those are also shown in Figure 1. The 𝑏𝑥 and 𝑏𝑦 represent the 

center coordinate. Then, 𝑏𝑤  is the width, and 𝑏ℎ  is the height of the predicted bounding box. The 𝑐𝑥  and 𝑐𝑦  are the top-left 

coordinates of the grid cell, and 𝑝𝑤 and 𝑝ℎ are the anchor dimensions. The equations can be seen as follows. 

𝑏𝑥 = 𝜎(𝑡𝑥) + 𝑐𝑥 , 

𝑏𝑦 =  𝜎(𝑡𝑦) + 𝑐𝑦 , 

𝑏𝑤 =  𝑝𝑤𝑒𝑡𝑤, 

𝑏ℎ =  𝑝ℎ𝑒𝑡ℎ . 

(1) 

(2) 

(3) 

(4) 

After the bounding box is predicted, the model also predicts the confidence score on the bounding box. The bounding box is 

then determined by assigning one predictor called ‘responsible’ to predict the object based on the highest Intersection over Union 

(IoU) with ground truth, as shown in Equation [5]. The value of IoU is generated by dividing the area overlap between area A, 

the predicted bounding box, and area B, the ground truth bounding box (𝐴 ∩ 𝐵), with the union of area A and area B (𝐴 ∪ 𝐵). 
However, some large objects sometimes create multiple bounding boxes. The multiple bounding boxes detected in the same 

object are reduced to one by using Non-Maximum Suppression (NMS) [29][22], as shown in Figure 2. The NMS reduces 

overlapping bounding boxes by comparing the IoU score to the threshold score (usually more than 0.6). If the IoU of the predicted 

boxes is lower than the threshold, the predicted box will be removed. After that, all the remaining boxes will be checked for the 

confidence score and compared to the confidence threshold score to reduce the boxes into one final predicting box. 

 

 

Fig. 1. Using YOLO to predict the bounding box with the anchor box by predicting the four coordinates of the bounding box (tx, ty, tw, th). The width and 

height of the box are offsets of the cluster centroid.  

𝐼𝑜𝑈 =  
𝐴 ∩ 𝐵

𝐴 ∪ 𝐵
 

(5) 

 

Fig. 1. Using YOLO to predict the bounding box with the an-
chor box by predicting the four coordinates of the bounding box
(tx, ty, tw, th). The width and height of the box are offsets of the
cluster centroid.

II. RESEARCH METHOD

The research method carried out in the experiment
is presented. The YOLOv3 model with the Darknet53
backbone network is changed into the ResNet18 back-
bone to perform fish detection in the image dataset.
The YOLOv3 model is famous for its detection speed,
and the ResNet18 model has significant accuracy
while having a smaller backbone than the YOLOv3
model [20, 27].

A. You Only Look Once (YOLO)

The convolution enables to compute prediction of an
object in an image in an optimized way. This solution
avoids using a sliding window to compute and predict
the object. On the other hand, YOLO detects the object
in the image by creating a bounding box for each
detected object using a single neural network instead
of predicting the box of the entire image [12, 27, 28].
YOLO uses Eqs. 1–4 to predict the bounding box.
Those are also shown in Fig. 1. The bx and by represent
the center coordinate. Then, bw is the width, and bh is
the height of the predicted bounding box. The cx and
cy are the top-left coordinates of the grid cell, and pw
and ph are the anchor dimensions. The equations can
be seen as follows.

bx = σ(tx) + cx, (1)
by = σ(ty) + cy, (2)
bw = pwe

tw , (3)
bh = phe

th . (4)
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Fig. 2. Removing the bounding boxes under a certain IoU threshold and the remaining bounding boxes under a certain confidence threshold by Non-Maximum 

Suppression (NMS) to produce the final bounding box.  

 

 

Fig. 3. Darknet53 backbone architecture as a feature extractor, mainly composed of 3×3 and 1×1 filters with the residual network to skip connections like in 

ResNet.  

Redmon then introduces YOLOv2 with changes of a fully connected layer to the anchor box and adds batch normalization to 
tackle the overfitting problem in YOLO [29]. The resolution used to detect also changes from 224×224 to 448×448. Next, the 
Darknet-19 frame is introduced as the neural network framework of YOLOv2, consisting of 19 convolutional layers and 5 max-
pooling layers. The accuracy of YOLOv2 increases from 63.4 to 78.6 mAP. In addition, the YOLOv3 model predicts 4 bounding 
box coordinates by using logistic regression to predict the score for each bounding box [30]. For class prediction, YOLOv3 uses 
an independent logistic classifier. Finally, the Darknet53 framework is introduced to replace YOLOv2 Darknet19 [28]. 

B. Residual Network (ResNet) 

ResNet was introduced in 2015 as a specific type of neural network [20]. The additional layers are stacked in the Deep Neural 
Networks to improve accuracy and performance, mostly to solve a complex problem. However, there is a maximum threshold 
for depth with the traditional convolutional neural network model, resulting in more errors. ResNet uses skip connections to solve 
the vanishing gradient problem in Deep Neural Networks by allowing alternate shortcut paths for the gradient to flow through. 

Table 1 ResNet Architecture. 

Layer Name Output Size 18-Layer 50-Layer 152-Layer 

Convolution 1 112x112 7x7, 64, Stride 2 

Convolution 2.x 56x56 3x3 Max Pool, Stride 2 

Fig. 2. Removing the bounding boxes under a certain IoU threshold and the remaining bounding boxes under a certain confidence threshold
by Non-Maximum Suppression (NMS) to produce the final bounding box.

After the bounding box is predicted, the model also
predicts the confidence score on the bounding box.
The bounding box is then determined by assigning
one predictor called ‘responsible’ to predict the object
based on the highest Intersection over Union (IoU)
with ground truth, as shown in Eq. 5. The value of
IoU is generated by dividing the area overlap between
area A, the predicted bounding box, and area B, the
ground truth bounding box (A ∩ B), with the union
of area A and area B (A ∪ B). However, some large
objects sometimes create multiple bounding boxes.
The multiple bounding boxes detected in the same
object are reduced to one by using Non-Maximum
Suppression (NMS) [22, 29], as shown in Fig. 2.
The NMS reduces overlapping bounding boxes by
comparing the IoU score to the threshold score (usually
more than 0.6). If the IoU of the predicted boxes is
lower than the threshold, the predicted box will be
removed. After that, all the remaining boxes will be
checked for the confidence score and compared to the
confidence threshold score to reduce the boxes into one
final predicting box.

IoU =
A ∩B

A ∪B
(5)

Redmon then introduces YOLOv2 with changes of
a fully connected layer to the anchor box and adds
batch normalization to tackle the overfitting problem in
YOLO [29]. The resolution used to detect also changes
from 224×224 to 448×448. Next, the Darknet-19
frame is introduced as the neural network framework
of YOLOv2, consisting of 19 convolutional layers
and 5 max-pooling layers. The accuracy of YOLOv2
increases from 63.4 to 78.6 mAP. In addition, the
YOLOv3 model predicts 4 bounding box coordinates
by using logistic regression to predict the score for each
bounding box [30]. For class prediction, YOLOv3 uses
an independent logistic classifier. Finally, the Dark-
net53 framework is introduced to replace YOLOv2
Darknet19 [28]. Figure 3 shows Darknet53 backbone
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Table 1 ResNet Architecture. 

Layer Name Output Size 18-Layer 50-Layer 152-Layer 

Convolution 1 112x112 7x7, 64, Stride 2 

Convolution 2.x 56x56 3x3 Max Pool, Stride 2 

Fig. 3. Darknet53 backbone architecture as a feature extractor,
mainly composed of 3×3 and 1×1 filters with the residual network
to skip connections like in ResNet.

architecture as a feature extractor, mainly composed of
3×3 and 1×1 filters with the residual network to skip
connections like in ResNet.

B. Residual Network (ResNet)

ResNet was introduced in 2015 as a specific type of
neural network [20]. The additional layers are stacked
in the Deep Neural Networks to improve accuracy
and performance, mostly to solve a complex problem.
However, there is a maximum threshold for depth with
the traditional convolutional neural network model,
resulting in more errors. ResNet uses skip connections
to solve the vanishing gradient problem in Deep Neural
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TABLE I
RESNET ARCHITECTURE.

Layer Name Output Size 18-Layer 50-Layer 152-Layer

Convolution 1 112×112 7×7, 64, Stride 2
Convolution 2.x 56×56 3×3 Max Pool, Stride 2[

3 × 3, 64
3 × 3, 64

]
× 2

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

 1 × 1, 64
3 × 3, 64
1 × 1, 256

 × 3

Convolution 3.x 28×28
[
3 × 3, 128
3 × 3, 128

]
× 2

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 4

1 × 1, 128
3 × 3, 128
1 × 1, 512

 × 8

Convolution 4.x 14×14
[
3 × 3, 256
3 × 3, 256

]
× 2

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 6

 1 × 1, 256
3 × 3, 256
1 × 1, 1024

 × 36

Convolution 5.x 7×7
[
3 × 3, 512
3 × 3, 512

]
× 2

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

 1 × 1, 512
3 × 3, 512
1 × 1, 2048

 × 3

1×1 Average Pool, 1000-d fc, Softmax

TABLE II
RESNET PERFORMANCE ON MOBILE DEVICES BY PREVIOUS

RESEARCH

Network Layers Speed (ms)

ResNet18 18 31.54
ResNet34 34 51.59
ResNet50 50 103.58
ResNet101 101 156.44
ResNet152 152 217.91

Networks by allowing alternate shortcut paths for the
gradient to flow through.

Inspired by VGG-19, ResNet architecture shown
in Table I uses a layer of plain network architec-
ture to which the shortcut connection is added. The
architecture is mainly composed of 3×3 convolution
with a fixed feature of map of 64, 128, 256, and
512, respectively and bypassing the input every two
convolutions. The difference between each ResNet type
(ResNet-18, ResNet-50, ResNet-152) is in convolution
2.x layer. There is an additional 1×1 convolution on
each step with a different feature map (256, 512, 1024,
2048). Additionally, in ResNet-152, the number of con-
volutions happens in convolution 3.x and convolution
4.x doubles up to 8 layers and 36 layers.

Another previous research, as shown in Table II,
compares the performance of several ResNet model
families [31]. The previous research is conducted using
a benchmark with a minibatch size of 16 and image
size of 224×224 and running on GTX 1080 with 8
GB of memory. The speed shown in Table II is the
total time for a forward and backward pass. Since
ResNet18 has a smaller layer than others, the speed
is relatively faster. Therefore, ResNet18 is used as the
based backbone for the solution model.

C. The Model

The standard YOLOv3 model is not entirely com-
patible with deployed on mobile devices [27]. As a
result, previous research decreases the depth of the
convolutional layer called YOLOv3-Tiny [19]. The
running speed significantly increases, but the detection
accuracy is reduced. YOLOv3-Tiny reduces the num-
ber of convolutional layers and uses a pooling layer.
Then, it divides the picture into S×S grid cells and
ignores the bounding box with not the best objectness
score. However, in the other method, the proposed
model tested on mobile devices still achieves low
accuracy [23–26]. To solve this problem, ResNet18 is
used since it produces the fastest speed in previous
research [31].

The YOLOv3-ResNet18 model loads the ResNet18
pre-trained model on ImageNet-1k. This model acts as
a feature extraction to replace the YOLO Darknet53
backbone, as seen in Fig. 4. The method uses pre-
trained model networks to initialize all layers, except
the top fully connected layer whose weights are ran-
domly initialized. As a result, the convolutional layer
for feature extraction is reduced to 18 layers deep.
The YOLOv3 classifier is used for the classifier layer
instead of the regular ResNet18 classifier layer. Then,
the result continues with detection layers with scale 1,
scale 2, and the same scale with the standard YOLOv3
model. The network is trained on the fish dataset to
detect and classify the fish on the images.

D. Single Shot Detector (SSD)

Proposed in 2016, SSD was a model based on a feed-
forward convolutional network that produced a fix-
sized bounding box, scored the class of each bounding
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Fig. 4. Darknet53 backbone changed into the ResNet18 backbone to reduce the convolution while retaining its detection speed.   

The YOLOv3-ResNet18 model loads the ResNet18 pre-trained model on ImageNet-1k. This model acts as a feature extraction 
to replace the YOLO Darknet53 backbone, as seen in Figure 4. The method uses pre-trained model networks to initialize all 
layers, except the top fully connected layer whose weights are randomly initialized. As a result, the convolutional layer for feature 
extraction is reduced to 18 layers deep. The YOLOv3 classifier is used for the classifier layer instead of the regular ResNet18 
classifier layer. Then, the result continues with detection layers with scale 1, scale 2, and the same scale with the standard 
YOLOv3 model. The network is trained on the fish dataset to detect and classify the fish on the images. 

D. Single Shot Detector (SSD) 

Proposed in 2016, SSD was a model based on a feed-forward convolutional network that produced a fix-sized bounding box, 
scored the class of each bounding box, and used non-max suppression to produce the final bounding box [11]. SSD uses multi-
scale feature maps to detect multiple scales, and the convolutional layers are added to the end truncated base network. SSD uses 
VGG-16 to extract feature maps from the image, followed by six convolutional layers. Conv4_3 layers are used to detect objects. 
SSD improvement is proposed by adding SSD to the MobileNet base network [34]. 

E. Huawei ExeML 

ExeML automates the model design, parameter tuning, training, compression, and deployment with already labeled data [35]. 
The process does not require the developer to code anything. It optimizes the model to use in the mobile device to produce the 
model with low inference time but still has decent accuracy. The developer only needs to upload the dataset and set the label for 
training. Then, Huawei processes the dataset with the auto-training feature and generates the model. Then, the model can be 
deployed to be used as API or downloaded to be embedded on mobile devices.  

F. The Dataset 

 

  

 

Fig. 5. The dataset collected from scraping on the Internet and taken from local markets and harbors. There are four classes: Katsuwonus Pelamis, Euthynuss 

Affinis, Coryphaena Hippurus, and Loligo Chinensis. Left image is Coryphaena Hippurus, and right image is Katsuwonus Pelamis.  

The dataset used in the experiment consists of 4,000 images with JPEG image encoding. The dataset is classified into four 
classes: Katsuwonus Pelamis, Euthynnus Affinis, Coryphaena Hippurus, and Loligo Chinensis. The examples are in Figure 5. 
The resolution for the image varies from low-resolution images (303×166) in the Katsuwonus Pelamis class to high-resolution 
images (1300×1011). Image dataset is gathered from scraping across the Internet and taken from local market and harbor. The 
image is then split into 80% for training, 10% for validation, and 10% for evaluation. 

III. RESULT AND DISCUSSION 

The dataset is prepared by giving the label to all images. In the research, all the labeling data and training processes are 
conducted on the Huawei cloud using respective labeling and training features. The specification used for training is NVIDIA-
V100 32GB GPU, 8vCPUs, and 64GB RAM. Then, the model is trained with 2,000 epochs, 32 batch sizes, and 0.0001 learning 
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box, and used non-max suppression to produce the
final bounding box [11]. SSD uses multi-scale feature
maps to detect multiple scales, and the convolutional
layers are added to the end truncated base network.
SSD uses VGG-16 to extract feature maps from the
image, followed by six convolutional layers. Conv4 3
layers are used to detect objects. SSD improvement
is proposed by adding SSD to the MobileNet base
network [32].

E. Huawei ExeML

ExeML automates the model design, parameter tun-
ing, training, compression, and deployment with al-
ready labeled data [33]. The process does not require
the developer to code anything. It optimizes the model
to use in the mobile device to produce the model with
low inference time but still has decent accuracy. The
developer only needs to upload the dataset and set the
label for training. Then, Huawei processes the dataset
with the auto-training feature and generates the model.
Then, the model can be deployed to be used as API or
downloaded to be embedded on mobile devices.

F. Dataset

The dataset used in the experiment consists of
4,000 images with JPEG image encoding. The dataset
is classified into four classes: Katsuwonus Pelamis,
Euthynnus Affinis, Coryphaena Hippurus, and Loligo
Chinensis. The examples are in Fig. 5. The resolu-
tion for the image varies from low-resolution images
(303×166) in the Katsuwonus Pelamis class to high-
resolution images (1300×1011). Image dataset is gath-
ered from scraping across the Internet and taken from
local market and harbor. The image is then split into
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ExeML automates the model design, parameter tuning, training, compression, and deployment with already labeled data [35]. 
The process does not require the developer to code anything. It optimizes the model to use in the mobile device to produce the 
model with low inference time but still has decent accuracy. The developer only needs to upload the dataset and set the label for 
training. Then, Huawei processes the dataset with the auto-training feature and generates the model. Then, the model can be 
deployed to be used as API or downloaded to be embedded on mobile devices.  

F. The Dataset 

 

  

 

Fig. 5. The dataset collected from scraping on the Internet and taken from local markets and harbors. There are four classes: Katsuwonus Pelamis, Euthynuss 

Affinis, Coryphaena Hippurus, and Loligo Chinensis. Left image is Coryphaena Hippurus, and right image is Katsuwonus Pelamis.  

The dataset used in the experiment consists of 4,000 images with JPEG image encoding. The dataset is classified into four 
classes: Katsuwonus Pelamis, Euthynnus Affinis, Coryphaena Hippurus, and Loligo Chinensis. The examples are in Figure 5. 
The resolution for the image varies from low-resolution images (303×166) in the Katsuwonus Pelamis class to high-resolution 
images (1300×1011). Image dataset is gathered from scraping across the Internet and taken from local market and harbor. The 
image is then split into 80% for training, 10% for validation, and 10% for evaluation. 

III. RESULT AND DISCUSSION 

The dataset is prepared by giving the label to all images. In the research, all the labeling data and training processes are 
conducted on the Huawei cloud using respective labeling and training features. The specification used for training is NVIDIA-
V100 32GB GPU, 8vCPUs, and 64GB RAM. Then, the model is trained with 2,000 epochs, 32 batch sizes, and 0.0001 learning 

Fig. 5. The dataset collected from scraping on the Internet and
taken from local markets and harbors. There are four classes:
Katsuwonus Pelamis, Euthynuss Affinis, Coryphaena Hippurus, and
Loligo Chinensis. Left image is Coryphaena Hippurus, and right
image is Katsuwonus Pelamis.

80% for training, 10% for validation, and 10% for
evaluation.

III. RESULTS AND DISCUSSION

The dataset is prepared by giving the label to all
images. In the research, all the labeling data and
training processes are conducted on the Huawei cloud
using respective labeling and training features. The
specification used for training is NVIDIA-V100 32GB
GPU, 8vCPUs, and 64GB RAM. Then, the model
is trained with 2,000 epochs, 32 batch sizes, and
0.0001 learning rates. Other models used to compare
YOLOv3-ResNet18 model performance are SSD-VGG
and Huawei ExeML. All models are also trained in
the same hyperparameter. In Table III, the YOLOv3-
ResNet18 model has a smaller file size than other
models. This small size is suitable for mobile devices.

In Table IV, the YOLOv3-ResNet18 model shows
better accuracy at 98.447%. In precision, Huawei
ExeML performs 0.198% better than the YOLOv3-
ResNet18 model. However, the YOLOv3-ResNet18
model performs better on recall with 96.52% and an
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TABLE III
TRAINING RESULTS.

Model Training Duration File Size

YOLOv3-ResNet18 11 hours, 21 minutes 63.10 Mb
SSD-VGG 12 hours, 3 minutes 234.97 Mb

Huawei ExeML 3 hours, 34 minutes 123.70 Mb

TABLE IV
COMPARISON OF TRAINING PERFORMANCE.

Model Accuracy Precision Recall F1 Score

YOLOv3-ResNet18 98.45% 98.45% 96.52% 97.48%
SSD-VGG 78.55% 77.37% 70.42% 77.39%

Huawei ExeML 93.99% 98.65% 89.11% 93.63%

rates. Other models used to compare YOLOv3-ResNet18 model performance are SSD-VGG and Huawei ExeML. All models 
are also trained in the same hyperparameter. In Table 3, the YOLOv3-ResNet18 model has a smaller file size than other models. 
This small size is suitable for mobile devices. 

 

Table 3 Training Results. 

Model Training Duration File Size 

YOLOv3-

ResNet18 
11 hours, 21 minutes 63.1 Mb 

SSD-VGG 12 hours, 3 minutes 234.97 Mb 

Huawei 

ExeML 
3 hours, 34 minutes 123.7 Mb 

 

Table 4 Comparison of Training Performance. 

Model Accuracy Precision Recall 
F1 

Score 

YOLOv3-

ResNet18 
98.45% 98.45% 96.52% 97.48% 

SSD-VGG 78.55% 77.37% 70.42% 77.39% 

Huawei 

ExeML 
93.99% 98.65% 89.11% 93.63% 

 

In Table 4, the YOLOv3-ResNet18 model shows better accuracy at 98.447%. In precision, Huawei ExeML performs 0.198% 
better than the YOLOv3-ResNet18 model. However, the YOLOv3-ResNet18 model performs better on recall with 96.52% and 
an F1 score of 97.48%. On the other hand, the SSD-VGG model has the largest file size and performs poorly with only 78.553% 
accuracy.  

Next, the multiclass confusion matrix is used to evaluate the models. The confusion matrix is represented in 4×4 matrix form 
since the dataset consists of four classes. Then, the confusion matrix is calculated to find the evaluated models’ accuracy, 
precision, recall, and F1 score. First, the True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) 
are calculated from the matrix results. Then, the accuracy, precision, recall, and F1 score are also calculated. 

 

Fig. 6. Confusion matrix result of YOLOv3-Resnet18 model. 

Fig. 6. Confusion matrix result of YOLOv3-Resnet18 model.

F1 score of 97.48%. On the other hand, the SSD-VGG
model has the largest file size and performs poorly with
only 78.553% accuracy.

Next, the multiclass confusion matrix is used to eval-
uate the models. The confusion matrix is represented
in 4×4 matrix form since the dataset consists of four
classes. Then, the confusion matrix is calculated to find
the evaluated models’ accuracy, precision, recall, and
F1 score. First, the True Positive (TP), True Negative
(TN), False Positive (FP), and False Negative (FN) are
calculated from the matrix results. Then, the accuracy,
precision, recall, and F1 score are also calculated.

Figures 6 and 7 show the confusion matrix result of
YOLOv3-Resnet18 and Huawei ExeML models. Both
models have similar results in detecting and predicting
the four datasets. Both models perform the same cor-
rect prediction on Loligo Chinensis datasets with 479
correct detections. Interestingly, Huawei ExeML model
have tendencies to detect the fish as Loligo Chinensis.

Both results are calculated to get the accuracy,
precision, recall, and F1 score to understand the matrix
more deeply. The result shown in Table V is the eval-
uation of the YOLOv3-ResNet18 model. The model
falls on recall of Coryphaena Hippurus with 0.92. For

 

Fig. 7. Confusion matrix result of Huawei ExeML model. 

Figures 6 and 7 show the confusion matrix result of YOLOv3-Resnet18 and Huawei ExeML models. Both models have 
similar results in detecting and predicting the four datasets. Both models perform the same correct prediction on Loligo Chinensis 
datasets with 479 correct detections. Interestingly, Huawei ExeML model have tendencies to detect the fish as Loligo Chinensis.  

 

Table 5 The Evaluation of YOLOv3-ResNet18 Model. 

Class Accuracy Precision Recall 
F1 

Score 

Coryphaena 

Hippurus 
0.97 0.98 0.92 0.94 

Katsuwonus 

Pelamis 
0.98 0.94 0.96 0.95 

Euthynnus 

Affinis 
0.98 0.95 0.96 0.95 

Loligo 

Chinensis 
0.99 0.99 0.99 0.99 

 

Table 6 The Evaluation of Huawei ExeML Model. 

Class Accuracy Precision Recall 
F1 

Score 

Coryphaena 

Hippurus 
0.98 0.99 0.93 0.96 

Katsuwonus 

Pelamis 
0.98 0.95 0.91 0.93 

Euthynnus 

Affinis 
0.99 0.96 0.98 0.97 

Loligo 

Chinensis 
0.96 0.96 0.99 0.98 

 

Both results are calculated to get the accuracy, precision, recall, and F1 score to understand the matrix more deeply. The result 
shown in Table 5 is the evaluation of the YOLOv3-ResNet18 model. The model falls on recall of Coryphaena Hippurus with 
0.92. For comparison, based on Table 6, the Huawei ExeML model has an overall accuracy of 0.97. Since the model will be used 
mainly to detect Katsuwonus Pelamis and Euthynnus Affinis, the YOLOv3-ResNet18 model performs better in accuracy, 
precision, and recall with an average score of 0.98, 0.97, and 0.96, respectively. Meanwhile, the Huawei ExeML model only has 
0.97 accuracy, 0.96 precision, and 0.95 recall.  

 The test continues by deploying the model on the Huawei Cloud server as Application Programming Interface (API). This 
step ensures the model can be run and deployed on mobile devices. The mobile device sends the image to the cloud server to be 
processed by the model. Then, the model produces a result (Figure 8) with returning predicted bounding boxes. These bounding 
boxes are then displayed on mobile devices. 

Fig. 7. Confusion matrix result of Huawei ExeML model.

TABLE V
THE EVALUATION OF YOLOV3-RESNET18 MODEL.

Class Accuracy Precision Recall F1 Score

Coryphaena Hippurus 0.97 0.98 0.92 0.94
Katsuwonus Pelamis 0.98 0.94 0.96 0.95

Euthynnus Affinis 0.98 0.95 0.96 0.95
Loligo Chinensis 0.99 0.99 0.99 0.99

TABLE VI
THE EVALUATION OF HUAWEI EXEML MODEL.

Class Accuracy Precision Recall F1 Score

Coryphaena Hippurus 0.98 0.99 0.93 0.96
Katsuwonus Pelamis 0.98 0.95 0.91 0.93

Euthynnus Affinis 0.99 0.96 0.98 0.97
Loligo Chinensis 0.96 0.96 0.99 0.98

comparison, based on Table VI, the Huawei ExeML
model has an overall accuracy of 0.97. Since the model
will be used mainly to detect Katsuwonus Pelamis
and Euthynnus Affinis, the YOLOv3-ResNet18 model
performs better in accuracy, precision, and recall with
an average score of 0.98, 0.97, and 0.96, respectively.
Meanwhile, the Huawei ExeML model only has 0.97
accuracy, 0.96 precision, and 0.95 recall.

The test continues by deploying the model on the
Huawei Cloud server as Application Programming
Interface (API). This step ensures the model can be run
and deployed on mobile devices. The mobile device
sends the image to the cloud server to be processed by
the model. Then, the model produces a result (Fig. 8)
with returning predicted bounding boxes. These bound-
ing boxes are then displayed on mobile devices.

For the last evaluation process, the models that have
already been downloaded are implemented into mobile
devices. For this experiment, the operating system is
Android with two devices for comparison: Huawei
P40 and Realme 7. To achieve the implementation,
the models are converted into TensorFlow Lite (tflite)
extension before being loaded by the application. The
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Fig. 8. The result of the test in the cloud and running the model via API.   

For the last evaluation process, the models that have already been downloaded are implemented into mobile devices. For this 
experiment, the operating system is Android with two devices for comparison: Huawei P40 and Realme 7. To achieve the 
implementation, the models are converted into TensorFlow Lite (tflite) extension before being loaded by the application. The 
complete specification of both processors is shown in Table 7. Huawei P40 uses Kirin 990 chipset, and Realme 7 has Helio G95 
chipset. In terms of specification, Kirin 990 has significantly better specification than Helio G95. The GPU execution unit of 
Kirin 990 with 16 units makes this chipset have more processing units leading to better performance. It is also supported by the 
FLOPS of Kirin 990 with 896 Giga FLOPS compared to Helio G95 with only 195.8 Giga FLOPS. 

Table 7 Chipset Comparison used in Evaluation. 

Specification Kirin 990 Helio G95 

Core 8 8 

CPU Frequency (MHz) 2860 2050 

GPU Frequency (MHz) 900 700 

FLOPS (GFLOPS) 896 195.8 

GPU Execution Unit 16 4 

NPU Da Vinci Da Vinci 

TDP 6 W 6 W 

AnTuTu 488,442 294,929 

 
 

  

 

 

 

Fig. 9. Inference time comparison of three models in mobile devices. 

After the model is implemented in mobile devices using the Huawei ML Kit library. The benchmark process is used to 
determine the inference time of the models. For this process, the benchmark uses TensorFlow Lite performance measurement 
tools. This test produces the inference time and overall memory usage of the models. The result of the test is shown in Figures 9 
and 10.  

In Figure 9, the YOLOv3-ResNet18 model has the fastest inference time on both tested devices. Meanwhile, in Figure 10, 
Huawei ExeML has the lowest memory usage on Huawei P40 devices but increases to 44 Mb in Realme 7. Overall, YOLOv3-
ResNet18 has better inference time and memory usage on both tested devices. Figures 9 and 10 also show that all models perform 
better on Huawei P40. The chipset used by both devices causes the result. Huawei P40 has a Kirin 990 chipset, while Realme 7 
has an Helio G95. Both chipsets have Da Vinci NPU. However, Kirin 990 has better Floating Point Operations Per Second 
(FLOPS) with 896 GFLOPS. FLOPS is used to measure computer performance. It leads to Huawei P40 having a more significant 
inference time than Realme 7 in all models.  
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Fig. 8. The result of the test in the cloud and running the model via API.

TABLE VII
CHIPSET COMPARISON USED IN EVALUATION.

Specification Kirin 990 Helio G95

Core 8 8
CPU Frequency (MHz) 2,860 2,050
GPU Frequency (MHz) 900 700
FLOPS (GFLOPS) 896 195.8
GPU Execution Unit 16 4
NPU Da Vinci Da Vinci
TDP 6 W 6 W
AnTuTu 488,442 294,929

complete specification of both processors is shown in
Table VII. Huawei P40 uses Kirin 990 chipset, and
Realme 7 has Helio G95 chipset. In terms of specifi-
cation, Kirin 990 has significantly better specification
than Helio G95. The GPU execution unit of Kirin 990
with 16 units makes this chipset have more processing
units leading to better performance. It is also supported
by the FLOPS of Kirin 990 with 896 Giga FLOPS
compared to Helio G95 with only 195.8 Giga FLOPS.

After the model is implemented in mobile devices
using the Huawei ML Kit library. The benchmark
process is used to determine the inference time of
the models. For this process, the benchmark uses
TensorFlow Lite performance measurement tools. This
test produces the inference time and overall memory
usage of the models. The result of the test is shown in
Figs. 9 and 10.

In Fig. 9, the YOLOv3-ResNet18 model has the
fastest inference time on both tested devices. Mean-
while, in Fig. 10, Huawei ExeML has the lowest
memory usage on Huawei P40 devices but increases
to 44 Mb in Realme 7. Overall, YOLOv3-ResNet18
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For the last evaluation process, the models that have already been downloaded are implemented into mobile devices. For this 
experiment, the operating system is Android with two devices for comparison: Huawei P40 and Realme 7. To achieve the 
implementation, the models are converted into TensorFlow Lite (tflite) extension before being loaded by the application. The 
complete specification of both processors is shown in Table 7. Huawei P40 uses Kirin 990 chipset, and Realme 7 has Helio G95 
chipset. In terms of specification, Kirin 990 has significantly better specification than Helio G95. The GPU execution unit of 
Kirin 990 with 16 units makes this chipset have more processing units leading to better performance. It is also supported by the 
FLOPS of Kirin 990 with 896 Giga FLOPS compared to Helio G95 with only 195.8 Giga FLOPS. 
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After the model is implemented in mobile devices using the Huawei ML Kit library. The benchmark process is used to 
determine the inference time of the models. For this process, the benchmark uses TensorFlow Lite performance measurement 
tools. This test produces the inference time and overall memory usage of the models. The result of the test is shown in Figures 9 
and 10.  

In Figure 9, the YOLOv3-ResNet18 model has the fastest inference time on both tested devices. Meanwhile, in Figure 10, 
Huawei ExeML has the lowest memory usage on Huawei P40 devices but increases to 44 Mb in Realme 7. Overall, YOLOv3-
ResNet18 has better inference time and memory usage on both tested devices. Figures 9 and 10 also show that all models perform 
better on Huawei P40. The chipset used by both devices causes the result. Huawei P40 has a Kirin 990 chipset, while Realme 7 
has an Helio G95. Both chipsets have Da Vinci NPU. However, Kirin 990 has better Floating Point Operations Per Second 
(FLOPS) with 896 GFLOPS. FLOPS is used to measure computer performance. It leads to Huawei P40 having a more significant 
inference time than Realme 7 in all models.  
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Fig. 9. Inference time comparison of three models in mobile devices.

has better inference time and memory usage on both
tested devices. Figures 9 and 10 also show that all
models perform better on Huawei P40. The chipset
used by both devices causes the result. Huawei P40
has a Kirin 990 chipset, while Realme 7 has an Helio
G95. Both chipsets have Da Vinci NPU. However,
Kirin 990 has better Floating Point Operations Per
Second (FLOPS) with 896 GFLOPS. FLOPS is used to
measure computer performance. It leads to Huawei P40
having a more significant inference time than Realme
7 in all models.

IV. CONCLUSION

Mobile device technology grows rapidly and has
better chipsets to compute more powerful tasks. As a
maritime country dominated by small-scale industries
with traditional boats, Indonesia needs technology im-
plementation to determine the type of fish they capture
and the total weight of captured fish. The research
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Fig. 10. Memory usage comparison of three models in mobile devices. 

IV. CONCLUSION 

Mobile device technology grows rapidly and has better chipsets to compute more powerful tasks. As a maritime country 
dominated by small-scale industries with traditional boats, Indonesia needs technology implementation to determine the type of 
fish they capture and the total weight of captured fish. The research conducts an experiment to find a suitable model for mobile 
devices. YOLOv3, known for its good accuracy and fast detection speed combined with the Resnet-18 backbone, results in a 
smaller-size model suitable for mobile devices while maintaining good accuracy and precision. The experiment also shows that 
the model uses a small RAM size after being deployed on mobile devices and has a reasonable inference time. The experiment 
will be continued to make inference time faster and predict the weight of fishes captured in the future. 

The current experiment only compares the models on two mobile devices. Meanwhile, the mobile devices used in the market 
have more various chipsets. So, the model can have a significantly different performance from other chipsets. For future 
experiments, the model will be deployed on various mobile devices to understand the impact of chipsets on the model inference 
time. In addition, more models will be compared to get the most suitable models for mobile devices. 
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Fig. 10. Memory usage comparison of three models in mobile
devices.

conducts an experiment to find a suitable model for
mobile devices. YOLOv3, known for its good accuracy
and fast detection speed combined with the Resnet-
18 backbone, results in a smaller-size model suitable
for mobile devices while maintaining good accuracy
and precision. The experiment also shows that the
model uses a small RAM size after being deployed on
mobile devices and has a reasonable inference time.
The experiment will be continued to make inference
time faster and predict the weight of fishes captured in
the future.

The current experiment only compares the models
on two mobile devices. Meanwhile, the mobile devices
used in the market have more various chipsets. So, the
model can have a significantly different performance
from other chipsets. For future experiments, the model
will be deployed on various mobile devices to under-
stand the impact of chipsets on the model inference
time. In addition, more models will be compared to
get the most suitable models for mobile devices.
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