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Abstract—The research aims to make an intelligent
agent that can compete against the human player. In this
research, the feasible greedy strategy is proposed to make
an intelligent agent by checking all possible solutions in
the limited tree levels to find effective movement. Several
matches are conducted to evaluate the performance of the
feasible greedy agent. The board size for the evaluation
consists of 3×3, 4×4, 5×5, 6×6, 7×7, and 8×8 squares.
From the result, the feasible greedy agent never loses
against the random agent and the pure greedy agent. In
3 × 3 squares match, the agent can compensate against
the human player, so the game always ends with a draw.
In 4×4, 5×5, 6×6, 7×7, and 8×8 squares matches, the
feasible greedy agent slightly outplays the human player.

Index Terms—SOS Game, Feasible Greedy Agent,
Greedy Strategy, Game Tree

I. INTRODUCTION

SOS game is a kind of paper-and-pencil game
similar to tic-tac-toe with greater complexity. Two

players play the SOS game where the set of possible
positions are the same movement between the players.
They can play the SOS game with turn-based playing.
The objective of this game is to make the sequence
of S-O-S pairs among the connected square as many
as possible. The S-O-S pairs can be formed vertically,
diagonally, or horizontally.

In the game theory, the SOS game is a combina-
torial game involving two players. The combinatorial
game means two players play the game with the set
of possible positions (usually finite) and no chance
moves or dice. It has comprehensive information for
both players, and there is no distinction of movement
between the players [1, 2]. The SOS game meets the
combinatorial game condition and also a zero-sum
game. Zero-sum means one player gains a score, and
it equals the loss of another player (as payoffs) so that
the total sum is zero [3]. The SOS game has greater
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complexity than tic-tac-toe. Moreover, the game has
more than 3× 3 squares of the board size.

In the usual game, the SOS game is played by two
players. One player creates a game board by drawing
a square grid with the size of at least 3 × 3 squares.
Then, two players choose the turn. For each turn, the
player draws S or O inside the empty square. The
objective of this game is that each player makes the
sequence of S-O-S among connected square as many as
possible. The connection can be vertically, diagonally,
or horizontally. When a player successfully creates one
pair of S-O-S, a player can make one or more move
again until there is no S-O-S pair created. Thus, the
turn will end, and the next player moves to draws S or
O in another empty square [1].

The game will end after there is no empty square
inside of the game board. To track the S-O-S pairs
that are successfully created by the player, he/she will
draw the lines. The winner of this game is a player
who has collected the highest S-O-S pairs. If two
players have the same number of collected S-O-S pairs
(including no S-O-S pair created), the game result is a
draw [4]. When the SOS game is played in more than
7× 7 squares, the players should move carefully. If a
player makes a mistake, it can give the point to the
other player.

The research aims to present SOS game as a digital
game. To create an agent with the ability to play
the SOS game, the researcher proposes the greedy
strategy or greedy algorithm with some modification.
Nowadays, the greedy strategy is still used in many
studies like sensor placement [5], task scheduling [6],
and detecting a mutually exclusive pattern in cancer
mutation data [7]. The greedy strategy is also effective
to be used in digital or board games, such as a card
game [8], an educational game [9], and a puzzle
game [10].

Furthermore, the greedy strategy is proposed be-
cause it matches the SOS game-play. Unfortunately,
when the agent uses a pure greedy strategy, there
are some problems. When the greedy agent does not
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Fig. 1. The SOS board (left) and the SOS board with its position (right).

notice a chance to make S-O-S pair, the greedy agent
will place the “S” or “O” randomly on the board. In
consequence, the pure greedy agent cannot guarantee
that the move is correct or wrong. Thus, the researcher
proposes the improvement of the greedy strategy by
checking all possible solutions in the limited tree
levels.

There is no related work with the SOS game re-
search. Most of them are related to the tic-tac-toe
game. The tree-based search methods, such as the
Minimax [11] or Alpha-Beta Pruning algorithm, work
well in tic-tac-toe [12]. Reference [13] made a robot to
solve the tic-tac-toe game with Minimax as the main
algorithm. Similarly, Ref. [14] used one of the concepts
of automata theory, which is the Multi-tape Turing
Machine algorithm, to solve the tic-tac-toe game with
optimal results.

Moreover, extensive research uses theoretical com-
puter science. It is proven that this method will always
give a draw if the enemy is playing optimally [15]. The
solution to playing tic-tac-toe is not only solved by the
tree-based search method, but also with the method of
machine learning or reinforcement learning [16].

The tic-tac-toe game and the SOS game are different.
However, the SOS game size is the same as the tic-tac-
toe which is 3× 3 squares. The best result against an
enemy with the optimal moves is a draw. The reason
that Minimax or Alpha-Beta is not applied because
the players can get another turn (combo move) after
successfully making the S-O-S pair. Hence, the tree
levels are inconsistent for each player’s turn.

In addition, the machine learning method is not
applied in this research because the size of the board
to be evaluated is not only 3 × 3 squares, but it also
can be up to 8 × 8 squares. If the algorithm is based
on a comprehensive tree search or training algorithm
applied to large board size, it may take a long time to
build the overall tree structure or training process. The
main contribution of this research is to use a greedy

Fig. 2. The SOS board after several moves.

strategy in a limited tree search to create an intelligent
agent that can play effectively and optimally in the
board size of 3 × 3, 4 × 4, 5 × 5, 6 × 6, 7 × 7, and
8× 8 squares.

II. RESEARCH METHOD

The research applies a structured method in several
phases. The first phase is analyzing the SOS gameplay.
The second phase is to design the feasible greedy
agent to play the SOS game. Then, the third phase
is implementation. Last, the fourth phase conducts the
playtesting evaluation.

A. The Analysis of the SOS Gameplay

Before the game start, every player must know the
game rules and the information about the preceding
events. The analysis of SOS gameplay starts with the
advantage of choosing the player’s turn. Suppose that
there are two players: player 1 (P1) and player 2 (P2),
and the game board has 5× 5 squares. In the case of
5 × 5 squares, the possible way to fill all 25 squares
is 325. There are three states for each square in 25
squares. The three states are empty, marked by “S”,
and marked by “O”. Figure 1 depicts the sample of
the SOS board and its position.
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Fig. 3. The SOS game tree with the correct place in level two.

Fig. 4. The SOS game tree with a depth of two.

At the beginning of the game, if the first turn is for
P1, P1 can place the “S” or “O” in one of all empty
squares randomly, and then, P2 takes a turn. Usually,
P2 makes a decision after exploring the board. The
board, for instance, matches the condition of Fig. 1
(left). There is the “S” mark placed in the board
position of 13. P2 will avoid making “O” near the “S”
or making “S” around of that square. P2 can block
the other player’s movement by placing “O” around
the squares. Perhaps, P2 chooses “O” in the board
position of 1, which is a safe place. After several moves
conducted by both players, the game board is depicted
in Fig. 2. In Fig. 2, the game board shows that a player
can make the consecutive movement to win the game.

In this case, if the SOS game is played digitally,
there is a chance for a human player to play against
the computer’s agent. For the weak computer agent, all
of their movements will choose randomly. It can give
a chance to the human player to make an S-O-S pair
as soon as possible.

Therefore, a human player can beat that agent easily
and not challenging. Then, the greedy strategy is
applied in the agent. The greedy agent is very effective
when the board situation is like in Fig. 2. Nevertheless,

when the greedy agent meets the board like in Fig. 1
(left), it still possible for the agent to place “S” or “O”
in the restricted area. It is because of the randomness
of the greedy strategy in making any decision. So, the
researcher will make a greedy agent more considerate
of that situation.

B. The Agent Design
Designing the agent for making decisions in a partic-

ular state is represented as a game tree. The agent uses
a pure greedy strategy immediately after another player
makes a mistake. A pure greedy strategy is illustrated
in Fig. 3 when the agent meets the correct place in
level 2 of the game tree. The board size formed is in
3× 3 squares to simplify the situation.

Figure 4 represents the game tree states with a depth
of 2. The situation in Fig. 4 shows that the agent cannot
make any S-O-S pairs. To avoid moving in a restricted
area, the agent will take a look at the next tree level.
Moreover, at level 3, it shows all possible states for
another player’s movement while another player’s state
successfully creates S-O-S pair. Then, the former state
will not have explored. The agent chooses only a state
with no possible S-O-S pair for another player.
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For example, the initial state is
s=[“O”,“,”,“,”,“,”,“S”]. Then, the agent will find
the correct position by checking one-by-one in level
2 of a tree. In this case, the agent is P1. The agent
chooses the value of “O” in the square position of 6 so
that the P1 state is sP1=[“O”,“,”,“,”,“O”,“,”, “S”]. The
agent’s move is bad because another player can easily
pick the square position of 3 and the value of “S”,
so the state is sP2=[“O”,“,”,“S”,“,”, “,”,“O”,“,”,“S”].
Then, the S-O-S pair is formed by the combination of
the square position of 3, 6, and 9. After seeing that
possibility, the agent will not choose the position of
6, and the prior state will not be explored. When the
agent successfully makes a good enough movement,
there are two possibilities, a safe position or blocking
the enemy. The safe position is the position which
not related to the last player’s position. Blocking the
enemy is that the agent chooses the value of “O” in
near another player’s position. The blocking area can
be diagonally, vertically, or horizontally.

From the previous explanation, the position and the
value must be chosen effectively. Then, the position
and value are included in the utility property. There
is one additional property called as the result of the
S-O-S pair. The three property is the position (p), the
value (v), and the result (r). The p is a square position
and correlated with the board size. The value of v ∈
{‘S′, ‘O′, ”} the value of “S” or “O” or empty filled
inside a square board. Meanwhile, the r is the heuristic
score. When the S-O-S pair presents in the game tree,
the r has a value of 1. Otherwise, it is 0. The complete
algorithm to collect the utility property is presented in
Algorithm 1.

There is a function called CheckSOSPair to calculate
the r by comparing the last move by another player
with the subsequent solution or winning combination
set. The winning combination set contains all possible
positions that can form S-O-S pairs. It is generated in
the early game.

The search space of Algorithm 1 is not linear. When
the S-O-S pair does not present, the p and v will be
chosen randomly in all possible empty squares (se).
It is intended that another player does not easily read
the agent’s movements. After defining the algorithm to
get the utility property, the optimal move solution is
found based on Algorithm 2. Algorithm 2 needs the
initial state of s.

Algorithm 2 returns two outputs: the correct position
and value. The temporary p∗, v∗, and r∗ are the utility
property after applying the position and value for a
certain node of level 2. The r∗ has the purpose of
evaluating the next move. When the next move (taken
by another player) makes S-O-S pair, the last agent’s
state is blacklisted. Then, the agent will search for

another possible state in level 2.
Sometimes, there is a situation when all possible

states in level 3 tree have a utility result of 1. It
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Fig. 5. The interface of the game environment.

means all the states in level 3 contains an S-O-S
pair. Algorithm 2 will undergo continuous repetition.
Therefore, it needs to break that repetition and selects
one of the states randomly. The c variable is presented
to counter the repetition. The c variable will increment
until the number of board size is multiplied by two.

C. Implementation of the Agent

The SOS game is running on the web platform.
The agent is implemented by using the javascript
programming language. If a human player wants to
play this SOS game, the person must comply with the
following game procedures:

1) The human player selects the enemy (agent) first
(whether the agent will be the first or second
player).

2) If the first player is an agent, the agent will
immediately play and proceed with a changing
turn. If the agent is the second player, the human
player will play first.

3) When the human player’s turn arrives, she/he must
press the “S” or “O” button on the keyboard and
click the mouse on the game board.

4) The human player or agent can make consecutive
moves when it finds an SOS pair on the game
board.

TABLE I
THE PERFORMANCE OF THE FEASIBLE GREEDY AGENT AGAINST

THE RANDOM AGENT AND THE PURE GREEDY AGENT.

Board size Random Pure greedy

Win Lose Draw Win Lose Draw

3× 3 123 0 77 101 0 99
4× 4 195 0 5 196 0 4
5× 5 200 0 0 200 0 0
6× 6 200 0 0 200 0 0
7× 7 200 0 0 200 0 0
8× 8 200 0 0 200 0 0

Figure 5 is the game environment. The red color
represents the S-O-S pair for P1 and the blue color for
P2. Game statistics are also available on the top page
of the game environment.

III. RESULTS AND DISCUSSION

The evaluation of the feasible greedy agent is con-
ducted with 200 matches against the random agent, the
pure greedy agent, and the human player. Both players
alternately become the first player and second player.
The tree of states formed by the agent is the search
space for the agent, and it is not structured as a tree
data. At the beginning of the game, the agent who
acts as the first player is only evaluated up to level
2. For agents to go to level 3, there must be at least
the possibility of a state that can form S-O-S pairs.
That S-O-S pair is a point for the second player. So,
if the beginning of the game is an agent, the agent
will immediately get a random position in the tree
level of 2.

When the agent plays as the second player, the first
player will choose the position first (usually random).
After that, the agent will create a search space in the
tree based on the initial state performed by the first
player. Thus, there will be S-O-S pairs that may form
in the level 3. When the agent encounters this situation
while searching the optimal position, the agent will
repeat the search starting from other states in level 2
by randomly selecting one of them.

Unlike the case in which the agent successfully
meets a position that can form a pair of SOS at level
2, the agent will immediately take that position as
an optimal step (greedy). The results of 200 matches
against the random agent and pure greedy agent are
presented in Table I. The researcher decides to use the
six types of board size. Those are 3× 3, 4× 4, 5× 5,
6× 6, 7× 7, and 8× 8 squares.

In Table I, the performance of the feasible greedy
agent is significant and never loses against the random
agent and pure greedy agent. It is because the random
agent or pure greedy agent sometimes makes a mistake
by placing “S” or “O” randomly when the agent cannot
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Fig. 6. No option condition.

make the S-O-S pair. In the board size of 3×3 squares,
there is no chance for the random agent or the pure
greedy agent to win the game. In larger board sizes,
random agent and greedy agent make more mistakes.

The next evaluation is the match between the human
player against the feasible greedy agent. It is by
considering that the human player is a normal player
or not a master in playing the SOS game. In this
case, there are no performance measurements for an
SOS player leveling evaluation as a chess master or go
master. Then, the normal player will take the random
movement when she/he faces the no option condition.
The no option condition depicted in Fig. 6. The no
option condition appears when the minimum board
size is 4× 4 squares. There are nine conditions. Each
position can be found separately or jointly.

The green color in Fig. 6 is the no option area.
Anyplace in that area will cause an S-O-S pair for
another player. No option condition will appear after
all players play the game until almost the end, in which
there are some movements that all players conduct.
The “X” mark in Fig. 6 is the area that has been filled
with “S” or “O”. A normal player perhaps never think
too long to solve the no option condition. However, a
master player may think carefully and move optimally
to solve that condition.

The number of matches between the feasible greedy
agent and the human player are 200. The performance
of the feasible greedy agent against the human player is
depicted in Table II. In the board size of 3×3 squares,
the human player plays optimally because she/he never
meets no option condition. The human player can
easily identify the game board because the number of
squares is still minimum. The human player and agent

TABLE II
THE PERFORMANCE OF THE FEASIBLE GREEDY AGENT AGAINST

THE HUMAN PLAYER.

Board size Win Lose Draw

3× 3 0 0 200
4× 4 88 84 28
5× 5 103 94 3
6× 6 118 82 0
7× 7 135 65 0
8× 8 147 53 0

are both playing optimally so that no one wins the
game in the board size of 3 × 3 squares. An agent
has the possibility of defeating the human player with
a minimum board size of 4 × 4 squares. With a few
mistakes made by the human player, the agent will
immediately take the opportunity.

To illustrate an agent defeating the human player, the
researcher considers the board size of 5 × 5 squares.
The player places the “S” mark in the 13th square index
(see Fig. 1 to find out the square index), even though
there is an “S” mark before in the 1st square index.
Then, an agent will immediately place “O” in the 7th

square index with the solution, as shown in Fig. 3. If
the agent does not see the S-O-S pairs, that can be
made again, it will place the “S” or “O” mark in a
safe position with the solution, as shown in Fig. 4, as
long as it does not meet the no option condition. If the
number of S-O-S pairs obtained by an agent is more
than a human player, the agent wins the game.

In Table II, the major reason why the feasible greedy
agent and human player loss is meeting one or several
no option conditions. Besides, the greater board size
makes the performance of a human player decrease.
The feasible greedy agent will more easily defeat the
human player who is in a hurry or carelessness. How-
ever, if the human player has a lot of considerations
in playing, the game time will take a long time. In the
overall match, the feasible greedy agent makes every
movement in less than 100 milliseconds.

IV. CONCLUSION

The feasible greedy strategy is successfully imple-
mented in the agent to play the SOS game. The feasible
greedy strategy considers the next move in the deeper
level of the tree so that the agent does not carelessly
make a move at the beginning of the decision. The
feasible greedy agent can effectively play better than
the random agent and the pure greedy agent.

When the feasible greedy agent plays against the
human player, the agent can compete well. In the board
size of 3 × 3 squares, it shows that the agent makes
optimal movements that can compensate for the human
player. So, the game will end in a draw. From the 200
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matches conducted for the board size of 4× 4, 5× 5,
6×6, 7×7, and 8×8 squares, it reveals that the agent
slightly outplays the human being. Although the result
is not significant, it can be said that the ability of a
feasible greedy agent is at the human-level.

The reason why this agent cannot exceed human
ability is because of the possibility of no option
conditions in which the agent has no other choice to
place “S” or “O” in any board position. A human who
is experts in playing SOS can estimate the optimal
thinking to determine the movement when meeting
the no option condition. Perhaps, two possibilities can
handle the no option condition. It is calculating the
optimal movement when meeting these conditions or
avoiding these conditions by making optimal move-
ment in the early game. In future research, it will be
more challenging if the agent can handle the no option
condition.
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