
CommIT (Communication & Information Technology) Journal 13(2), 91–103, 2019

Lung Nodule Texture Detection and
Classification Using 3D CNN

Ivan William Harsono1, Suryadiputra Liawatimena2, and Tjeng Wawan Cenggoro3
1Computer Science Department, BINUS Graduate Program - Master of Computer Science, Bina

Nusantara University
2Computer Science Department, BINUS Graduate Program - Doctor of Computer Science, Bina

Nusantara University
2Computer Engineering Department, Faculty of Engineering, Bina Nusantara University
3Computer Science Department, School of Computer Science, Bina Nusantara University

3Bioinformatics and Data Science Research Center, Bina Nusantara University
Jakarta 11480, Indonesia

Email: 1ivan.harsono@binus.ac.id, 2suryadi@binus.edu, 3wcenggoro@binus.edu

Abstract—Following artificial intelligence implementa-
tion in computer vision field, especially deep learning,
many Computer-Aided Diagnosis (CAD) tools are pro-
posed to help to detect lung cancer by the scoring system
or by identifying the characteristics of nodules. However,
lung cancer is a clinical diagnosis which does not provide
detailed information needed by radiologists and clinician
to prevent unnecessary invasive diagnostic procedures
compared to lung nodule texture detection and classi-
fication. Hence, to answer this problem, this research
explores the steps needed to implement 3D CNN on raw
thorax CT scan datasets and usage of RetinaNet 3D +
Inception 3D with transfer learning. The 3D CNN CAD
tools can improve the speed, performance, and ability to
detect lung nodule texture instead of malignancy status
done by previous studies. This research implements 3D
CNN on Moscow private datasets acquired from NVIDIA
Asia Pacific. The proposed method of data conversion
can minimize information loss from raw data to 3D
CNN input data. On training phase, after 100 epochs,
the researchers conclude that the best-proposed model
(3D CNN with transfer learning of pretrained LIDC
public datasets weight) provides 22.86% of mean average
precision (mAP) detection capability and 70.36% of Area
Under the Curve (AUC) in Moscow private dataset
lung texture detection tasks. It outperforms non-transfer
learning 3D CNN model (trained from scratch) and 3D
CNN with transfer learning of pre-trained ImageNet
weight.

Index Terms—Image Processing, Lung Nodule, Pattern
Recognition, Convolutional Neural Network, Transfer
Learning

I. INTRODUCTION
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LUNG cancer or malignant lung nodules is one of
the leading causes of death in the world. However,

lung cancer is difficult to diagnose clinically, so it
requires imaging tests such as Computed Tomography
scan (CT-scan), Positron Emission Tomography (PET),
and lung biopsy with a gold standard examination.
Lung nodules or pulmonary masses are abnormal
growths of lung parenchymal cells. Lung nodules can
generally be found in every patient during a medical
check-up. However, only a few of them are at risk
of becoming malignant and causing death. Epidemi-
ologically, lung nodules are generally found in male
population with the age group of 60 years and history
of heavy smoking (20 – 40 packs per year for more
than 20 years) [1, 2]. The size of the lung nodule varies
greatly. The appearance on the CT scan resembles a
small dot, fine needle, up to the size of a golf ball
(golf-ball appearance). Usually, the doctor ignores the
nodules less than 3 mm (generally not visible on CT
scans) because of the small potential of the nodules
to become a malignancy [2, 3]. One of the important
characteristics to determine malignancy is the texture
or solidity of lung nodules. Generally, lung nodules
can be categorized into solid, sub-solid, and ground-
glass based on their texture. Nodules that are at risk of
being malignant generally have a sand-like appearance
or are referred to as a ground-glass appearance. Those
are larger than 4 mm. The location of lung nodules
can be in all parts of the lung, including the lung wall,
airway, lung fissure, or blood vessels. They are usually
accompanied by enlargement of the local lymph nodes
making it difficult to diagnose because the location
and shape resemble the anatomical structure of the
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lung [1, 3–9].

Indonesia is one of the countries with the highest
population growth and the low ratio of healthcare pro-
fessionals [10, 11]. Additionally, Indonesia is also one
of the largest cigarette producers in Indonesia. People
can easily buy cigarettes at kiosks and minimarkets,
causing lung cancer as the most common cancer in
Indonesia. Difficult access to adequate health concen-
trating on large islands such as Java and Sumatra is also
one of the causes of the increase in undiagnosed cancer
at an early stage and cancer mortality [10, 12, 13].

Generally, when radiologists interpret Computed To-
mography scan (CT-scan) images, whether patients
have lung cancer or a suspicion of malignancy, espe-
cially in the early stages, expertise and consensus of
three or more radiologists are needed to establish the
diagnosis of lung cancer [7, 9, 14]. While radiologist
needs to reach consensus in making a diagnosis of lung
cancer, there are still outpatients and inpatients who
do radiological examinations and require readings by
a radiologist. Thus, this issue causes an increase in
radiologists’ workload, which affects the detection and
diagnosis of lung nodules [1, 15–17]. Surveys have
shown that the detection of lung nodules performed
by radiologists manually has a high False-Positive
Rate (FPR) of 51–83.2% with a sensitivity of 94.4–
96.4%. To address workload imbalance suffered by
radiologists and high FPR of lung nodule detection,
radiologists need reliable Computer-Aided Diagnosis
(CAD) tools to help them to interpret accurately and
reach consensus faster [7–9, 18–20].

Studies in the last five years have proven that CAD
using deep learning techniques such as Convolutional
Neural Networks (CNN), Artificial Neural Networks
(ANN), and Deep Belief Networks have successfully
surpassed conventional CAD techniques. For example,
there are Scale Invariant Feature Transform (SIFT),
Histogram of Oriented Gradients (HOG) and Local
Binary Patterns (LBP), and fractal analysis [7, 21].
However, to the best of researchers’ knowledge, there
is the only implementation of 3D CNN to classify
and detect lung nodule malignancy. There is no re-
search about implementing 3D CNN to detect and
classify lung nodule texture [1, 7–9, 14, 18, 19, 22–
24]. Detection of a lung nodule, especially lung nodule
texture detection and classification, is more challenging
compared to lung nodule malignancy because many
lung nodules have ambiguous opacity. It can mimic
another adjacent structure, so it causes different in-
terpretations of radiologists, which usually solved by
comparing the interpretation of multiple radiologists,
which is time-consuming. Nodule texture information
can be used to predict lung biopsy results. It can
reduce the risk of unneeded invasive actions such as

lung biopsy or bronchoalveolar lavage, especially in
annual screening settings. The diagnosis of malignancy
is clinical and not useful to reduce the number of
invasive actions needed to ascertain the nature of
malignant nodules [1, 16]. Therefore, in this research,
the researchers explore the use of 3D CNN for lung
nodule texture detection and classification instead of
malignancy detection. It can be used as CAD tools
to conduct initial screening, help consensus, prevent
unneeded invasive diagnostic procedures, and provide
a rough picture of nodule location. It adapts the Inflated
3D Inception (I3D) architecture combined together
with RetinaNet using pre-trained ImageNet weight and
LIDC weight transfer learning.

II. RELATED WORK

CAD tool is a device used to support various aspects
of diagnosis in the health environment. Generally,
various hospitals, indirectly use CAD without them
knowing, such as automatic interpretation of ECG
machines by using signal analysis with machine learn-
ing [3, 18]. However, CAD can function more than
just interpreting binary signals/data. CAD can help to
stratify risks and detect certain objects from medical
images [25]. The purpose of using CAD in interpreting
medical images is to ease the workload of medical
image interpreters (pathologists or radiologists). Thus,
they can provide fast, accurate, complete, and precise
results of the object of interest class and location, such
as solid and non-solid nodule locations [9, 26].

The CAD design process can be carried out in a
supervised or semi-supervised manner. Nowadays, it
is closely related to the implementation of artificial
intelligence in healthcare. Generally, artificial intelli-
gence can be classified into two based on the algorithm
used, namely machine learning and deep learning.
Machine learning engages in learning, exploring, and
constructing algorithms that can learn adaptively and
make predictions from existing data or algorithms fol-
lowing static program instructions based on prediction
or decisions predetermined from previous samples.
This method is applied to complete computational
tasks in which the design and programming of explicit
algorithms with good performance are difficult. The
examples are the email filtering applications, network
intruder detection or data breaches, optical character
recognition, and computer vision learning [27]. Deep
learning is a branch of machine learning that uses
the abstraction capabilities of the neural network (the
smallest unit of deep learning design) to solve prob-
lems in the Machine Learning (ML) domain. Deep
learning design is inspired by the workings of the
human brain that can do extraction, abstraction, and
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decision making by the interconnection between neu-
rons (the smallest unit of the human nerve) [26, 27].
Because of its ability to adapt and extract complex fea-
tures by conducting hierarchical and abstract learning,
deep learning, especially CNN, is the first choice for
completing various computer vision tasks. It includes
medical image analysis [3, 26].

A typical CNN framework generally consists of
several convolutional layers and subsampling or pool-
ing layers. Those are fully connected to a multilayer
perceptron. To analyze 2D images, the dimensions of
the convolutional layer are generally set to two to take
the local spatial pattern of the object under research.
The size of the convolutional layer is smaller than
the input layer and can be stretched with multiple
parallel map features. Feature maps can be interpreted
as input or map images that are convolved with linear
filters (sigmoid functions). They are parameterized
with synaptic weights and biases [28–30]. Neighboring
hidden units on the feature map are the result of
replication of the unit through the same weight vector
and bias parameters to reduce the number of free
parameters that can be examined. Each subsampling
layer performs non-linear subsampling of the feature
map. Non-linear subsampling chooses the maximum
value of each overlapping subregion on the input map.
The main function of the subsampling layer is to
reduce the learning complexity of the upper layer and
is invariant to the translation effect of image input.
The CNN model can be built from training data with
the gradient back-propagation method of multiple layer
layers connecting the top convolutional layer, down to
the next convolutional layer, until reaching the lowest
convolutional screen. It is by adjusting the weight and
bias between layers [9, 30, 31].

Generally, the close layer to the input image has
fewer filters. In the farther layer from the input image,
the number of filters will increase. Although CNN’s
performance is tremendously good, it has the following
shortcomings. First, CNN requires much training data
that has been labeled, which is difficult to fulfill, espe-
cially reading expertise from experts like radiologists.
It requires expensive costs, and the number of specific
diseases is small in number. Second, training deep
CNN requires computational ability, large memory
allocation, and time-consuming. Third, there is the
possibility of overfitting and convergence problems, so
that it requires repeated adjustments to the architecture
and parameters of the neural network to ensure all
layers of learning with good speed [3, 22, 29, 30, 32].

The rapid growth of image data on the Internet has
provided opportunities for models and algorithms to
index, organize, and interact with the existing image
and multimedia data. However, there is still no compre-

hensive annotated image database that can be used as
standard in object detection and classification. Thus, to
solve this problem, ImageNet is created to provide a hi-
erarchical solution to image recognition by annotating
images on the internet [14, 28, 31, 33]. AlexNet [33],
Overfeat [34], and Region-Based Convolutional Neural
Network (R-CNN) family [35–38] are some of the pop-
ular CNN using ImageNet database to train its model.
After successfully proving that the CNN method as the
state-of-the-art in computer vision tasks, some devel-
opments made in object detection and classification are
transfer learning methods [14, 28, 33, 39, 40], action
recognition using stream CNN on kinetics datasets
(such as Two-Stream Inflated 3D ConvNet) [41], Re-
gion Proposal Network (RPN) and Region of Inter-
est (RoI) used by Faster R-CNN and Mask R-CNN
(two-stage object detectors) [37, 38]. The presence of
RetinaNet as single-stage object detectors is faster and
outperform two-stage object detector (Faster R-CNN)
and its predecessor (YOLO and DSSD) performance
by balancing foreground and background classes with
the function of focal loss cross-entropy and feature
pyramid network (FPN) for multiscale extraction on
image feature maps [42–47].

Previous researchers propose several techniques for
lung nodule detection. First, it is multi-scaling CNN
layers combined with machine learning methods (Sup-
port Vector Machine (SVM) or Random Forest (RF))
as classifiers after CNN [3, 7, 26]. Second, it transfers
learning from 2D CNN [3, 7, 9, 15, 21, 48]. Third,
they use multiple parallel layers 2D CNN (2.5D CNN).
Fourth, they use 3D CNN trained from scratch [3, 8,
15, 20–23, 26, 48]. Fifth, it is transferring learning
from pre-trained 3D CNN with previously trained
natural images or lung nodule database weights [15,
20, 23, 24, 39, 48]. Sixth, it is using Dense Neural
Network (DenseNet) or dual path Fully Convolutional
Network (Dual FCN) to classify, detect, or segment
lung nodules [15, 20, 24, 49, 50].

Most medical imaging studies implement 2D and
2.5D CNN for medical image analysis. It is because
the image size is large compared to small objects
of interest, such as lung nodules. 3D CNN is the
most accurate approach, but it uses more comput-
ing resources (memory and GPU). It is also difficult
to apply because of the depth dynamics presenting
in medical images [12, 15]. All methods mentioned
before are implemented to classify lung nodule ma-
lignancy on public lung nodule datasets. However,
in healthcare professional points of view, it is pre-
sumptuous for medical detection tools to diagnose
patients with cancer. The diagnosis is not made by CT-
scan interpretation, but by requiring higher abstraction,
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negotiation, decision making, and emotions (empathy)
to deal with patients clinically condition. The CAD
is unable to fulfill psychological needs and anxiety
resulting from diagnosis. Thus, instead of directly
verdict patients with the final diagnosis, this research
sees CAD as a tool to help radiologists and clinicians
(pulmonologists) to achieve a clinical diagnosis. It is by
providing lung nodule location and texture information.
To the best of researchers’ knowledge, there is still no
research regarding implementing 3D CNN to detect
and classify lung nodule texture.

III. RESEARCH METHOD

The method proposed in this research consists of
three main phases. Those are data profiling, data
cleaning, filtering, and data compatibility, 3D CNN
architecture design and transfer learning, and training
and evaluation.

A. Data Profiling

This research aims to implement 3D CNN on
Moscow private dataset. Moscow private dataset is
obtained from the Medical Radiology Center of
Moscow Healthcare Department in collaboration with
NVIDIA Asia-Pacific via a private link provided by
the NVIDIA-Binus AI R&D Center. Moscow private
dataset has 546 patient data annotated by at least
three radiologists for each patient. Moscow private
dataset also provides annotation information on nod-
ule coordinates (x, y, and z), nodule size in mm,
and nodule texture (solid/subsolid/ground-glass). All
annotation information for 546 patients is presented
in one Microsoft Excel (.xlsx) file in Russian and
one Microsoft Excel (.xlsx) file in English. From 546
patients, 472 patients have lung lesions (pulmonary
nodules), and 74 have no pulmonary nodules. About
472 patients may contain one or a combination of
two or three types of pulmonary nodules. From pa-
tients who have pulmonary nodules, the number of
solid: subsolid: ground-glass annotations are obtained
as many as 2136 : 778 : 384 = 5.56 : 2.02 : 1. To
reduce the imbalance classes between solid, subsolid,
and ground-glass classes, non-solid classes are formed.
Those are the sum of the subsolid classes and ground-
glass classes. The final ratio obtained after averaging
the doctor’s expertise for each nodule observation gives
a ratio of solid nodules: non-solid (2136 : 1420 =
1.83 : 1). The detailed data class distribution can
be seen in Table I. However, due to the annotation
structure, annotation agreement, and raw image quality
in Moscow private dataset resulting in poor quality, a
data cleaning process is needed. It consists of several

processes. First, it is matching the annotation coor-
dinates of each patient with a CT scan of the chest.
Second, it is matching the z coordinates (depth) with
the DICOM metadata information that each CT image
slice has a thorax scan (unique alphanumeric). Third,
it is generating pseudo mask coordinates (pixel-wise
annotation) and converting CSV annotations to XML
format.

B. Data Cleaning, Filtering, and Data Compatibility
The processing of the Moscow private dataset con-

sists of 546 patients with a total of 674 thorax
(body/tissue) CT or lung CT scans with slice thickness
(distance/thickness between slices) of 0.5 mm or 1 mm.
The annotation contains information on the patients’
code (or the name of the main folder), doctors’ code
(000, 001, 002, 003, 004, 006, 007, 008, 008, 009, 010,
011, 012, 013, 014), 3D coordinates of picture dataset
based on x, y, and z coordinates of lesions and texture
(solid, subsolid, ground-glass) of lung nodule lesions.
Moscow private dataset requires data cleaning because
of several reasons.

First, there is no agreement on coordinates naming
by radiologists. The origin coordinates system is sup-
posedly located in the upper left/upper right side on the
corner of the patient. As for the z = 0 coordinates, the
majority of doctors still use the benchmark in which
the closest location to the head will be designated as
z = 0 (contrary to the World Coordinate System stan-
dard). Meanwhile, other doctors use World Coordinate
System standards in which the closest location to the
foot is designated as z = 0.

Second, data cleaning is 10% of coordinating the
annotation data (x, y, and z) by pointing to areas
outside the lungs (bone, liver, or neck). It may be
caused by the coordinating process carried out before
the CT scan slice thickness. It is standardized to ensure
0.5 mm and 1.0 mm slice thickness. There are also
image data providing two types of slice thickness (0.5
mm and 1.0 mm) with single annotation not specifying
slice thickness. Thus, it increases the difficulty of
determining whether the coordinates given are suitable
for images with 0.5 mm or 1.0 mm of slice thickness.
The 0.5 mm slice thickness is not necessarily two times
the number of 1.0 mm slice thickness.

Third, the data cleaning is needed as the patients
who do not have nodules are mixed together with
positive nodule data. Thus, it results in 96 non-nodule
datasets to be excluded from the training process.
Fourth, the quality of the resolution of the CT scan
in Moscow private dataset has a bad quality of im-
age resolution compared to other publicized CT scan
datasets such as LIDC public dataset [3, 7–9, 15, 20–
23, 26, 39, 48]. It may be caused by the suboptimal
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TABLE I
THE DETAILED CLASS DISTRIBUTION OF MOSCOW PRIVATE DATASET.

Solid Subsolid Ground-Glass

Number of Data Number of patients 413 246 144
Number of Annotation 2136 778 384

Size of Nodule (mm)

Average 8.27 7.27 8.89
Standard Deviation 7.25 5.08 5.77
Max 113.00 53.00 48.00
Min 1.50 2.00 2.00

Number of Slice

Average 493.14 504.15 443.30
Standard Deviation 214.86 226.40 178.66
Max 1630.00 1284.00 1484.00
Min 60.00 301.00 173.00

Pixel Spacing (mm)

Average 0.71 0.69 0.70
Standard Deviation 0.09 0.09 0.09
Max 1.04 1.04 1.04
Min 0.53 0.52 0.54

Distribution of Data

0.5 mm Slice Thickness 319 131 30
1.0 mm Slice Thickness 1816 647 354
5.0 mm Slice Thickness 1 - -

regulation of power source (kilovolt peak, tube current,
and tube speed rotation), noise filtering, or non-optimal
iterative reconstruction. The Poisson noise by subop-
timal iterative reconstruction causes bright and dark
lines, so lowers the image quality [16, 25, 51].

Fifth, Moscow private dataset also includes patients
who have pulmonary radiological lesions besides the
pulmonary nodules into datasets (interstitial lung and
pleura inflammation or infection such as pneumonia,
bronchiolitis, interstitial lung disease, pleuritis, hy-
drothorax, and post-pneumonectomy) in addition to
nodule datasets. However, it is understandable since
most terminally ill lung cancer patients have a high risk
of lung infection and inflammation. Sixth, manual data
cleaning in the existing datasets cannot be viewed us-
ing DICOM viewer programs such as Aliza and MITK.
It can only be viewed and reconstructed correctly using
DICOM reconstruction tool applications such as 3D
Slicer [52] due to error in orientation. It is suspected
due to the corrupted metadata information caused by
machine malfunctions.

The steps taken to overcome the first to third prob-
lems are the researchers review the raw CT scan dataset
manually and match them carefully with their respec-
tive annotations one by one. It is to ensure that none
of the annotations is out of bounds of the lung area.
The reviews of the pulmonary CT scan dataset show
that there is only one consistent doctor (code number:
011) out of a total of 15 radiologists participating in
reading pulmonary CT scan data.

To overcome the z coordinate standardization prob-
lem mentioned in the first problem, the researchers
match the depth coordinates by using spatial infor-
mation on DICOM metadata (code: 0020, 0032). It is
to accurately describe z coordinates, rather than using

inconsistent references by Moscow radiologists. After
matching the coordinates with the DICOM metadata
information, the data cleaning process is continued
by dynamically generating pseudo mask pixel-wise
annotation coordinate and is saved in XML format.
After cleaning the data for the Moscow private dataset,
each DICOM file (standardized file of medical images)
of the Moscow private dataset is converted into 3D
volumetric Nearly Raw Raster Data (NRRD) format
to ensure data volatility and intensity (Hounsfield unit
(HU)) normalization [2, 6, 53]. As for the Moscow
private dataset, due to a large number of DICOM files
in which the metadata corruption arises, the DICOM
datasets are reconstructed and converted one by one
manually using the third-party apps (3D Slicer) [52].
However, the outputs of NRRD files are still lower
in terms of quality compared to LIDC public dataset
because of Poisson noise.

After the conversion process of DICOM to NRRD
format, the next step is to convert annotation infor-
mation from XML to NifTi and planar (.pf) format.
Those serve as a pseudo mask. The NRRD datasets
are converted to 4D NumPy array with dimensions of c
(picture channels), x (length of picture datasets, default
= 512), y (width of picture datasets, default = 512),
and z (depth of picture datasets, variable depending
on patient age, and body size)= 2, 512, 512 for the
images and Region of Interest (RoI) mask. NumPy
array image size adjustment methods are as follows.
Each NumPy array with dimensions (channel: z, x, y)
= (number of slices: 512, 512, 2) will be standardized
in size by readjusting the fixed pixel spacing (distance
between pixels on the x and y axis is 0.7 mm) and
fixed slice thickness (the distance between the images
on the z-axis is 1.25 mm). The reason for using 0.7
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Fig. 1. 3D CNN architecture  

 

 

C. 3D CNN Architecture Design and Transfer Learning  

The 3D CNN architecture adopts the I3D backbone and single-stage of state-of-the-art object detector and RetinaNet 3D, 

which each the source code can be downloaded from Github public repository. The researchers also include Feature Pyramid 

Network usage as original RetinaNet architecture by adjusting the feature size with anchors resizing to one-eight of original 

RetinaNet paper. It results in the smallest anchors size equalling to 4 x 4 pixels to enable nodule (small object) detection. Instead 

of using generic ResNet-50 and ResNet-101 backbone for feature extraction, the researchers use I3D backbone. It is acquired by 

inflating Inception V2 (2D CNN), which has been already proven to be state-of-the-art architecture for kinetic video datasets 

feature extraction. It can also transfer learning using pre-trained weight from the natural image database (ImageNet) to 3D CNN. 

Because 3D medical image datasets consist of many slices, it can also be viewed as multiple frames of kinetics dataset such as 

the kinetics dataset database used by two-stream I3D research for action recognition classification by Ref. [41]. The researchers 

can empirically justify the use of the pre-trained I3D backbone to replace the backbone ResNet used by the original RetinaNet 

architecture to enable transfer learning [41]. The illustration of the 3D CNN architecture can be seen on Fig.1. 

 

D. Training & Evaluation setup 

Moscow private dataset is separated with the ratio of 3:1:1 (346:116:116) for training, validation, and testing. Experimental 

design for 3D CNN evaluation in detecting and classifying texture for Moscow private dataset uses 100 hyperparameter epochs, 

learning rate of 1x10-4, 15 batch size, 115 batch numbers, 10 validation samplings, Non-Maximum Suppression (NMS) of 1x10-

5, and temporal ensemble of 5 top epochs which are maximized by GPU memory consumption on 16GB Tesla P100 server.  

IV. RESULTS & DISCUSSION 

This research evaluates 3D CNN performance with and without transfer learning and separates it into three sub-

experiments. Those are 3D CNN with pre-trained ImageNet I3D weight (3D CNN T-ImageNet) versus 3D CNN trained from 

zero (3D CNN T-Zero) versus 3D CNN with pre-trained LIDC weight (3D CNN T-LIDC) for 578 Moscow private dataset. 

Figure 2 shows the output of the successful true positive prediction of lung nodule texture detection and classification 

generated by 3D CNN. Then, Fig. 3 presents an example of false-positive non-nodule artifact detected or wrongly classified 

class. False-positive prediction in detection may be caused by a very small nodule or very lucent nodule (Fig. 2: Patient 6 and 

Patient 9), ambiguous nodule that retains both solid and non-solid characteristics (semi-opaque) predicted as other classes (Fig. 

2: Patient 7 and Patient 9), nodule-like structure (Fig. 2: Patient 8 and Patient 9), or possibly missed or misdiagnosed nodule by 

Fig. 1. The 3D CNN architecture.

mm pixel spacing is to accommodate the smallest
pulmonary nodule size of 3 mm (4.3 pixels). Thus,
it can be read with the smallest detection anchors
size, which is 4 × 4 pixels. However, since Moscow
private dataset is high in-depth variable, slice thickness,
and pixel spacing, it is impossible to be fitted into
permanently fixed input of 96 × 96 × 96 as proposed
by Ref. [50]. First, Moscow dataset uses 0.5 mm and 1
mm slice thickness with high pixels spacing variable. It
is widely ranging from 0.54–1.04 pixels spacing, which
encompasses adults, geriatric, and pediatric population.
Meanwhile, LIDC in DeepLesion uses 1.25 mm and
2.5 mm slice thickness with 0.6–0.9 pixels spacing.
Because most of LIDC population are adults, Moscow
private datasets need the standardization of using 0.7
mm pixels. Second, there are a proportion of Moscow
datasets contain a large nodule (around 113 mm). It is
larger than 96 pixels in width and length [50]. Thus,
the approach using dynamically larger pixel length and
width with a smaller depth size (0.5*length, 0.5*width,
64) reduces the size of the input data to minimize RAM
and GPU memory. It also preserves volumetricity or
3D spatial information of a lung CT scan.

C. 3D CNN Architecture Design and Transfer Learn-
ing

The 3D CNN architecture adopts the I3D backbone
and single-stage of state-of-the-art object detector and
RetinaNet 3D, which each the source code can be
downloaded from Github public repository. The re-
searchers also include Feature Pyramid Network usage
as original RetinaNet architecture by adjusting the fea-
ture size with anchors resizing to one-eight of original
RetinaNet paper. It results in the smallest anchors size
equalling to 4 × 4 pixels to enable nodule (small
object) detection. Instead of using generic ResNet-
50 and ResNet-101 backbone for feature extraction,
the researchers use I3D backbone. It is acquired by
inflating Inception V2 (2D CNN), which has been
already proven to be state-of-the-art architecture for
kinetic video datasets feature extraction. It can also
transfer learning using pre-trained weight from the
natural image database (ImageNet) to 3D CNN. Be-
cause 3D medical image datasets consist of many
slices, it can also be viewed as multiple frames of
kinetics dataset such as the kinetics dataset database
used by two-stream I3D research for action recognition
classification by Ref. [41]. The researchers can empir-
ically justify the use of the pre-trained I3D backbone
to replace the backbone ResNet used by the original
RetinaNet architecture to enable transfer learning [41].
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trained from zero, as shown in Fig. 6. Pre-trained LIDC architecture shows a slightly higher FPR compared to pre-trained 

ImageNet architecture. It is probably caused by high variable characteristics of data on Moscow private datasets compared to 

LIDC public datasets. The patients with mixed lesions (non-nodule lesions) are also included in Moscow private datasets. Thus, 

it can be concluded that this research has successfully proven that private raw datasets such as Moscow private dataset can be 

integrated into 3D CNN. It also shows the benefit of previously trained transfer learning in a small amount of weak labeled 

private dataset data. Additionally, this study also uses a unique approach compared to the previous study. All previous studies 

only classify malignancy status using the LIDC public dataset. This research detects and classifies the texture information 

contained in Moscow private dataset. The information about textures can help the initial screening, reduce the time needed for 

consensus (comparing opinion between radiologist), and indirectly score the process to determine lung malignancies.  

In research involving specific medical images and requiring greater accuracy, the researchers suggested the future 

researchers collaborate with medical institutes. Thus, they can obtain highly accurate annotations with high-quality images. 

Annotation processes should be assisted using special programs that can directly record metadata information from each image 

in detail (coordinates, pixel spacing, slice thickness, the origin of the image, and pixel-wise perimeter) with the friendly user 

interface. Then, it can be used by specialist health workers (radiologists) without needs for special training. 
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Fig. 2. The example of 20 patch sequential patches (10 × 2) taken from five different patients. It is correctly detected and predicted by
3D CNN architecture with pre-trained LIDC weight for Detection and Classification of lung nodule texture in Moscow private dataset.

The illustration of the 3D CNN architecture can be
seen on Fig. 1.

D. Training and Evaluation Setup

Moscow private dataset is separated with the ratio
of 3:1:1 (346:116:116) for training, validation, and
testing. Experimental design for 3D CNN evaluation
in detecting and classifying texture for Moscow private
dataset uses 100 hyperparameter epochs, learning rate
of 1×10−4, 15 batch size, 115 batch numbers, 10 val-
idation samplings, Non-Maximum Suppression (NMS)
of 1 × 10−5, and temporal ensemble of 5 top epochs
which are maximized by GPU memory consumption
on 16GB Tesla P100 server.

IV. RESULTS AND DISCUSSION

This research evaluates 3D CNN performance with
and without transfer learning and separates it into three
sub-experiments. Those are 3D CNN with pre-trained
ImageNet I3D weight (3D CNN T-ImageNet) versus
3D CNN trained from zero (3D CNN T-Zero) versus
3D CNN with pre-trained LIDC weight (3D CNN T-
LIDC) for 578 Moscow private dataset.

Figure 2 shows the output of the successful true
positive prediction of lung nodule texture detection
and classification generated by 3D CNN. Then, Fig. 3
presents an example of false-positive non-nodule arti-
fact detected or wrongly classified class. False-positive
prediction in detection may be caused by a very small
nodule or very lucent nodule (Fig. 2: Patient 6 and
Patient 9), ambiguous nodule that retains both solid and
non-solid characteristics (semi-opaque) predicted as
other classes (Fig. 2: Patient 7 and Patient 9), nodule-
like structure (Fig. 2: Patient 8 and Patient 9), or
possibly missed or misdiagnosed nodule by annotating
radiologists.

Figure 2 is a compilation of the results of CT
scans of five patients. They have nodules of different
sizes and texture (solid, subsolid, and ground glass).
They are presented sequentially from left to right. The
top picture of each subsample (below the patient’s
number) is a picture of raw data patches. The second
row shows a yellow pixel mask ground-truth with a
red bounding box and a class description (1 = non-
solid, 2 = solid) below the box. The second row also
shows a cyan prediction anchor box and a dark blue

97



Cite this article as: I. W. Harsono, S. Liawatimena, and T. W. Cenggoro, “Lung Nodule Texture Detection and
Classification Using 3D CNN”, CommIT (Communication & Information Technology) Journal 13(2), 91–103,
2019.

 

 

Fig. 3. The example of 20 patch sequential patches (10x2) which are taken from four different patients. The False Positive Rate is predicted by 3D 

CNN architecture with pre-trained LIDC weight for detection and classification of lung nodule texture in Moscow private dataset.   
 

 

  

 

Fig. 4 Receiver Operating Characteristics (ROC) curve for 3D CNN T-ImageNet vs. 3D CNN T-Zero vs. 3D CNN T-LIDC for Moscow private 

dataset for solid nodule 

Fig. 3. The example of 20 patch sequential patches (10 × 2) which are taken from four different patients. The False Positive Rate is
predicted by 3D CNN architecture with pre-trained LIDC weight for detection and classification of lung nodule texture in Moscow private
dataset.

prediction box with a prediction class and confidence
score. For example, dark blue box with description
2 | 100 signifies a prediction of a solid class with a
100% confidence score. The third row is the filter-out
mask result, so it has similarities to the second row
except there is no pixel mask ground-truth. The last
row is the result of combining the third row with the
first row (original patches raw data).

Moreover, Fig. 3 is a compilation of the results
of CT scans of five patients who have nodules of
different sizes and texture (solid, subsolid, and ground-
glass). It is presented sequentially from left to right.
Patient 6 shows a very small detected nodule but
poorly classified (solid nodule is predicted as non-solid
with a score of 53% confidence and solid with 46%
confidence). Then, Patient 7 shows a detected semi-
opaque solid nodule. It is falsely classified as a non-
solid nodule with confidence as high as 91%. This
type of misprediction is caused by the semi-opacity of
the nodule in the CT scan. It is generally interpreted
as a non-solid (subsolid) nodule. However, there is
a probability that this type of ambiguous nodule is

misdiagnosed by annotating radiologists. Next, Patient
8 shows a nodule-like structure that has a high non-
solid confidence score (91%) caused by underlying
disease besides lung nodules such as tuberculosis and
lung infection or possibly missed out by annotating
radiologists.

Meanwhile, Patient 9 shows an ambiguous nodule
that is falsely classified as a solid nodule rather than
a non-solid nodule (85% vs 57%) near the falsely de-
tected nodule. There is some hazy structure in the lung
detected as a non-solid nodule with a low confidence
score of 21%. It can be caused by other lung diseases
or missed by radiologists.

Figures 4 and 5 show the Receiver Operating Char-
acteristics (ROC) curve for solid and nonsolid nod-
ules. The complete performance summary is shown in
Fig. 6. The 3D CNN T-LIDC and 3D CNN T-ImageNet
performance are not different, but these two models
implementing transfer learning consistently show supe-
rior results compared to 3D CNN T-Zero (mean mAP
22.86% vs 22.16% vs 9.70%, AUC 70.36% vs 69.00%
vs 56.10%, Sen 65.46% vs 65.90% vs 47, 54%, FPR

98



Cite this article as: I. W. Harsono, S. Liawatimena, and T. W. Cenggoro, “Lung Nodule Texture Detection and
Classification Using 3D CNN”, CommIT (Communication & Information Technology) Journal 13(2), 91–103,
2019.

253.51 vs 222.91 vs 278.02) with shorter training times
(85.44 vs 85.44 vs 113.88).

Based on the results, it can be determined that the
approach can integrate lung nodule CT-scan datasets
into the 3D CNN model. 3D CNN is a state-of-the-
art of 3D CNN novel model that can provide good
detection (mAP) and classification (AUC, sensitivity)
performance on a small number of datasets (Moscow
public datasets). 3D CNN performance with transfer
learning techniques will provide superior results, espe-
cially if the transferred weight is trained from similar
datasets for the detection of the same object. LIDC
transfer learning for Moscow private dataset provides
better performance than ImageNet transfer learning.
The 3D CNN model is unable to completely predict
Moscow private dataset due to the lack of high-quality
datasets and low level of trust in annotations. The
average mAP for 3D CNN cannot reach 50%. It is
because of the strict and demanding recall criteria in
assessing the accuracy of 3D bounding boxes (all boxes
in 64 adjacent slices must overlap with the Intersection
of Union (IoU) 0.1).

Several factors are affecting relatively lower yields
in the Moscow private dataset. First, Moscow private
dataset contains high noise compared to other cancer
or lung nodule datasets (LIDC public dataset). Second,
some private datasets cannot be read and converted to
3D volumetric format. Those need advanced DICOM
reconstruction software such as 3D Slicer. The con-
version results are still far from adequate in terms of
quality. Third, there is less amount of patient training
data on private datasets compared to the thousand natu-
ral image database (ImageNet). Fourth, there is a class
imbalance between solid and nonsolid on the Moscow
private dataset. Fifth, the Moscow private dataset also
includes patients who have pulmonary radiological
lesions other than pulmonary nodules, such as patients
with lung and pleural inflammation (pneumonia, bron-
chiolitis, interstitial lung disease, pleurisy, hydrothorax,
and post-pneumonectomy). It increases the difficulty of
datasets to be abstractly interpreted by CNN.

V. CONCLUSION

The techniques propose a unique way for lung CT
scan feature extraction. This model can standardize
various age groups and body size (reflected in highly
variable slice thickness and pixel spacing) CT scan data
into a dynamic dimension of (0.5*length, 0.5*width,
64). It can also give solutions to the unforeseen issue
of data. In this case, it is an error in orientation caused
by machine malfunctions or sudden movement inside
CT scan machines. The data corruption can be partially
recovered by using a high-end reconstruction library
like 3D Slicer.
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Meanwhile, the noise can be suppressed by ade-
quate iterative reconstruction on raw uncompressed CT
scan data (*.raw). Although the architecture is not
satisfactory enough due to the limited amount and
low quality of the private dataset, the researchers suc-
cessfully implement and prove the benefit of transfer
learning of pre-trained weight on 3D CNN. It has
higher performance metrics (higher mAP, AUC, and
training time) to non-transferred ones.

The performance metric of 3D CNN pre-trained
LIDC weight (similar datasets) is the architecture hav-
ing the best performance metrics. It is followed by
slightly lower 3D CNN pre-trained ImageNet and poor
performance metrics of 3D CNN trained from zero, as
shown in Fig. 6. Pre-trained LIDC architecture shows a
slightly higher FPR compared to pre-trained ImageNet
architecture. It is probably caused by high variable
characteristics of data on Moscow private datasets
compared to LIDC public datasets. The patients with
mixed lesions (non-nodule lesions) are also included
in Moscow private datasets. Thus, it can be concluded
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that this research has successfully proven that private
raw datasets such as Moscow private dataset can be
integrated into 3D CNN. It also shows the benefit of
previously trained transfer learning in a small amount
of weak labeled private dataset data. Additionally, this
research also uses a unique approach compared to the
previous research. All previous studies only classify
malignancy status using the LIDC public dataset. This
research detects and classifies the texture information
contained in Moscow private dataset. The information
about textures can help the initial screening, reduce
the time needed for consensus (comparing opinion
between radiologist), and indirectly score the process
to determine lung malignancies. In research involving
specific medical images and requiring greater accuracy,
the researchers suggest the future researchers to col-
laborate with medical institutes. Thus, they can obtain
highly accurate annotations with high-quality images.
Annotation processes should be assisted using special
programs that can directly record metadata information
from each image in detail (coordinates, pixel spacing,
slice thickness, the origin of the image, and pixel-wise
perimeter) with the friendly user interface. Then, it
can be used by specialist health workers (radiologists)
without the needs for special training.
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