
CommIT (Communication & Information Technology) Journal 14(1), 1–8, 2020

Implementation of Structured Object-Oriented
Formal Language for Warehouse Management

System
Irfin Afifudin1 and Inge Martina2∗

1−2Faculty of Informatics Engineering, Institut Teknologi Harapan Bangsa
Bandung 40132, Indonesia

Email: 1irfin@ithb.ac.id, 2inge@ithb.ac.id

Abstract—Designing process is inseparable from soft-
ware development. Like other software development
processes, designing process faces many problems, such
as improper and ambiguous specifications. These prob-
lems may be overcome by applying formal engineering
methods. One of which is Structured Object-Oriented
Formal Language (SOFL). The analysis and formation
of the design and implementation of SOFL are carried
out as a solution to the problem. The application of SOFL
is divided into three parts according to SOFL rules,
namely informal specification, semi-formal specification,
and formal specification. The design and implementation
are measured and tested using rigorous review and
maintainability index. This research uses a warehouse
management system, a safety-critical system, as a case
study. Rigorous analysis shows that SOFL in warehouse
management system increases the maintainability index
of 56.94%. It means that it is easier to develop.

Index Terms—Software Engineering, Safety-critical,
Structured Object-Oriented Formal Language, Object-
Based Programming, Software Quality

I. INTRODUCTION

IN software development, a process model provides
a specific roadmap for software engineering work.

It defines the flow of all activities, actions, and tasks,
the degree of iteration, the work products, and the
organization of the work that must be done [1]. This
process model is also known as Software Development
Life Cycle (SDLC). The design process is an integral
part of SDLC. Before starting the development, the
technique of making a representation or model of
software is called the design process. The problem
that can occur in the design process is the incorrect
design. Thus, it has a negative impact on the imple-
mentation process. In the development process, correct
specifications and careful verification will significantly

Received: Aug. 29, 2019; received in revised form: Feb. 26,
2020; accepted: Feb. 26, 2020; available online: Mar. 27, 2020.
*Corresponding Author

help prevent the unexpected result caused by errors in
software components [2].

Mathematical modeling is used for the design pro-
cess to provide and define a precise idea like con-
sistency and completeness. Formal methods provide a
framework for systematic specification, development,
and verification system. An effective way to implement
formal methods is to use Formal Engineering Method
(FEM). It includes integrated specifications and verifi-
cation, and all types of techniques that support the con-
struction of specifications, transformations, and system
verification and validation. Adopting FEM can reduce
complexity and increase understanding, especially for
large-scale and complex software [3].

Structured Object-Oriented Formal Language
(SOFL) is one of the FEMs. It provides a formal
but comprehensive language for design requirements
and specifications and practical methods for software
development [4]. SOFL provides the approach of the
three-step specification, which consists of informal,
semi-formal, and formal specifications. The informal
specification takes the form of documentation written
in a natural language. It contains the communication
between software engineers and clients. The semi-
formal specification is the transformation from the
informal specification into SOFL notation. Then,
the formal specification determines all functions by
formalizing conditions before and after and identifying
the system architecture using a Condition Data Flow
Diagram (CDFD).

The research uses a warehouse management sys-
tem. Warehouse operations play a vital role as every
goods movement must be carried out and recorded
correctly. It must be traceable, and any loss of goods
or inaccuracy in recording results in an economic loss
for the organization. Therefore, software focusing on
supporting warehouse operation management is impor-
tant for the organization to reduce the risks. Previous

mailto:irfin@ithb.ac.id
mailto:inge@ithb.ac.id


Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.
researchers design and implement this software by
using the traditional approach. They also employ con-
ventional object-oriented methods. Using SOFL will
apply a stricter approach. Although SOFL is more
directed towards safety-critical systems [5], it can also
save time and improve the accuracy of discussion and
communication [6].

II. RESEARCH METHOD

A. Structured Object-Oriented Formal Language
(SOFL)

SOFL is a formal and comprehensive language
for design requirements and specifications, as well
as practical methods for software development. The
diagram notation used by SOFL is Condition Data
Flow Diagram (CDFD), which is a formal form of Data
Flow Diagram (DFD). CDFD is a graph to determine
how the processes work together to provide the desired
functional behavior. The CDFD is organized in a
hierarchy to reduce complexity and obtain modularity
for specifications [4].

B. Module

The specifications of SOFL consist of modules that
are related to each other. The writing structure of the
module is divided into three parts, namely the mod-
ule name, CDFD, and component specifications. The
components specification is the most important part
of the module because it contains data and processes.
Data in modules are the variables that are defined
using certain types of data according to the needs.
The procedure carries out tasks or instructions using
the input to produce the output [4]. In the module,
comments are given to explain more about everything.
Module declaration using SOFL notation is depicted
in Fig. 1.

C. Condition Data Flow Diagram (CDFD)

CDFD is a graphical notation that shows how the
processes work together to produce or provide the
desired function [4]. Figure 2 is an example of CDFD
of the Automatic Teller Machine (ATM) system.

Each box in the diagram represents a process,
such as Receive Command and Check Password, that
shows an operation or instruction. It also uses input
and produces output. The Receive Command process
uses balance and w draw as input, while the output of
this process is sel.

There are two types of data flow for input and
output. The first one is the active data flow that sends
the actual data to be used by other processes and drawn
in a solid line. For example, it is sel. The second

Fig. 1. Structured Object-Oriented Formal Language (SOFL) mod-
ule declaration notation [4].

Fig. 2. Condition Data Flow Diagram (CDFD) for Automatic Teller
Machine (ATM) system [4].

data flow is control data flow sending special data that
will not be used by other processes but its existence
to activate the process. Control data flow is drawn
in dotted lines. For example, those are balance and
w draw.

Furthermore, there is a box labeled with the number
1, account file. It is the data store that can be a
database or a file. However, in the SOFL specification,
stored data are treated as ordinary variables that hold
values used by processes [4].

D. Class and Object

Class is a type defined by the users. The class
represents a collection of objects that have the same
features. Features are attributes, descriptions of data
resources, and operations that manipulate data and
provide the function for other objects. Objects are
instances of classes with unique identities. Figure 3
shows an example of class and objects using commonly
used notations.

2



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

Fig. 3. Class and objects [4].

Using the example in Fig. 3, SOFL notation for
objects is s: Student; and s: = new Student. Writing
a class is similar to writing a module. The basic
difference between classes and modules is the use
of method instead of a process for object-orientation
consistency. It becomes optional, and each method can
be defined as an implicit or explicit specification [4].

E. Informal Specification
The informal specification is the initial step. The

specification is divided into three parts. Those are
functions to be implemented, the necessary constraints
on both functions and resources, and the resources to
be used.

In the informal specification, the relationships be-
tween functions, resources, and constraints are not
given much attention. However, the most important
thing is that the specification must cover function,
resource, and boundary requirements as much as pos-
sible [4].

F. Semi-Formal Specification
Semi-formal specification comes from informal

specifications. It aims to clarify and define all func-
tions, resources, and constraints, and to determine the
relationships of the three. Semi-formal specification
acts as a vehicle that helps communication between de-
veloper and user. Semi-formal specification combines
natural language with notation or formal language. The
goal of this specification is to get the same understand-
ing between user and developer. The reserved word for
the semi-formal specification is listed in Table I.

G. Formal Specification
The formal specification is a transformation of the

semi-formal specification. It represents the entire ar-
chitecture of the software to be built. The formal

TABLE I
THE RESERVED WORDS FOR SEMI-FORMAL SPECIFICATION [4].

No. Reserved word Function

1 Pre Required condition before process exe-
cution

2 Post Condition occurred after process execu-
tion

3 Ext External variable, maybe from parent
module or database

4 ext rd Readable external variable
5 ext wr Writable external variable

specification is made using several criteria. First, all
the modules are integrated into a hierarchy of CDFD.
Second, all the given types are defined precisely. In
other words, no given types are allowed in the for-
mal specification because their values are not defined
correctly. Third, the pre- and post-conditions of every
process and function in modules are written in the
SOFL language, not in any informal language.

The transformation from informal specifications to
formal specifications is through a process called the
evolutionary process. The evolution of this specifica-
tion can be one of three possible activities, namely
refinement, extension, and modification. Refinement
is an activity that develops specifications by remov-
ing everything that cannot be understood. Meanwhile,
the extension is the addition of new components to
specifications. This new component can be a module,
CDFD, process, or new data type. Finally, modification
is by modifying the specifications that have been
made. Modifications can be in the form of syntactic or
semantic modifications without changing the suitability
of the formalization standard [4]. The reserved word
for the formal specification is listed in Table II.

III. RESULTS AND DISCUSSION

A. System Implementation

The research on the application of SOFL in Ware-
house Management System (WMS) will be carried out
in several steps such as analysis, design, implemen-
tation, and testing of the software. Figure 4 shows a
flowchart of the overall SOFL process.

For user requirements, the concept of WMS covers
all activities in the warehouse. The main requirement
in the warehouse is maintaining data integrity. All
transaction records, whether the goods are out of the
warehouse and goes into the warehouse, should be
recorded as precisely as possible to avoid errors. WMS
must have a clear functional, neat, and simple user
interface.

A critical process in WMS can cause damage and
loss of property, such as goods in the warehouse. So,
the critical process in WMS affects the amount of

3



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

TABLE II
THE RESERVED WORDS FOR FORMAL SPECIFICATION [4].

No. Reserved word Function

1 forall Universal quantifier. It means all ele-
ments

2 exist Existentially quantified. It implies the
variable holds many elements

3 union Operation for unified many different sets
4 diff Operation for getting the differences be-

tween two sets
5 modify Operation to change field in composite

data type
6 bound Checking if a variable is defined
7 inset Variable that is in a set
8 notin Variable that is not in a set
9 card Cardinality of a set, the count of ele-

ments in a set
10 subset Subset (s1,s2) means that all elements

of s1 are in s2
11 inter Intersection of two sets
12 inds Position of an element in a sequence
13 conc Concatenation of two sequence
14 dunion Unity of distributed sets
15 dinters Intersection of distributed sets
16 power Combination of all elements of the sets,

including null elements
17 Len Length of sequence, the number of ele-

ments in sequence
18 Dconc Concatenation of distributed sets

Fig. 4. Global flowchart of Structured Object-Oriented Formal
Language (SOFL) process.

goods contained in the warehouse. The process that is
directly related to the stock of goods in the warehouse
or critical based on the design stage is as follows:

1) Three processes for the receiving module
2) Four processes for the movement goods module
3) Three processes for the issuing module
4) Zero processes for the stock report module
The top-level modules of the informal specification

Fig. 5. Activity diagram of receiving goods at the warehouse.

are:

1) Receiving goods at a warehouse
2) Moving goods from one location to another loca-

tion in the warehouse
3) Issuing goods
4) Stock records

Receiving goods is conducted when the purchased
goods arrive at the warehouse. The main activities
involved in this process are shown using Unified Mod-
eling Language (UML) activity diagram in Fig. 5.

Then, moving goods are initiated when goods need
to be relocated to another location. The user inputs
the details of goods picking and packing. Next, the
user waits for confirmation (approval). This activity is
shown in Fig. 6. Moreover, goods issuing is conducted
when goods ordered by the customer is ready to be
delivered. The user performs outbound processes, as
shown in Fig. 7.

Stock records are used by the user to get actual
goods inventory stock. The purpose of this activity is
to show inventory stock for goods and inventory stock
grouped by storage location. Figure 8 describes this
activity.

Next, the semi-formal specification must include
data type, CDFD, and processes in SOFL notation. It
uses a top-down approach. CDFD produced for WMS

4



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

Fig. 6. Activity diagram of goods movement.

Fig. 7. Activity diagram of goods issue.

is shown in Fig. 9.
Moreover, there are two formal specifications. The

first formal specification is defined using the analysis
of informal specification and semi-formal specification.
This first formal specification is called abstract design.

Fig. 8. Activity diagram for stock records.

Fig. 9. Condition Data Flow Diagram (CDFD) for Warehouse
Management System (WMS).

Formal specifications on the main module are broken
down into a number of decomposition modules. The
purpose of this decomposition is to clarify the parts of
the module that have high complexity so that there are
no wrong or missed specifications.

After the abstract design specification, the second
formal specification may be defined, namely, detailed
design. It is object-oriented. There are two important
things to consider when changing an abstract design
to detailed design. The first consideration is changing
all-composite, product, and union data types into class.
The second one is changing the implicit specification

5



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

Fig. 10. Function point diagram for Warehouse Management System (WMS).

Fig. 11. Information domain value for Warehouse Management
System (WMS).

of each process into an explicit specification.

B. Testing and Result

At this phase, the results of several measurements
and tests are explained.

Function Point (FP) measurement aims to measure
or estimate the cost or effort needed to design, imple-
ment, and test software. This measurement can also
be used to predict the number of errors that can be
encountered in testing and predicting the number of
components or the number of lines of code at the
implementation time.

The FP model consists of several components [7].
First, External Input (EI) moves data into the appli-
cation without presenting data manipulation. Second,

External Output (EO) moves data to the user and shows
some data manipulation. Third, External Inquiries (EQ)
moves data to the user without presenting data ma-
nipulation. Fourth, it is Internal Logical Files (ILF).
The logic is in the form of fixed data managed by
the application through the use of EI. Fifth, there are
External Interface Files (EIF). The logic is in the form
of fixed data used by the application but does not run
in it.

Based on the diagram in Fig. 10, there are 17 ILF
and 0 EIF because this application is not related to
other applications. Then, there are 20 EI, 50 EO based
on the total output of all modules, and 5 EQ.

As information domain value is obtained (Fig. 11),
these values are summed from each part as count
total and used by the function point formula. Value
Adjustment Factors (VAF) is obtained using Eq. (1) as
follows:

FP = count total×
[
0.65 + 0.01×

∑
(Fi)

]
= 583× [0.65 + 0.01× 42] = 623.81. (1)

The value of FP as 1 is correlated to 5 lines of code.
The function point of 523.81 is 3119 lines of code.

The rigorous review test focuses on three aspects,
namely the consistency between process and invari-
ant, satisfaction, and consistency of CDFD [8]. First,

6



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

TABLE III
CYCLOMATIC COMPLEXITY (CC) AND MAINTAINABILITY

INDEX (MI) TEST RESULTS ON WAREHOUSE MANAGEMENT
SYSTEM (WMS).

Testing Average CC Average MI

WMS with SOFL 3.60 96.41
WMS without SOFL 42.32 61.43

review of consistency between process and invariant
aims to measure and determine the consistency be-
tween invariant and precondition in each existing pro-
cess. Each process is required to meet the conditions
formulated in the design.

Second, review of process satisfiability is to prove
that the process can meet expectations or needs. This
step tests if the precondition is correct, there will be
correct post-condition. Third, review of internal consis-
tency of CDFD is needed to review the correctness of
CDFD. Internal consistency in CDFD means ensuring
that output data flows from CDFD can be generated
based on input data flows according to the rules of
pre- and post-condition of all the processes that exist
in CDFD.

Next, the researchers explain the effect of applying
SOFL on the maintainability aspect. In this test, Cy-
clomatic Complexity (CC) and Maintainability Index
(MI) of the source code produced in this research are
compared to the source code produced by previous
researchers that do not use SOFL. Maintainability
Index is calculated using the Eqs. (2) and (3) [9]:

MI = 171− 5.2 ln (HV)− 0.23 · CC
− 16.2 ln(LOC) + 50 sin

√
2.46 · COM (2)

HV = N · log(2n), (3)

where HV is Halstead’s volume, CC is cyclomatic
complexity, LOC is line of code, COM is percentage
of comments in source code, N is Program length
(number of operators and operands), and n is Number
of vocabulary (distinct operators and operands) in
source code. The results are depicted in Table III.

Software with SOFL has a higher value compared
to the software without SOFL, with an increase in
MI of 56.94%. The result shows that SOFL makes
software easier to maintain by prioritizing maintain-
ability. SOFL also makes the code less complex, with
an increase of 91.5% in CC. This means the level of
error or bug appearances is smaller compared to the
software without SOFL.

Next, the researchers explain the unit tests and
their effects on applying SOFL to WMS software.
This test aims to verify the smallest units of software
design. The units are components or modules of the

software [10]. With the unit test, all units of the WMS
software have successfully passed. WMS software is
successfully implemented in SOFL design.

Based on the design, implementation, and testing
conducted, the use of SOFL on WMS software has
a positive impact in terms of completeness without
ambiguity and increasing maintainability. However, the
drawback of SOFL is layered documentation require-
ment that spends more time.

IV. CONCLUSION

There are several conclusions of the application of
SOFL for WMS software through measurements and
tests. First, the measurements of function point based
on Figs. 5 and 6 are better compared to previous data.
However, the function points, in this case, are difficult
to calculate. It is because WMS software without
SOFL is an old system that has not used object-
oriented architecture. Second, through rigorous review
testing, it is proven that accuracy at SOFL reaches
the algorithm logic level. It is not only at the design
level. The application of rigorous review helps prevent
errors in the design and implementation that is a great
concern of the safety-critical aspects. Third, through
MI test based on Table I, it is shown that SOFL gives
greater MI from 61.43 without SOFL to 96.41 using
SOFL. It shows an increase of 56.94%. The complexity
(CC) is also improved, from without SOFL is 42.32
to with SOFL (3.60). It increases to 91.5%. Both
measurements indicate that the application of SOFL
has an impact on software maintainability. Last, SOFL
implementation on software takes a long time, because
SOFL makes layered documentation that is informal,
semi-formal specification, the formal specification, and
rigorous review.

In the future research, the researchers need to apply
three-step specication approach in different domain
safety-critical system developments. It is to confirm
whether SOFL improves code complexity and in-
creases maintainability.

REFERENCES

[1] R. S. Pressman, Software engineering: A prac-
titioner’s approach. New York: McGraw-Hill
Education, 2014.

[2] X. Luo, S. Liu, and H. Wu, “A framework for
transforming SOFL formal specifications to pro-
grams,” in 2015 6th IEEE International Confer-
ence on Software Engineering and Service Sci-
ence (ICSESS). Beijing, China: IEEE, Sept. 23–
25, 2015, pp. 15–18.

[3] W. Miao and S. Liu, “Service-oriented modeling
using the SOFL formal engineering method,”

7



Cite this article as: I. Afifudin and I. Martina, “Implementation of Structured Object-Oriented Formal
Language for Warehouse Management System”, CommIT (Communication & Information Technology)
Journal 14(1), 1–8, 2020.

in 2009 IEEE Asia-Pacific Services Computing
Conference (APSCC). Singapore: IEEE, Dec.
7–11, 2009, pp. 187–192.

[4] S. Liu, Formal engineering for industrial software
development: Using the SOFL method. New
York: Springer Science & Business Media, 2013.

[5] L. E. G. Martins and T. Gorschek, “Requirements
engineering for safety-critical systems: Overview
and challenges,” IEEE Software, vol. 34, no. 4,
pp. 49–57, 2017.

[6] F. Nagoya, S. Liu, and K. Hamada, “Developing a
web dictionary system using the SOFL three-step
specification approach,” in 2015 5th International
Conference on IT Convergence and Security (IC-
ITCS). Kuala Lumpur, Malaysia: IEEE, Aug.
24–27, 2015, pp. 1–5.

[7] H. Rohayani, F. L. Gaol, B. Soewito, and H. L.
Hendric, “Estimated measurement quality soft-
ware on structural model academic system with
function point analysis,” in 2017 International
Conference on Applied Computer and Commu-
nication Technologies (ComCom). Jakarta, In-
donesia: IEEE, May 17–18, 2017, pp. 1–5.

[8] M. Li and S. Liu, “Tool support for rigorous
formal specification inspection,” in 2014 IEEE
17th International Conference on Computational
Science and Engineering. Chengdu, China:
IEEE, Dec. 19–21, 2014, pp. 729–734.

[9] I. Heitlager, T. Kuipers, and J. Visser, “A practical
model for measuring maintainability,” in 6th In-
ternational Conference on the Quality of Informa-
tion and Communications Technology (QUATIC
2007). Lisbon, Portugal: IEEE, Sept. 12–14,
2007, pp. 30–39.

[10] H. K. Brar and P. J. Kaur, “Differentiating in-
tegration testing and unit testing,” in 2015 2nd

International Conference on Computing for Sus-
tainable Global Development (INDIACom). New
Delhi, India: IEEE, Mar. 11–13, 2015, pp. 796–
798.

8


	Introduction
	Research Method
	Structured Object-Oriented Formal Language (SOFL)
	Module
	Condition Data Flow Diagram (CDFD)
	Class and Object
	Informal Specification
	Semi-Formal Specification
	Formal Specification

	Results and Discussion
	System Implementation
	Testing and Result

	Conclusion

