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Abstract—Plant diseases can cause a significant de-
crease in tea crop production. Early disease detection
can help to minimize the loss. For tea plants, experts can
identify the diseases by visual inspection on the leaves.
However, providing experts to deal with disease identifica-
tion may be very costly. The machine learning technology
can be implemented to provide automatic plant disease
detection. Currently, deep learning is state-of-the-art for
object identification in computer vision. In this study, the
researchers propose the Convolutional Neural Network
(CNN) for tea disease detections. The researchers focus
on the implementation of concatenated CNN, namely
GoogleNet, Xception, and Inception-ResNet-v2, for this
task. About 4727 images of tea leaves are collected,
comprising of three types of diseases that commonly
occur in Indonesia and a healthy class. The experimental
results confirm the effectiveness of concatenated CNN
for tea disease detections. The accuracy of 89.64% is
achieved.

Index Terms—Concatenated Convolution Neural Net-
work, Classification, GoogLeNet, Xception, Inception-
ResNet-v2

I. INTRODUCTION

TEA (Camellia sinensis) is one of the major
agricultural commodities in Indonesia. However,

some of the tea clones are susceptible to pests and dis-
eases. In Indonesia, the main disease that frequently at-
tacks tea plants is Exobasidium vexans Massee causing
a disease called blister blight, leafhoppers (Empoasca
sp.), and the looper caterpillar (Hyposidra talaca). The
pests and diseases have different characteristics that
can be distinguishable from the leaves. However, ex-
perts are still required to manually identify them since
some pest and disease symptoms may look similar.
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Nevertheless, providing enough experts to deal with
vast areas of plantations is very costly and impossible.

The machine learning technology is useful to de-
velop a device for the automatic detection of plant
diseases. The application can help in early disease
detection to minimize the risk of crop failure. It can
also be used as inputs for sorting the harvest pro-
duction to identify the quality of tea. Plant disease
detection can be categorized as classification tasks
in machine learning. Classification is a grouping of
data for each target class. Classification algorithms are
usually trained in a supervised manner. For supervised
learning, the relations between the features of the data
and their class labels are assumed to follow the pre-
sumed classification algorithms. Then, during training,
the optimum sets of hyper-parameters that minimize
the loss function, such as the mean squared error of the
model, are selected. Thus, the challenges in classifiers
with good performances are to find the best features
or classification models.

For object recognition tasks, there have been var-
ious studies that propose good features for object
detection or classification. The traditional machine
learning techniques are usually used as input to the
algorithm. The examples of these techniques are Scale
Invariant Feature Transform (SIFT), Speed up Robust
Feature (SURF), and Histograms of Oriented Gradients
(HOGs). SIFT is very efficient in object recognition
applications, but it requires a large computational
complexity [1]. SURF technique has performed faster
than SIFT and detected points without reducing. HOGs
are feature descriptors for object detection [2]. HOG
counting calculates gradients in parts of an image [3].
These three examples of traditional techniques require
complex calculations and are more challenging to
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apply to online applications. However, most of these
features are computationally complex.

For classifiers, Support Vector Machine (SVM) is
arguably one of the most popular classifiers for object
recognition before the era of deep learning. Refer-
ence [4] proposed SVM for the recognition and de-
tection of tea leaf diseases. Then, Ref. [5] used SVM
combining K-Nearest Neighbor (KNN) with geometric
moment invariant to increase the results of image
recognition. Moreover, combining the SVM with Ker-
nel Principal Component Analysis (KPCA) reduces the
dimensional feature vector [6]. However, SVM is also
usually tweaking using kernel functions to find good
performance, and this is not always easy to find.

Currently, deep learning is a popular technique
for many tasks for object recognition. Reference [7]
reviewed object detection frameworks that use deep
learning. They focused on typical generic object de-
tection architectures with modifications to improve
performance. Then, Ref. [8] used CaffeNet architec-
ture to recognize plant disease. They altered the last
layer and the output of the softmax layer to support
15 classes. Deep learning models nonlinear relations
between data and their class labels used a stacked
multi-layer perceptron. Hence, it theoretically could fit
any functions if there were enough depth and number
of neurons. Therefore, even when it was given simple
and raw features, the studies found that deep learning
could achieve good performance.

Machine learning methods have been used in some
studies for plant disease detection. Disease classifica-
tion of plants was carried out by Ref. [9] on the images
of cucumber leaves. They used K-means clustering and
Sparse Representation (SR). AlexNet and VGG16 net
are used by Ref. [10] to classify images of tomato
leaves in six disease classes and healthy classes with
a dataset from PlantVillage. Reference [11] used a
deep Convolution Neural Network (CNN) on a healthy
leaf dataset of 54306 images from PlantVillage to
identify 14 crop species and 26 diseases. Identification
of symptoms of disease in cassava leaves is carried out
by Ref. [12] using CNN model.

Reference [13] identified apple leaf disease using
AlexNet. The dataset used was 13.689 images of apple
leaves and achieved an accuracy of 97.62%. Refer-
ence [14] used Deep CNN (DCNN) to identify leaf
diseases in 39 classes. The accuracy reached 96.46%.
Meanwhile, Ref. [15] used 87.848 images to detect
and diagnose plant diseases using the CNN model.
Its success reached 99.53%. Reference [16] diagnosed
leaf disease automatically with an accuracy of 93.85%,
using two feature extraction techniques, namely Gray
Level Covariance Matrix (GLCM) and Alexnet.

Recently, deep learning methods are becoming more

popular as the methods for plant disease detection.
Reference [11] identified 14 plant species and 26 types
of diseases in plants, using the various CNN architec-
tures. Reference [17] tried to classify the introduction
of disease in plants by using deep learning on 50.000
images of corn. Moreover, Ref. [18] used a CNN and
Deconvolutional Network (DN) for identifying plant
species. Reference [19] tried to classify 22 species of
weeds and plants using DCNN.

According to Ref. [20], diseases in plants can be
caused by bacteria, viruses, and fungi. Viral diseases
are the most difficult to diagnose and control their
spread. The characteristics of the plants affected by
the virus can be observed from the leaves. It becomes
tangled and curly and has stunted growth. Small pale
spots usually characterize leaves that are attacked by
bacteria. For fungi, it will be easily identified through
its morphological characteristics.

Tea disease identification has been proposed in some
studies. Reference [21] used 26 tea plant samples with
typical discoloration symptoms from different tea gar-
dens. They conducted a metagenomic analysis based
on next-generation sequencing. Reference [22] tried to
identify diseases in tea plants. The disease included
algal leaf spots, brown blight, gray blight, blister blight,
horsehair blight, twig dieback, and canker stem.

Similarly, Ref. [23] used CNNs to recognize plant
diseases using images of tea leaves automatically. A
CNN model called LeafNet was proposed in the study.
It was a sequential model in which CNN was stacked
on the top of the preceding layers, and the flow of
information only went in one direction.

Reference [24] conducted a study for the intro-
duction of disease in tea leaves by using the Neural
Network Ensemble (NNE) for pattern recognition. The
study also implemented sequential networks with a
multi-layer perceptron. However, the sequential model
might have limitations, especially when networks with
many layers were implemented. First, the networks
might lose some information due to the implementation
of pooling layers. This issue might apply to the case
of CNN. Second, networks might need more data for
training due to the high number of parameters to be
optimized. Lastly, the parameters of the networks were
more susceptible to a local minimum.

For these reasons, the researchers choose concate-
nated CNN for this task. The concatenated network
allows the flow of information to have more than
one direction. By doing so, the researchers can allow
one flow of information to carry information from
previous networks that may have been lost. In addition,
previous researchers find that using a concatenated
network makes the parameters less susceptible to a
local minimum. Previous researchers have strongly
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Fig. 1. The flow diagram of the disease identification system in the
tea plant.

indicated that the concatenated CNN achieves better
performance than the sequential model [25–29]. In
addition, to concatenate, deep residual learning is also
used to improve performance [28, 29]. The researchers
apply three concatenated CNN architectures in this
study, namely GoogLeNet, Xception, and Inception-
ResNet-v2.

II. RESEARCH METHOD

The flow diagram of this research method can be
seen in Fig. 1. The researchers divided the group of
data into four data class labels. The first data classes
are combined between healthy tea plants and blister
blight. The second data classes consist of the healthy
tea plant, blister blight, and Empoasca sp. Then, the
last data classes are the combination of all data with
healthy tea plants, blister blight, Empoasca sp., and
looper caterpillar.

The researchers choose 80% of the data for training
data, 10% for data validation, and 10% for testing
data. Three architectures are used in this study for
concatenated CNN. Those are GoogLeNet, Xception,
and Inception-ResNet-v2. All architectures use the
same training and validation sets with the Rectified
Linear Units (ReLU) activation function. The batch
size is 10.

A. Convolution Neural Network

CNN is a commonly used architecture for many
tasks in object recognition. It is a variant of Multi-
Layer Perceptron (MLP). The nodes of succeeding
layers in MLP are all connected to all the nodes from
preceding layers, but it is not the case on CNN. The
nodes are only connected to some neighboring nodes of
preceding layers. This benefits the object recognition

Fig. 2. The three dimensions of the Convolutional Neural Network.

tasks, which may learn nearby pixels of the image to
determine the class objects. For another advantage of
CNN for image data, it is designed to process two or
more-dimensional data so that each neuron on CNN
is presented in two or more-dimensional form. Data
that propagates on CNN has a linear operation and
different weighting parameters. Linear operations on
CNN use convolution with four-dimensional weights,
which are the convolution kernel assemblies. In this
CNN algorithm, the input from the previous layer is not
a one-dimensional array but a two-dimensional array.
The excess of CNN that uses dimensions more than
one affects the overall scale in an object. The entire
scale of the object is significant so that the input does
not lose its spatial information, which will extract and
classify the features. Thus, the CNN algorithm will
increase the level of accuracy and optimization.

CNN forms its neurons in three dimensions (length,
width, and height) in a layer. Figure 2 shows CNN in
three dimensions in one of the layers.

B. Concatenated Convolution Neural Network

Many studies that implemented CNN focus on
depth. The examples of CNN using DCNN include
LeNet, AlexNet, ZFNet, VGGNet, and ResNet. How-
ever, very deep networks are prone to overfit. Mean-
while, stacking large convolution operations is com-
putationally expensive. For this reason, a concatenated
CNN module is developed. The module does not only
focus on the depth factor but also the width factor.
The examples of concatenated CNN are GoogLeNet
and Xception.

The concatenated CNN concept is developed from
the inception module. The inception module is used
for more efficient computational and deeper networks.
It reduces a dimension with stacked 1×1 convolution.
Figure 3 shows the concept of the inception module.
Convolution in the input is executed with three differ-
ent filter sizes: 1×1, 3×3, and 5×5. Additionally, max
pooling is also executed. The outputs are concatenated
and sent to the next inception module.

One of the problems with training networks, espe-
cially deep neural networks, is that it vanishes and
explodes the gradients. The problem of vanishing or
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Fig. 3. The inception module.

Fig. 4. The inception module with dimension reduction in
GoogLeNet.

exploding gradients for a long time is a big barrier to
train deep neural networks. In training a very deep
network, it obtains very large, very small, or even
exponentially small derivatives or slopes. Thus, this
makes training difficult. The concatenated concept can
reduce these problems.

In this research, the researchers use three kinds of
concatenated CNN architecture. Those are GoogLeNet,
Xception, and Inception-ResNet-v2.

C. GoogLeNet

The GoogLeNet architecture is proposed by
Ref. [26]. GoogLeNet has optimized depth and the
width factor of the network to raise accuracy. To
improve the performance of deep neural networks, it is
usually by increasing the size of the network. However,
if the size of the network is increased, it will increase
the number of parameters to be trained. GoogLeNet
solves this problem by using the inception module.
The inception module deploys a parallel combination
of convolution. Then, 1 × 1 convolutions are used
for computing the reduction before 3 × 3 and 5 × 5
convolutions. GoogLeNet has nine inception modules
stacked linearly. It consists of 22 deep layers and
has a lower 5 million parameters in the networks.
The schematic module of inception with dimension
reduction in GoogLeNet is depicted in Fig. 4.

D. Xception

An Xception, which stands for extreme inception,
is first proposed by Ref. [27]. Xception is a CNN

Fig. 5. The extreme form of inception module.

architecture based entirely on depthwise separable con-
volution layers. It has 36 convolutional layers. The 36
convolutional layers are constructed into 14 modules.
Except for the first and last modules, all modules have
linear residual connections.

Exception architecture is based entirely on convo-
lutional layers that can be separated in depthwise.
Convolutionally separated module is almost identical
to the extreme form of the initial module as depicted
in Fig. 5. The difference between convolution that can
be separated in depthwise and the extreme beginning
is convolution, which can be separated from doing
wise spatial convolution first and 1 × 1 convolution.
Meanwhile, the inception performs 1 × 1 convolution
first. Then, Xception architecture can be seen in Fig. 6.

E. Inception-ResNet-v2

The Inception-ResNet-v2 is first introduced by
Ref. [29]. Inception-ResNet-v2 architecture combines
the principles of the structure of Inception and residual
connections. Convolution filters are combined with
residual connections evading degradation problems
caused by deep structures. Residual connections can
reduce training time. Thus, it is more efficient than
without using residual connections. Figure 7 presents
the schema and stem for the Inception-ResNet-v2
network.

Figure 8 shows the general scheme for scaling
combined Inception-ResNet module. For arbitrary sub-
networks, the inception block will be replaced using a
scaling block that only scales the last linear activation
with the appropriate constant. Reducing residue before
adding to previous layer activation can stabilize train-
ing. In general, some residual scaling factor values are
used between 0.1 and 0.3 before being added to the
activation of the accumulated layers.

III. EXPERIMENTAL SETUP

In this study, the researchers collect 4727 images of
tea leaves. The data are collected from plantations at
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Fig. 7.  Schema (left) and stem (right) of the Inception-ResNet-v2 network. 
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Fig. 7. Schema (left) and stem (right) of the Inception-ResNet-v2
network.

The Research Institute for Tea and Cinchona, Gam-
bung, West Java, Indonesia. The collected tea leaves

Fig. 8. The general schema of scaling combined Inception-ResNet
modules.

belong to the genus Camellia sinensis and Assamnica
species. This dataset is collected using two digital cam-
eras and five smartphone cameras. All images are taken
indoor and under an uncontrolled environment. The
distance of the camera to the leaves is not determined
and uses the autofocus feature.

The researchers collect the data with four class
targets comprising of three types of diseases and a
healthy class. The dataset consists of 3479 diseased
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TABLE I
THE DATASET USED FOR THE CLASSIFICATION

No Type of Tea Plant Diseases Number %

1 Healthy 1248 26.40
2 Blister blight 842 17.81
3 Empoasca sp. (leafhoppers) 1728 36.56
4 Looper caterpillars 909 19.23

Total 4727 100

TABLE II
THE TABULAR REPRESENTATION DATASET USED FOR

CLASSIFICATION.

No Type of Tea
Plant Diseases

Number of
Training
Images

Number
of Testing
Images

1 Healthy leaf 998 250
2 Blister blight 674 168
3 Empoasca sp.

(leafhoppers)
1382 346

4 Looper cater-
pillars

727 182

Total 3781 946

TABLE III
THE RECOGNITION PERFORMANCE ACCURACY WITH RMSPROP

OPTIMIZER AND LEARNING RATE = 10−5 .

Data Classes Architecture

Accuracy (%)

Epoch

50 100 200

2
GoogLeNet 91.39 94.02 95.22
Xception 92.82 95.22 94.74
Inception-ResNet-v2 93.30 96.17 95.69

3
GoogLeNet 74.43 77.36 81.41
Xception 83.77 82.72 85.86
Inception-ResNet-v2 84.82 80.11 84.56

4
GoogLeNet 70.19 74.42 78.65
Xception 80.76 82.42 84.36
Inception-ResNet-v2 75.69 82.24 83.30

tea plants and 1248 healthy tea plants. For leaves with
diseases, the researchers collect leaves that from tea
plants with blister blight, Empoasca sp. (leafhoppers),
and looper caterpillars. For each disease, there are 842
data for blister blight, 1728 data for Empoasca sp., and
909 data for plants with looper caterpillar. The details
of data distributions are shown in Table I. Meanwhile,
the samples of the collected data are portrayed in
Fig. 9.

For the experiment, the researchers resize all the
images into fixed 64 × 64 pixels and extract values
of RGB from images as features. The data are divided
into three subsets: training, validation, and testing sets.
The researchers select 80% of the data for training,
10% for validating, and 10% for testing. A tabular
representation of the training images in this research
is shown in Table II.

The researchers have a total of 108 experimental
configurations, which vary on the following parame-
ters:

1) Architecture: GoogLeNet, Xception, and
Inception-ResNet-v2.

2) Activation function: ReLU. It is one of the activa-
tion functions used in deep learning. The function
returns to 0 if it receives any negative input.
However, for any positive x value, it returns that
value back. It is a simple function, but it can allow
a model to account for non-linearities and interac-
tions well. This is the reason why the researchers
choose ReLU as an activation function.

3) Optimizer: RMSprop and Adam. RMSprop deals
with its radically diminishing learning rates. It
keeps the moving average of the squared gradi-
ents for each weight and divides the gradient by
square root of the mean square. This is why it is
called RMSprop (root mean square). Moreover,
Adam is an adaptive learning rate optimization
algorithm that is designed specifically for training
deep neural networks [30]. Adam is a method of
the adaptive learning rate. It calculates the rate
of individual learning for different parameters.
The name comes from the estimation of adaptive
moments and uses the first and second-moment
gradient estimates to adapt the learning rate for
each weight of the neural network.

4) Batch size: 10
5) Epoch: 50, 100, and 200
6) Learning rate: 10−5 and 10−4

Then, the researchers implement the concatenated
CNN training in python using Tensorflow and Keras
package.

IV. RESULTS AND DISCUSSION

The results of the experiments are shown in Ta-
bles III–VI. The results are the accuracy of the test
data. The results clearly show that the performance
of Xception and Inception-ResNet-v2 is better than
GoogLeNet. This is expected since Xception and
Inception-ResNet-v2 are CNN with significantly more
complex performance and have more layers. However,
the results show that the performance can be further
improved by adding more training data. It is indi-
cated that performance tends to decrease when the
researchers use more class labels. The best result for
two data class diseases achieves 98.09% of accuracy
using a 10−4 learning rate. Meanwhile, the results
using three data classes are 90.05% of accuracy using
the 10−4 learning rate. For the four data classes, the
best correctly classified data obtain 89.64% of accuracy
using the 10−4 learning rate.
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more efficient than without using residual connections. 

Figure 7 presents the schema and stem for the Inception-

ResNet-v2 network. 
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Fig. 7.  Schema (left) and stem (right) of the Inception-ResNet-v2 network. 

 

Figure 8 shows the general scheme for scaling combined 

Inception-ResNet module. For arbitrary subnetworks, the 

inception block will be replaced using a scaling block that 

only scales the last linear activation with the appropriate 

constant. Reducing residue before adding to previous layer 

activation can stabilize training. In general, some residual 

scaling factor values are used between 0.1 and 0.3 before 

being added to the activation of the accumulated layers. 
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Fig. 8.  The general schema of scaling combined 

Inception-ResNet modules. 

III.  EXPERIMENTAL SETUP 

In this study, the researchers collect 4727 images of tea 

leaves. The data are collected from plantations at The 

Research Institute for Tea and Cinchona, Gambung, West 

Java, Indonesia.  The collected tea leaves belong to the 

genus Camellia sinensis and Assamnica species. This 

dataset is collected using two digital cameras and five 

smartphone cameras. All images are taken indoor and under 

an uncontrolled environment. The distance of the camera to 

the leaves is not determined and uses the autofocus feature. 

The researchers collect the data with four class targets 

comprising of three types of diseases and a healthy class. 

The dataset consists of 3479 diseased tea plants and 1248 

healthy tea plants. For leaves with diseases, the researchers 

collect leaves that from tea plants with blister blight, 

Empoasca sp. (leafhoppers), and looper caterpillars. For 

each disease, there are 842 data for blister blight, 1728 data 

for Empoasca sp., and 909 data for plants with looper 

caterpillar. The details of data distributions are shown in 

Table I. Meanwhile, the samples of the collected data are 

portrayed in Fig. 9. 

 
TABLE I 

The Dataset Used for the Classification
1
 

No Type of Tea Plant Diseases Number % 

1 Healthy 1248 26.40 

2 Blister blight 842 17.81 

3 Empoasca sp. (leafhoppers) 1728 36.56 

4 Looper caterpillars 909 19.23 

Total 4727 100 

 

     
(a) Healthy 

     
(b) Blister blight 

     
(c) Empoasca sp. (leafhoppers) 

     
(d) Looper caterpillars 

 

 

Fig. 9. The examples of the tea plant from the dataset: (a) Healthy, (b) 

Blister blight, (c) Empoasca sp. (leafhoppers), and (d) Looper caterpillars. 
 

For the experiment, the researchers resize all the images 

into fixed 64 × 64 pixels and extract values of RGB from 

images as features. The data are divided into three subsets: 

training, validation, and testing sets. The researchers select 

80% of the data for training, 10% for validating, and 10% 

for testing. A tabular representation of the training images in 

this research is shown in Table II.  

                                                           
 

Fig. 9. The examples of the tea plant from the dataset: (a) Healthy, (b) Blister blight, (c) Empoasca sp. (leafhoppers), and (d) Looper
caterpillars.

TABLE IV
THE RECOGNITION PERFORMANCE ACCURACY WITH ADAM

OPTIMIZER AND LEARNING RATE = 10−5 .

Data Classes Architecture

Accuracy (%)

Epoch

50 100 200

2
GoogLeNet 93.06 94.74 95.69
Xception 93.78 96.65 92.17
Inception-ResNet-v2 91.39 95.69 96.65

3
GoogLeNet 75.92 78.80 80.89
Xception 83.77 84.29 85.86
Inception-ResNet-v2 76.96 79.32 79.84

4
GoogLeNet 76.74 74.42 77.06
Xception 82.66 84.99 84.66
Inception-ResNet-v2 77.38 80.55 80.76

In general, the results show that most of the use
of Adam optimizer has outperformed the RMSProp
optimizer. Adam optimizer is considered to be able
to handle sparse gradients on noisy problems. Bias-

TABLE V
THE RECOGNITION PERFORMANCE ACCURACY WITH RMSPROP

OPTIMIZER AND LEARNING RATE = 10−4 .

Data Classes Architecture

Accuracy (%)

Epoch

50 100 200

2
GoogLeNet 94.26 94.26 93.30
Xception 96.17 95.69 97.61
Inception-ResNet-v2 91.87 97.61 97.13

3
GoogLeNet 80.37 84.16 80.89
Xception 84.82 82.46 82.20
Inception-ResNet-v2 82.20 89.01 90.05

4
GoogLeNet 74.84 78.65 78.22
Xception 84.57 83.93 87.10
Inception-ResNet-v2 84.36 88.80 87.95

correction happens towards the end of the optimization
as gradients become sparser. Adam optimizer also
computes individual learning rates for different param-
eters.
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TABLE VI
THE RECOGNITION PERFORMANCE ACCURACY WITH ADAM

OPTIMIZER AND LEARNING RATE = 10−4 .

Data Classes Architecture

Accuracy (%)

Epoch

50 100 200

2
GoogLeNet 91.63 94.26 94.50
Xception 96.17 95.22 95.22
Inception-ResNet-v2 81.82 98.09 97.13

3
GoogLeNet 83.12 84.16 82.20
Xception 84.03 84.82 84.55
Inception-ResNet-v2 85.34 76.70 89.27

4
GoogLeNet 77.59 77.91 78.33
Xception 81.82 82.88 81.61
Inception-ResNet-v2 85.41 89.64 86.89

The number of epochs used to turn out not to be
too significant for accuracy. The more epochs of data
training increase accuracy. However, it does not apply
linearly. This result is expected since the network may
be overfitting when the researchers use a large number
of epochs. It may be interesting to see the effect of
using regularization in a future study to mitigate the
problems.

The progression of the accuracy of the three mod-
els is shown in Fig. 10. Figure 10a shows the val-
idation accuracy increasing rapidly in the first five
epochs. After that, it is slowly ascended. Validation
accuracy is relatively fluctuating until it finally tends
to be stable around 189 to 200 epochs. For the
GoogLeNet model, it converges slower than Xception
and Inception-ResNet-v2. Based on the figure and
number, GoogLeNet requires a larger number of epoch
than Xception and Inception-ResNet-v2.

Meanwhile, Xception and Inception-ResNet-v2 con-
verge much faster than GoogleNet (Fig. 10a and b). For
both architectures, the accuracy of training data rapidly
increases around the twenty-fifth epoch. It remains
relatively the same afterward.

For Xception, Fig. 10b shows that validation accu-
racy increases rapidly at the first 20 epochs. Then,
it increases slowly until around the fortieth epoch. It
tends to be stable with a little fluctuation from 41 to
200 epochs. Convergence is achieved when the epoch
is at around 121. The validation accuracy of the model
does not increase despite more training iterations.

For Inception-ResNet-v2, Figure 10c presents that
the validation accuracy increases rapidly at the first
seventeenth epochs. It increases slowly until around
forty-fourth epoch and tends to stable with a little
fluctuation from 45 to 200 epochs. Convergence is
achieved when it enters the epoch of 49. This shows
that the Inception-ResNet-v2 model is faster to conver-
gence than Xception.

The learning rate serves to control how fast a model
in solving problems. The larger levels of learning rates
produce rapid changes and require less training epoch.
Meanwhile, the smaller levels of learning rates require
more training epoch because the smaller changes are
made for the weight of each update. The level of learn-
ing rates that are too small can cause the optimization
process to trap at a local minimum. Learning rates
that are too large can cause the model to converge
too quickly to sub-optimal solutions. The learning rate
of 10−5 and 10−4 proves to be the right choice as a
hyperparameter. It controls how much the change in
the model is in response to the experiment.

Tables III–VI show that for all data classes, the
use of 10−5 learning rate gets the highest accuracy
of 31.48% of the 108 experimental data. Meanwhile,
the use of 10−4 learning gets the highest accuracy of
68.52%. The data has shown that for this case, the
optimal learning rate is achieved by using 10−4. From
the researchers’ observation, RMSProp with learning
rate 10−4 is more sensitive than 10−5. This is proven
by 62.96% of accuracy with 10−4 as it is higher
compared to 37.04% of accuracy with 10−5. If the
researchers use Adam optimizer, 74.07% of accuracy
with 10−4 is higher than 25.93% of accuracy with
10−5. This result shows that by using the RMSProp
optimizer or Adam optimizer, the learning rate of 10−4

results is more sensitive than 10−5.
Figure 11 shows the progress of the accuracy of

three classes of Inception-ResNet-v2 architecture with
the same parameters (Adam optimizer, 200 epochs, and
learning rate = 10−4). The increase in the task with the
addition of tea disease classes starts from two classes
until final four classes. It shows that the validation
value decreases along with the increase in the given
task. Thus, the accuracy value decreases. The data
sample used in this research is unbalanced (26.40%
of healthy leaf image, 18.81% of blister blight image,
36.56% of Empoasca sp. (leafhoppers) image, and
19.23% of looper caterpillar image). The unbalanced
classes make the validation difficult to represent the
classes. Therefore, the researchers do not get optimized
results.

V. CONCLUSION

In this work, the concatenated CNN model is
used for classifying the image of tea plant diseases.
GoogLeNet, Xception, and Inception-ResNet-v2 ar-
chitecture are used as a pre-trained model for clas-
sification. By varying optimizer, epoch, and learning
rate, the model can achieve high recognition accuracy.
The classification results indicate that the concatenated
CNN can accurately classify the four types of tea
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Fig. 11. The progression of the accuracy of the Inception-ResNet-v2 with 2, 3, and 4 classes, Adam optimizer, 200 epochs, and learning rate = 10-4 
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plant diseases. It is with above 80% accuracy by us-
ing Inception-ResNet-v2 architecture, Adam optimizer,
and 200 epochs.

Even though the results are good, the proposed
method is still constrained by the length of training
time. For forthcoming work, to speed up the training
process and boost accuracy, future researchers can use
batch normalization. They can also adjust the parame-
ter to train well. To improve accuracy, the dataset can
be reproduced and made balance.
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