
41

International Journal of Communication & Information Technology (CommIT) http://msi.binus.ac.id/commit/
Vol. 7 No. 2 Oktober 2013, pp. 41-45

HYBRID QUICKSORT: AN EMPIRICAL STUDY
Surya Sujarwo

School of Computer Science, Bina Nusantara University
Jln. K. H. Syahdan No. 9, Jakarta 11480, Indonesia

surya.ss@binus.edu

Abstract: This article describes an empirical study of hybrid approach of quicksort
algorithms. The hybrid approach uses various variations of quicksort partition algorithms in
combination with cutoff to shellsort using several cutoff elements. The paper compares the
running time performance of the existing quicksort partition algorithms with the proposed
hybrid approachusing uniqueand duplicate elements. As a result, it is found that several
the hybrid approaches performs faster than the existing algorithms for uniqueand duplicate
elements.

Keywords: Hybrid approach; Cutoff; Shellsort; Quicksort

INTRODUCTION
 Sorting plays a major role in commercial data
processing [1]. Many applications utilize quicksort
algorithm because the algorithm works well and
easy to implement for variety of different kinds of
input data. The algorithm is substantially faster than
other sorting methods for general purpose use [1, 2].
In addition, the algorithm uses no additional space
for data storing and requires processing time that
proportional to n log (n) on average to sort n items [1,
3].

The quicksort algorithm is a divide-and-
conquer method for sorting [1]. It works by
partitioning an array into two parts; then, sorting
each part independently [1]. From this specification,
partition plays major role in Quicksort processing
time.

The common partition algorithms deployed in
quicksort algorithm are Hoareand Lomuto algorithm
[4, 5]. There are many improvements can be done
in Quicksort such as cutoff to insertion sort [1, 6],
median-of-three partitioning [1,7], median-of-five
with or without random index selection [8], and
multiple pivot [2].

For large data of duplicate sort key, there is
a specific Quicksort algorithm that has potential to
reduce processing time of sorting from linearithmic
to linear [1]. The idea is to partition the data in three
parts, one each for items with key smaller than, equal
to and larger than partition key [1].

This paper evaluates the performance of
multiple partitioning schemes of quicksort algorithm
for various hybrid approaches. The hybrid algorithm
approaches use cutoff to shellsort [1] for small
data key in range from 6 to 32 data. The partition
algorithm used in the hybrid approach is Hoare
partition, modified Hoare [4], and median-of-five
without random index selection [8]. The rest of the

paper is organized as follows: a section describing
existing algorithms used in partition for comparison,
a section describing the proposed hybrid approach
algorithm inspired from existing algorithms, and a
section comparing the performance of existing and
proposed algorithms.

Existing Algorithms
The first existing quicksort partition algorithm

used for comparison is based on Hoare algorithm
described in Ref. [4]. This algorithm chooses a first
key as the pivot for partition, and then moves the
pivot to correct position and partition all keys smaller
than the pivot to the left side of the pivot and larger
than the pivot to the right side of the pivot. Then at
last the algorithm returns the correct position of the
pivot to partition the data to two parts. The Hoare
algorithm is implemented in the C++ function below
Algorithm 1 with signature int Hoare(int *data, int
first, int list) where data represents the array to be sort,
first represents the first location and last represents
the last location performs the partition according to
Hoare algorithm [4]. The function swap(int&, int&)
is called to swap the value of two variables, and the
function sortF(int*, int, int, int(*)(int*,int,int))is used
to quicksort the Hoare partition.

Algorithm 1: Hoare algorithm
void sortF(int *data, int first, int
last,int (*v)(int*,int,int)) {
 if(first < last) {
 int pv = v(data, first, last);
 sortF(data, first, pv-1, v);
 sortF(data, pv+1, last, v);
 }
}

void swap(int &a, int &b) { int
c=a;a=b;b=c; }

42

int Hoare(int* data, int first, int
last) {
 if(first < last) {
 int pivot = data[first], i = first, j
= last+1;
 while(true) {
 while(++i <= last && data[i] <
pivot);
 while(data[--j]>pivot);
 if(i>j) break;
 swap(data[i],data[j]);
 }
 swap(data[first], data[j]);
 return j;
 } return -1;
}

The following Hoare algorithm, Algorithm 2,
is a modified Hoare partition algorithm which applies
sentinels to cover first as well as last extremes of the
array which reduce the index manipulation operations
to optimum level [4]. The C++ function MHoare(int*,
int, int) implements the modified algorithm.

Algorithm 2: Modified Hoare algorithm
int MHoare(int* data, int first, int
last) {
 if(data[first]>data[last])
 swap(data[first],data[last]);
 int pivot = data[first];
 while(true) {
 while(data[--last] > pivot);
 data[first]=data[last];
 while(data[++first] < pivot);
 if(first<last)
 data[last]=data[first];
 else {
 if(data[last+1] <= pivot)
 last++;
 data[last] = pivot;
 return last;
 }
 }
}

The next existing algorithm is Lomuto
partition algorithm, which scans whole array and
whenever an element is smaller. When the pivot is
found, the element is swapped. The following C++
function Lomuto(int*,int,int) implements the Lomuto
partition algorithm [4].

Algorithm 3: Lomuto partition algorithm
int Lomuto(int *data, int first, int r)
{
 int pivot = data[r];
 int i = first - 1;
 for (int j = first; j < r; j++)
 if (data[j] <= pivot)
 swap(data[++i], data[j]);
 swap(data[++i], data[r]);
 return i;
}

Following Lomuto algorithm is a modified
Lomuto partition, which casts aside superfluous index
manipulation and swap operations. The C++ function
MLomuto int*,int,int) implements the modified
Lomuto partition algorithm [4].

Algorithm 4: Modified lomuto algorithm
int MLomuto(int* data, int first, int
last) {
 int x = data[first], i = first, j =
last;
 while(true) {
 while(data[j] > x) j--;
 if(j <= i) break;
 data[i]=data[j];
 data[j]=data[++i];
 }
 data[i] = x;
 return i;
}

The next existing partition algorithm is
Median-of-five without random index selection
method. The pivot is a sample of size five elements
of the following: first, middle, last, middle of first and
middle, and middle of middle and last. The sample
then sorted and the middle is used as a pivot. The C++
function M5(int*,int,int) implements this algorithm
[8] and Quicksort.

Algorithm 5: Median-of-five algorithm
int M5(int *data, int first, int last) {
 if(first>=last) return -1;
 int i = first;
 int j = last+1;
 int range = last - first;
 if(range > 5) {
 int k[]={first,first+range/4,first+ran
ge/2,first+3*range/4,last};
 for(int i=1;i<5;i++) {
 int j=i, c=data[k[i]];
 for(j=i;j>0;j--)
 if(c<data[k[j-1]])
 data[k[j]] = data[k[j-1]];
 data[k[j]] = c;
 }
 swap(data[k[0]],data[k[2]]);
 }
 int x = data[first];
 while(true) {
 while(++i <= last && data[i] <
pivot);
 while(data[--j]>pivot);
 if(i > j) break;
 swap(data[i],data[j]);
 }
 swap(data[first],data[j]);
 return j;
}

43

The other existing Quicksort algorithm is
three-way partition Quicksort which partition data
to three parts using four indexes: first, last, first of
equal, and last of equal. The C++ function void
quick3(int*,int,int) implements this algorithm [9].

Algorithm 6: Three-way algorithm
void quick3(int *data, int left, int
right) {
 if (left >= right) return;
 int li = left, last = right;
 int pv = data[li];
 int ln = left;
 while (ln <= last) {
 if (data[ln] < pv) swap(data[li++],
data[ln++]);
 else if(data[ln] > pv)
swap(data[ln], data[last--]);
 else ln++;
 }
 quick3(data, left, li - 1);
 quick3(data, last + 1, right);
}

Proposed Hybrid Algorithms
The proposed hybrid algorithms use existing

algorithms with cutoff to shellsort algorithm if the
array size between 6 and 32. The shellsort algorithm
is implemented by the C++ function shell(int*,int,int).
The C++ function sortHF(int* data, int first, int last,
int(*v)(int*, int, int), int cutoff) implements the
proposed algorithm, where data is the array to be
sorted, first is the first location, last is the last location,
v is the pointer to function to call existing partition
algorithm, and cutoff is the size where the cutoff to
shellsort will be done.

Algorithm 7: Shellsort algorithm
void shell(int *data, int first, int
last) {
 const int k[]={1,7,19};
 int l=0, range=last-first;
 while(l<3 && k[l] < range) l++;
 while(--l >= 0) {
 int t = k[l];
 for(int i=first+t;i<last;i++) {
 int kt = data[i], j=i;
 for(;j>first;j-=kt)
 if(t<data[j-kt])
 data[j]=data[j-kt];
 data[j]=t;
 }
 }
}

Algorithm 8: Sort HF algorithm
void sortHF(int *data, int first, int
last,int (*v)(int*,int,int), int
cutoff) {
 if(first < last) {
 if(last - first <= cutoff) {
 shell(data, first, last);
 return;
 }
 int pv = v(data, first, last);
 sortF(data, first, pv-1, v);
 sortF(data, pv+1, last, v);
 }
}

The sort HF function call three different

partitions: Median-of-five, Hoare and modified
Hoare.

// Median-of-five
for(int i=6; i<=32; i++) {
 // read array and start timer
 sortHF(array, 0, arraycount, M5, i);
// stop timer
}
// Hoare
for(int i=6; i<=32; i++) {
 // read array and start timer
 sortHF(array, 0, arraycount, Hoare,
i);
// stop timer
}
//Modified Hoare
for(int i=6; i<=32; i++) {
 // read array and start timer
 sortHF(array, 0, arraycount, MHoare,
i);
// stop timer
}

EMPIRICAL TESTING AND RESULTS
The performance of the sorting algorithms

describe in section Existing Algorithms and section
Proposed Algorithms was studied using number
generated randomly from 100,000 to 1,000,000
elements with 100,000 increments. The experiments
were conducted on a computer with Intel Xeon
(TM) CPI 3.00 GHz, and 1 GB of RAM. To study
the behavior of the algorithms on arrays of random
elements, each algorithm was used to sort five
sequences of random numbers of a specific size N
for each distinct element and duplicate elements of
maximum N/1000 elements, and the average running
time were calculated.

Table 1 shows the running time of the
proposed proposed algorithms with the cutoff values
from 6 up to 32 unique elements. The best cutoff
value for the partition algorithm for unique elements
is as the following: Median-of-five using cutoff of 11
elements with average running time 182.8ms, Hoare
using cutoff of 30 elements with average running time
174.34ms, and modified Hoare using cutoff of 19
elements with average running time 181.86ms. Table

44

2 shows running time of each proposed algorithms
with cutoff value from 6 to 32 duplicate elements.
Each best cutoff value from the partition algorithm
for unique elements is as follow: Median-of-five
using cutoff of 27 elements with average running
time 149.06 ms, Hoare using cutoff of 29 elements
with average running time 146.82 ms, and modified
Hoare using cutoff of 22 elements with average
running time 140.62.

Table 1: Running Time of Proposed Algorithm on
Median-of-five, Hoare and Modified Hoare

in milliseconds for unique elements

Cutoff Median-of-Five Hoare Modified Hoare

6 185.02 177.20 187.54
7 183.96 178.80 184.10
8 186.02 178.08 188.40
9 183.44 174.74 184.34
10 184.06 176.24 184.84
11 182.80 178.78 184.98
12 186.60 176.16 184.40
13 185.98 176.02 183.72
14 185.30 174.96 187.80
15 184.02 177.84 185.02
16 184.34 175.92 183.42
17 186.68 177.76 183.78
18 183.42 175.96 185.90
19 185.28 175.94 181.86
20 184.34 77.78 189.46
21 183.74 178.78 187.62
22 188.04 176.58 185.88
23 186.42 178.08 183.74

 24 184.36 174.78 186.60
 25 186.24 177.14 183.42
 26 185.04 175.08 185.24
 27 185.02 174.40 186.60
 28 185.66 175.56 184.34
 29 185.28 175.92 186.88
 30 185.70 174.34 184.06
 31 186.22 177.18 187.46
 32 183.98 175.88 186.08

Table 2: Running Time of Proposed Algorithm
on Median-of-five, Hoare and Modified Hoare

in milliseconds for duplicate elements

Cutoff Median-of-Five Hoare Modified Hoare

6 151.02 148.94 142.28
7 151.24 150.30 141.80
8 153.44 150.58 145.38
9 151.92 150.36 143.52
10 152.10 150.92 142.14
11 152.58 150.34 143.36
12 154.10 150.28 142.58
13 152.24 149.44 144.30
14 155.30 148.92 143.78
15 150.66 150.04 142.24
16 154.02 147.86 141.86
17 151.90 148.46 142.52
18 152.72 148.38 145.64
19 152.26 149.36 143.16
20 152.14 148.54 141.26
21 153.16 148.72 144.04
22 153.40 151.60 140.62
23 150.04 150.00 145.92
24 152.16 148.62 143.40
25 150.94 149.14 142.48
26 151.84 149.08 143.44
27 149.06 148.40 145.98
28 150.28 150.38 141.82
29 151.58 146.82 146.32
30 150.02 148.84 144.02
31 149.08 149.02 143.78
32 152.46 150.82 144.46

From the best cutoff of each proposed algorithm,
median-of-five with cutoff 11 and 27 elements, Hoare with
cutoff 30 and 29 elements, and modified Hoare with cutoff
19 and 22 elements, the algorithms then compared with
algorithm 3-way partition, median-of-five, Hoare, Lomuto,
modified Hoare, and modified Lomuto. Tables 3 and 4
show the average running times for each Nofthe respective
algorithms. Table 3 shows that the slowest algorithms for
unique elements are 3-way partition followed by modified
Hoare. Table 4 shows that the slowest algorithms for
duplicate elements are modified Hoare followed by modified
Lomuto. The three best running time for unique elements
algorithms are the proposed Hoare cutoff 30 elements with
average time 174.34ms, proposed Hoare cutoff 29 elements
with average time 175.92ms, and Hoare with average
time 176.28ms. The three best running time for duplicate
elements are proposed modified Lomuto cutoff 22 elements
with average time 140.62ms, Lomuto with average time
141.48ms, and Lomuto cutoff 19 elements with average
time 143.16ms. The best three algorithms from category
unique numbers and duplicate numbers are combined to
see the detail running time in figure 1 and 2.

Fig. 1: Running time of selected algorithms
in unique elements

Fig. 2: Running time of selected algorithms
in duplicate elements

45

Table 3: Running Time of Algorithms for 100,000 to 1,000,000 unique elements

Algorithm 100,000 200,000 300,000 400,000 500,000 600,000 700,000 800,000 900,000 1,000,000

3way 47 90.6 146.8 200 256 325 418.6 478.2 569 677.8
median 5 31.4 65.6 93.8 134.4 169 199.8 237.6 268.6 300 340.8
HM5_11 31.2 62.4 100 128.2 162.4 200 234.2 265.8 306.2 337.6
HM5_27 31.2 62.6 103.2 131 168.6 199.8 231.4 272 309.4 341
Hoare 25 59.2 87.6 121.8 152.8 187.8 228.4 256.2 293.8 350.2
Lomuto 21.8 59.4 84.4 122 156.4 196.6 240.6 271.8 328 371.8
MHoare 37.6 71.8 109.4 149.8 196.8 234.2 274.8 322 369 421.8
MLomuto 31.2 56.4 93.8 125.2 156.4 188 228 265.4 303 356
H29 28 56.2 87.8 118.8 150.2 190.8 227.8 271.8 290.4 337.4
H30 25 56.2 90.4 122 149.8 181.2 228.4 259.4 296.6 334.4
HM_19 25 50 81.4 121.8 152.8 193.8 234.6 278 322 359.2
HM_22 28 49.8 87.4 125 156.2 190.6 240.6 278 344 359.2

Table 4: Running Time of Algorithms for 100,000 to 1,000,000 duplicate elements

Algorithm 100000 200000 300000 400000 500000 600000 700000 800000 900000 1000000

3way 31.4 56.4 75 106 146.8 190.8 218.8 274.8 306 387.4
median 5 21.6 53.4 78.2 109.2 137.4 165.4 212.6 218.8 256.4 278.4
HM5_11 28.2 50 81.4 106.4 134.2 162.4 228 222.2 244 269
HM5_27 25.2 52.4 87.4 109.6 131.4 162.4 187.4 218.8 240.6 275.4
Hoare 21.8 50 72 100.2 134.4 159.4 190.8 218.8 253.2 281.2
Lomuto 19.2 43.2 65.8 93.8 118.8 152.8 177.8 215.4 243.8 284.2
MHoare 78 250 519 881 1374.8 1962.6 2584.6 3372.2 4194 5168.8
MLomuto 47 163 334.4 553.4 866 1222 1612.4 2131.6 2609.2 3209.2
H29 21.6 46.6 72 103 131.2 156.2 184.6 218.8 249.8 284.4
H30 25.2 56.6 75.2 97 131.4 156.2 190.6 215.8 256.2 284.2
HM_19 21.6 47 65.8 93.8 118.8 149.8 178.4 228.2 243.8 284.4
HM_22 15.4 44 65.6 87.6 115.4 146.8 175 222 253.2 281.2

CONCLUSION
To conclude the results, for the case of

duplicate elements which is common in indexing
of multiple keys in database application, we can
use the proposed hybrid algorithm with modified
Lomuto partition algorithm and cutoff value of 22
elements for the best average running time. As the
case of unique elements such as primary key of data
base application, we can use the proposed hybrid
algorithms with modified Hoare and cutoff value of
30 elements for best average running time.

REFERENCES
[1] R. Sedgewick and K. Wayne, Algorithms (4th

Edition), Cloth: Addison-Wesley Professional,
2011.

[2] S. F. Solehria and S. Jadoon, “Multiple Pivot Sort
Algorithm is Faster than Quick Sort Algorithms:
An Empirical Study,” IJECS: International Journal
of Electrical and Computer Science, 11, pp. 14–18,
June 2011.

[3] G. S. Brodal, R. Fagerberg and G. Moruz, “On the
adaptiveness of Quicksort,” Journal of Experimental
Algorithmics, 12,(3.2), doi:http://dx.doi.
org/10.1145/1227161.1402294, 2008

[4] D. Abhyankar and M. Ingle, “Engineering of a
Quicksort Partitioning Algorithm,” Journal of Global
Research in Computer Scienc,2, pp. 17–23, 2011.

[5] L. Khreisat, “QuickSort A Historical Perspective and
Empirical Study,” International Journal of Computer
Science and Network Security,7, pp. 54–65, 2007.

[6] D. Abhyankar and M. Ingle, “A better approach to
QuickSort implementation,” International Journal of
computers and communications,1, pp. 39–48, 2011.

[7] R. Sedgewick, “Implementing Quicksort programs,”
Communications of the ACM,21, pp. 847–857,
1978.

[8] A. Mohammed and M. Othman, “Comparative
Analysis of Some Pivot Selection Schemes for
Quicksort Algorithm,” Information Technology
Journal, 6, pp. 424–427, 2007.

[9] R. Sedgewick and J. Bentley, Quicksort is Optimal,
Knuthfest: Stanford University, 2002.

