
CommIT (Communication & Information Technology) Journal 11(1), 33–39, 2017

The Performance of Boolean Retrieval and
Vector Space Model in Textual Information

Retrieval
Budi Yulianto1, Widodo Budiharto2, Iman H. Kartowisastro3

Doctor of Computer Science, Bina Nusantara University, Jakarta 11480, Indonesia
Emails: 1laboratory@binus.ac.id, 2wbudiharto@binus.edu, 3imanhk@binus.edu

Abstract—Boolean Retrieval (BR) and Vector Space
Model (VSM) are very popular methods in information
retrieval for creating an inverted index and querying
terms. BR method searches the exact results of the
textual information retrieval without ranking the results.
VSM method searches and ranks the results. This study
empirically compares the two methods. The research
utilizes a sample of the corpus data obtained from
Reuters. The experimental results show that the required
times to produce an inverted index by the two methods
are nearly the same. However, a difference exists on the
querying index. The results also show that the number
of generated indexes, the sizes of the generated files,
and the duration of reading and searching an index are
proportional with the file number in the corpus and the
file size.

Index Terms—Boolean Retrieval, Vector Space Model,
Information Retrieval, Inverted Index, Querying Index,
Corpus

I. INTRODUCTION

INTERNET users usually use the World Wide Web
to retrieve data/information from current large-scale

sources [1]. Unfortunately, the presented information
are sometimes less relevant. In the field of information
retrieval, the users expect to obtain very accurate
results. The facts are that several existing approaches
may provide less accurate queries [2].

Many researchers of information retrieval use
Boolean Retrieval (BR) [3] and Vector Space Model
(VSM) [4] in creating an inverted index and query-
ing terms. The previous studies have done a search
engine for collection of English or Arabic and shown
the BR and VSM methods were optimal [3, 4]. Not
only for text searching, information retrieval also can
query multimedia elements, such as pictures [5, 6], or
sounds [7, 8]. Information retrieval methods can be
optimized with another algorithm such as Genetic Al-
gorithm (GA) [3, 4, 9], or Particle Swarm Optimization
(PSO) [2, 10].

Received: Apr. 2, 2017; received in revised form: July 9, 2017;
accepted: July 9, 2017; available online: July 11, 2017.

The BR method searches the exact results [11]. This
method does not rank the number of terms appearing
in a document because it only finds the term whether it
exists or not (boolean) in documents. The result of the
search method is a list of documents containing the
unranked terms. In the other side, the VSM method
searches the exact results with ranking [11]. This
method ranks the number of terms appearring in a
document, and count how many documents contain
that term. The calculation process uses vector and the
search results in the form of an ordered list. However, it
is possible for two search engine methods to retrieve
highly different documents, or to rank similar docu-
ments in a very different order [8]. The advantages and
disadvantages of BR and VSM methods are described
on Table I [11].

TABLE I
ADVANTAGES AND DISADVANTAGES OF THE BR AND VSM

METHODS.

BR VSM

Advantages Faster search Ranked document
Easy to understand
and implement

Easy to implement;
BR is easier

Disadvantages Unranked document Hard to understand
Slower search

Due to the popularity of BR and VSM methods,
there is a need to understand the relative performance
between the two methods. The previous work had
compared the Naı̈ve Bayes (NB) method and the SVM
method and found that the former method was better
for the case of an external knowledge base [12]. The
NB method correctly classified 79.44% of instances
compared to SVM method [13]. Reference [4] found
that SVM method with GA was better than SVM only
for similarity measure. The SVM method with Finite
State Transducer was better than SVM with Latent Se-
mantic Analysis for automatic speech recognition [8].
Some comparisons by using Arabic data collection

mailto: laboratory@binus.ac.id
mailto: wbudiharto@binus.edu
mailto: imanhk@binus.edu

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.
showed that BR with GA was better than BR only [3],
BR with adaptive GA was better (55.1%) than BR with
traditional GA, and SVM with adaptive GA was better
(42.1%) than SVM with traditional GA [9].

In this study, the researchers compare the perfor-
mance of BR and VSM methods in textual informa-
tion retrieval by applying a search engine application
written in Python. The application is needed to do
some experiment such as to get keywords input from
user and then display the search results in the form of
documents ID and name. Along this study, researchers
also explain the steps of experiments in simple and
clear ways. Researchers will use tables, graphics, arith-
metic equations, and representative sourcecode to make
clearer explanation for readers or other researchers
in re-testing this experiment for studying, teaching,
validation, or further works. At the end of this research,
the performance of both methods is compared in any
fields to be concluded.

Some terminologies used in this study are explained
in the following on the basis of Ref. [14]. Corpus is
a collection of documents, for example the articles
on Wikipedia. Some examples of the popular cor-
pus are Gutenberg, Brown, and Reuters. Term is a
unique word contained in a document. Term derived
from a tokenize process of a document. Generally,
the document has been cleared from stop-words to
obtain more specific term, and then do stemming to
obtain clear terms of affixes. Tokenize is the process
of converting a sentence into words (terms). Generally,
the results of tokenize are stored in an array, set, or list.
Sentence of “Mr. Widodo is a professor who teaches
the course Information Retrieval” is tokenized to terms
of “Mr.”, “Widodo”, “is”, “a”, “professor”, “who”,
“teaches”, “the”, “course”, “Information”, “Retrieval”.
Stop-word is common word that is less meaningful for
the search process, such as “the”, “a”, “an”, “with”, and
others. In the tokenize example above, the clearance
of stop-words will become (“Widodo”, “professor”,
“teaches”, “course”, “Information”, “Retrieval”). The
words “Mr.”, “is”, “a”, “who”, and “the” are discarded
because just as conjunctions that are less meaningful
in the search process. Stemming is the process of
simplifying the word to its basic word by removing
the suffix. For example, the word “teaches” becomes
“teach”. Some often used stemming method are Porter
Stemmer and Lancaster Stemmer (the differences are
not discussed in this study). Inverted Index is a map-
ping of terms to any document containing the terms
and the position (index) of terms in the document. Ex-
ample of inverted index is “budi—1:17,30,63;3:1,4,8”,
means that the term ‘budi’ in the document ID ‘1’
with position (index) of ‘17, 30, and 63’, and in the

document ‘3’ with position (index) of ‘1, 4, and 8’.
Posting-List is the value of the mapped term. In the
above example, the posting-list for the term ‘budi’
is ‘1:17,30,63;3:1,4,8’. Term Frequency (tf) is the
number a term appears in a document. Document Fre-
quency (df) is the number of documents that contain a
term. Inverse Document Frequency (idf) is the result of
total documents divided by document frequency (df).

II. RESEARCH METHOD

This study uses experimental method for getting and
analyzing quantitative data. The researchers use Python
for creating index and querying index for both BR and
VSM methods. The comparison of used application for
creating and querying the inverted index is described
simply in Table II.

After writing the source code, the researchers
execute it to create an inverted index of Reuters
corpus. The application does process of tokeniza-
tion, stopwords removal, stemming, inverted index
and generating the files “titleIndex.dat” and
“testIndex.dat.” Both the files will be read in
query process and show the result. The process is
described in Fig. 1.

A. Creating Inverted Index

The first thing is creating an inverted index. The
application reads the corpus and process the content

TABLE II
A COMPARISON OF CREATING AND QUERYING INDEX.

Boolean Retrieval

Create Python Soucecode File Name: “createIndex.py”
Index Function: Create mapping of the terms and its posting-list (inverted

index) from available file collection.
Input: Files / documents in a corpus.
Output: File “testIndex.dat” contains terms and its posting-list
(document ID and its index position).
File “titleIndex.dat” contains document ID dan its name.

Query Python Sourcecode File Name: “queryIndex.py”
Index Function: Display search results.

Input: keywords, file “testIndex.dat” and “titleIndex.dat”
Output: List of search results that are not-ranked

Vector Space Model

Create Python Sourcecode File Name: “createIndex_tfidf.py”
Index Function: Create mapping of the terms of its posting-list (inverted

index) from available file collection, and provide term frequency (tf)
and inverse document-frequency (idf).
Input: Files / documents in a corpus
Output: File “testIndex.dat” contains terms and its posting-list
(document ID and its index position), term-frequency (tf) and inverse
document-frequency (idf).
File “titleIndex.dat” contains document ID dan its name.

Query Python Sourcecode File Name: “queryIndex_tfidf.py”
Index Function: Display search results.

Input: keywords, file “testIndex.dat” and “titleIndex.dat”
Output: List of search results that are ranked (based on the most
relevant documents).

34

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.

Fig. 1. The Steps of Experiment.

into words (tokenize), remove stop-words, and re-
move affix-words (stemming). After that, it will create
posting-list (inverted index). For VSM, the posting-
list will be completed with term-frequency (tf), and
inverse document-frequency (idf). Last, it will write all
the document titles and inverted-index into files. The
process is described in Fig. 2.

In the VSM method, term frequency (tf) is obtained
by the number of terms appearing in a document using
the formula:

tfterm,doc = Nterm,doc, (1)

where Nterm,doc is the frequency occurrence of a word
in a document. Then, the term frequency is normalized
by

t̂fterm,doc =
Nterm,doc

Edoc
, (2)

where Edoc denotes the Euclidian norm and is defined
by

Edoc =

√∑
term

tf2term,doc. (3)

It has been implemented by Ref. [15].
In searching two or more terms, such as ‘authoris

buckey’, it is necessary to rank these two terms. By
doing ranking based on term-frequency is not suf-
ficient. There is possibility of generating the same
term-frequency. It is necessary to calculate document-
frequency that is the number of documents that contain
that term or

dfterm = Nterm. (4)

The more documents contain the term, the more unim-

B. Yulianto, W. Budiharto

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n.
x

removal, stemming, inverted index and generate file
titleIndex.dat and testIndex.dat. Both the files will be read
in query process and show the result. The process is
described in Fig. 1. Details of each process and the content
of the files will be discussed in next chapter.

Fig 2. Flowchart of Creating Inverted Index

III. RESULTS AND DISCUSSION

III-1. CREATING INVERTED INDEX

The first thing creates inverted index. The application

will read defined corpus and process the content into
words (tokenize), remove stop-words, and remove affix-
words (stemming). After that, it will create posting-list

(inverted index). For VSM, the posting-list will be
completed with term-frequency (tf), and inverse
document-frequency (idf). Last, it will write all the
document titles and inverted-index into files. The process
is described in Fig. 2.

In VSM method, term frequency (tf) is obtained by the
number of term appears in a document, with formula:

tfterm,doc ൌ term,docࡺ (1)

If the term 'authoris' appears 7 times in document A, then
tfauthoris,A is 7.

Assuming that document A contains 7 terms of
‘authoris’, and 7 terms of ‘buckey’, and document B
contains 2 times the exact contents of document A, 14
terms of ‘authoris’, and 14 terms of ‘buckey’, so tfauthoris,A
is 7, and tfauthoris,B is 14. In fact, document A and B contain
the same meaning to search. So, it is necessary to
normalize term frequency by the formula:

ࢉࢊ,࢘ࢋ࢚ࢌ࢚ ൌ
ࢉࢊ,࢘ࢋ࢚ࡺ

ࢉࢊࡱ
 (2)

where Edoc is the Euclidean norm of tf [2]. The formula of
the Euclidean norm is:

ࢉࢊࡱ ൌ ට൫ࢉࢊ,࢘ࢋ࢚ࢌ࢚൯

 (3)

This is implemented in file createIndex_tfidf.py as follows
[15]:

norm=0
for term, posting in
termdictPage.iteritems():

norm+=len(posting[1])**2
norm=math.sqrt(norm)

Thus, the results of both tf are 0.7 and they are normalized
because of containing the same meaning in the search.

In search 2 or more terms, for example ‘authoris
buckey’, it is necessary to rank these two terms. By doing
ranking based on term-frequency is not enough. There is
possibility of same term-frequency generated. It is
necessary to calculate document-frequency that is the
number of documents that contain that term, with the
formula:
࢘ࢋ࢚ࢌࢊ ൌ ࢘ࢋ࢚ࡺ	
This is implemented in file createIndex_tfidf.py as
follows:
for term, posting in
termdictPage.iteritems():

self.tf[term].append('%.4f' %
(len(posting[1])/norm))
self.df[term]+=1

If there are 7 documents that contain term ‘authoris’,

so its dfauthoris is 7. The more documents that contain the
term, then the more unimportant the document because too

Read document name and its content

Split document content into words (tokenize), remove
stop-words, and remove affix-words (stemming)

Create posting-list (inverted
index) with term-frequency (tf)
and inverse-document-frequency
(idf)

Create posting-list (inverted index)

BR VSM

Write document title (title index)
and inverted index into file

0 14826
1 14828
2 14829
…

titleIndex.dat

Number ‘0’ is document
ID, and ‘14826’ is
document name

authoris|15:40;84:103,113
…

testIndex.dat (for BR)

Term: ‘authoris’ in:
DocID: 15 (index 40)
DocID: 84 (index 103, 113)

authoris|15:40;84:103,113|0.0867,0.1712
|184.1250
…

testIndex.dat (for VSM)

Term: ‘authoris’ in:
DocID: 15 (index 40), tf = 0.0867
DocID: 84 (index 103, 113), tf = 0.1712
Idf = 184.1250

Fig. 2. Flowchart of Creating Inverted Index.

portant the document because the term is too common.
In addition, there should be an inverse document-
frequency according to the formula:

idfterm =
Ndoc

dfterm
(5)

where Ndoc is the number of the documents containing
the term. The statistic idfterm reflects how important
a word is to a document in a corpus. The statistic is
often expressed in the log-scale by:

idfterm = log

(
Ndoc

dfterm

)
(6)

B. Querying Index

The querying index is by reading document that
contains document title and inverted index. Query
can be from one (single) word, multiple words (free
text), or exact (phrase) words. The process of query is
described in Fig. 3.

35

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.

B. Yulianto, W. Budiharto

Copyright © 2007 Praise Worthy Prize S.r.l. - All rights reserved International Review on Computers and Software, Vol. xx, n.
x

common. So there should be an inverse document-
frequency according to the formula:

࢘ࢋ࢚ࢌࢊ ൌ
ࢉࢊࡺ

࢘ࢋ࢚ࢌࢊ

This is implemented in file createIndex_tfidf.py as
follows:
idfData='%.4f' % (self.fileActiveNum /
self.df[term])

If there are 7 of 100 documents that contain term
‘authoris’, then its idfauthoris is 100/7 = 14.285. And if there
are 14 of 100 documents that contain term ‘buckey’, then
its idfbuckey is 100/14 = 7.143. Based on these values, it can
be concluded that number of documents that contain term
‘buckey’ is 2 times the number of documents that contain
term ‘authoris’, so the inverse document-frequency of
‘authoris’ is 2 times more important than ‘buckey’. These
results are certainly harsh, thus narrowing the range is
generally done through log, by the formula:

࢘ࢋ࢚ࢌࢊ ൌ ࢍ
ࢉࢊࡺ

࢘ࢋ࢚ࢌࢊ

By using this formula, we obtain idfauthoris is log(100/7)
= 1.155, and idfbuckey is log(100/14) = 0.854. From these
results, the documents containing term ‘authoris’ is still
more important rather than term ‘buckey’, but the range is
not too harsh.

III-2. QUERYING INDEX

Next, querying index is done by read document that

contains document title and inverted index. Query can be
from one (single) word, multiple words (free text), or
exact (phrase) words. Process of query can be described in
Fig. 3.

Fig 3. Flowchart of Querying Index

For example, we search a sentence of digit beye

controversi (searching type: ftq), then based on file
testIndex.dat is obtained posting-list of each terms:
digit|224:90;1090:46|0.0392,0.0556|736.500
0

controversi|46:337,475;984:28;1090:24|0.04
20,0.0340,0.0556|491.0000

In VSM method, there is ranking process of relevant
documents. Assume term-index 0 for term digit, term-
index 1 for term beye, and term-index 2 for term
controversi, then the query vector for each term is idf
value:
queryVector [0] = 736.5000, queryVector [1] = 0 (since
no idf for term beye), and queryVector [2] = 491.0000, so
queryVector is [736.5000, 0, 491.0000].
This is implemented in file queryIndex_tfidf.py as
follows:
for termIndex, term in enumerate(terms):

 …
queryVector[termIndex]=self.idf[term]

Both posting-list of term digit or controversi contain

DocID [46, 224, 984, 1090]. Then, we generate document
vector based on term-frequency of each term’s DocID. For
term-index 0 (term digit), we obtain DocID 224, and 1090,
so the document vector is:
docVector [224][0] = 0.0392, and docVector [1090][0] =
0.0556.
For term-index 2 (term controversi), we obtain DocID 46,
984 and 1090, so the document vector is:
docVector [46][2] = 0.0420, docVector [984][2] = 0.0340
and docVector [1090][2] = 0.0556.
This is implemented in file queryIndex_tfidf.py as
follows:
for termIndex, term in enumerate(terms):
 …

for docIndex, (doc, postings) in
enumerate(self.index[term]):

if doc in docs:
docVectors[doc][termIndex]=self.
tf[term][docIndex]

Ranking of relevant documents carried by the results

of dot product between document vector and query vector
with formula:
rank = tfterm,doc . idfterm
Then, we do dot-product for each document vector to the
query vector, and then add the results as follows:
 docVector[46].queryVector = [0, 0, 0.0420].[736.5000,

0, 491.0000] = [0 x 736.5000, 0 x 0, 0.0420 x 491.0000]
= [0, 0, 20.622]. Then, 0 + 0 + 20.622 = 20.622

 docVector[224].queryVector = [0.0392, 0,
0].[736.5000, 0, 491.0000] = [0.0392 x 736.5000, 0 x 0,
0 x 491.0000] = [28.8708, 0, 0]. Then, 28.8708 + 0 + 0
= 28.8708

 docVector[984].queryVector = [0, 0, 0.0340].
[736.5000, 0, 491.0000] = [0 x 736.5000, 0 x 0, 0.0340
x 491.0000] = [0, 0, 16.694]. Then, 0 + 0 + 16.694 =
16.694

 docVector[1090].queryVector = [0.0556, 0, 0.0556].
[736.5000, 0, 491.0000] = [0.0556 x 736.5000, 0 x 0,
0.0556 x 491.0000] = [40.9494, 0, 27.2996]. Then,
40.9494 + 0 + 27.2996 = 68.249

Read document ‘titleIndex.dat’ and ‘testIndex.dat’

Get keywords and define the searching type: owq (one
word query), ftq (free text query), or pq (phrase query)

Search documents that contain
the term and rank based on tf
and idf

Search documents that contain the
term

BR VSM

Display the search results

Fig. 3. The flowchart for querying an index.

For example, we search a sentence of digit beye
controversi (searching type: ftq), then based on file
testIndex.dat is obtained posting-list of each terms:
digit|224:90;1090:46|0.0392,0.0556|736.5000
controversi|46:337,475;984:28;1090:24|0.0420,0.0340,0.0556|491.0000

In VSM method, there is ranking process of relevant
documents. Assume term-index 0 for term digit, term-
index 1 for term beye, and term-index 2 for term
controversi, then the query vector for each term is idf
value: queryVector [0] = 736.5000, queryVector [1] =
0 (since no idf for term beye), and queryVector [2] =
491.0000, so queryVector is [736.5000, 0, 491.0000].

This is implemented in file
“queryIndex_tfidf.py” as follows:

f o r t e rmIndex , te rm i n enumera t e (t e r m s) :
. . .
q u e r y V e c t o r [t e r m I n d e x]= s e l f . i d f [t e rm]

Both posting-list of term digit or controversi contain
DocID [46, 224, 984, 1090]. Then, we generate doc-
ument vector based on term-frequency of each terms
DocID. For term-index 0 (term digit), we obtain DocID
224, and 1090, so the document vector is: docVector
[224][0] = 0.0392, and docVector [1090][0] = 0.0556.

For term-index 2 (term controversi), we obtain Do-
cID 46, 984 and 1090, so the document vector is:
docVector [46][2] = 0.0420, docVector [984][2] =
0.0340 and docVector [1090][2] = 0.0556. This is
implemented in file “queryIndex_tfidf.py” as
follows:

f o r t e rmIndex , te rm i n enumera t e (t e r m s) :
. . .
f o r docIndex , (doc , p o s t i n g s) i n \

enumera t e (s e l f . i n d e x [te rm]) :
i f doc i n docs :

d o c V e c t o r s [doc] [t e r m I n d e x] = \
s e l f . t f [t e rm] [doc Index]

The ranking of the relevant documents is the results
of a dot product of the document vector and the query
vector:

rank = tfterm,doc · idfterm. (7)

For examples, we consider four documents with the
doc-product values of the following: docVector[46] ·
queryVector = 20.622, docVector[224] · queryVector =
28.8708, docVector[984] · queryVector = 16.694, and
docVector[1090] · queryVector = 68.249.

Using the dot-product results in the distance of
document vector (DocID: 46, 224, 984, and 1090)
to the query vector. DocVector that is closest to the
queryVector is the most relevant document. This is
indicated by smaller cosine angle towards queryVector
(Fig. 4), or greater summed value of dot product.
To obtain ranking of relevant documents, then sort
in descending the whole summed values of the dot
product. From the results, we obtain that DocID 1090
(68.249) is the most relevant document, following by
DocID 224 (28.87), DocID 46 (20.622), and DocID
984 (16.694).

This is implemented in file
“queryIndex_tfidf.py” as follows:

d o c S c o r e s = [[s e l f . d o t P r o d u c t (curDocVec , \
q u e r y V e c t o r) , doc] f o r doc , curDocVec i n \
d o c V e c t o r s . i t e r i t e m s ()]

d o c S c o r e s . s o r t (r e v e r s e =True)

The dot-product function is implemented in file
“queryIndex_tfidf.py” as follows:

d e f d o t P r o d u c t (s e l f , vec1 , vec2) :
. . .
r e t u r n sum ([x∗y f o r x , y i n z i p (vec1 , vec2)])

To display in 3D Cartesian, we often need to adjust
docVector values (if too large) by using same mul-
tiplication factor. Value adjustment will not change
the angle of vector, it’s only pull the vertex near to
the coordinate center. Adjusted values are displayed in
Table III and drawn in Fig. 4.

Fig. 4. Comparison of DocVector and QueryVector.

36

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.

TABLE III
ADJUSTING VALUES OF VECTOR.

Vector Value Before Adjustment Multiplication Factor Value After Adjustment

digit beye controversi digit beye controversi

Query Vector 7.365× 10+2 0.0 4.91× 10+2 1.0× 10−1 7.365 0.0 4.91
Doc Vector (46) 0.0 0.0 4.20× 10−2 1.0× 10+2 0.0 0.0 4.20
Doc Vector (224) 3.92× 10−2 0.0 0.0 1.0× 10+2 3.92 0.0 0.0
Doc Vector (984) 0.0 0.0 3.40× 10−2 1.0× 10+2 0.0 0.0 3.40
Doc Vector (1090) 5.56× 10−2 0.0 5.56× 10−2 1.0× 10+2 5.56 0.0 5.56

TABLE IV
THE SETS OF THE COLLECTION OF FILES OF CORPUS REUTERS

FOR TESTING.

Set Number File Size (MB) Number of Docs Number of Words

1 0.5 615 82725
2 1.0 1300 167143
3 1.5 1870 250254
4 2.0 2610 335012

TABLE V
THE TEST OF CREATING INVERTED INDEX.

Set Duration (s) Number of Index Portion of Index (%)

BR VSM BR VSM BR VSM

1 1.745 1.708 6399 6399 7.74 7.74
2 3.542 3.443 9549 9549 5.71 5.71
3 5.209 5.131 11947 11947 4.77 4.77
4 7.001 6.879 14391 14391 4.30 4.30

III. RESULTS AND DISCUSSION: PERFORMANCE
TEST

In addition to the comparison of the concepts and the
algorithm above, the performance test is also conducted
using the Reuters corpus. The data contains 2610 files,
divided into 4 sets of collection based on size scale of
0.5 MB (Table IV). The set 1 is a subset of the sets 2,
3, and 4. Each performance test is conducted 12 times
with the highest and lowest results are removed. The
remaining 10 results are averaged.The results of the
performance test are in the following tables.

The results of creating the inverted index are shown
in Table V. The results show that the required time to
create the inverted index increases with increasing the
file collection size. The time required by VSM method
is just slightly lower than the BR method.

The result of the generate file testIndex.dat
shows that the larger the size of collection, the more
indexes are generated. But, the percentage of the
generated index to the total number of words in the col-
lection is decreased. This happens because the words
(terms) that appear on the following documents have
been indexed in the previous documents. The use of

TABLE VI
THE SIZE OF THE GENERATED INDEX FILE IN KB.

Set BR VSM Source Files

1 388 698 500
2 773 1383 1000
3 1156 2040 1500
4 1566 2753 2000

TABLE VII
THE TEST OF READING AND SEARCHING INDEX.

Set Reading (s) Searching (s) # Results Found

BR VSM BR VSM BR VSM

1 0.219 0.256 0.000 0.016 151 151
2 0.464 0.516 0.016 0.032 324 324
3 0.656 0.755 0.031 0.047 504 504
4 0.906 0.995 0.031 0.062 698 698

BR and VSM methods show similar results, proving
the consistency of the algorithms. They also show that
the larger the size of collection is, the greater the size of
generated index file. The use of BR method generates
an index file size smaller than the collection of source
files, while the VSM method generates a larger index
file than the collection of source files (see Table VI).

The test results of reading/querying index are shown
in Table VII. They suggest that the larger the size
of the collection is, the longer the time it takes to
read the index file that has been generated previously,
the longer the time required to perform the query,
and the more search results found. The use of BR
method requires less time than the VSM method, and
show similar results to prove the consistency of the
algorithm. Results on VSM method already ranked
by using tf-idf formula (term frequency with inverse
document frequency).

In summary, the process of creating index and query-
ing term digit beye controversi can be demonstrated
through the results presented in Tables VIII and IX
from a study of 1473 documents.

The results are also same with the file

37

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.

TABLE VIII
TERM APPERANCE IN DOCUMENTS.

Doc ID Nterm,doc Edoc
tf

digit beye controversi digit beye controversi

46 0 0 2 47.62 0 0 0.0420
224 1 0 0 25.51 0.0392 0 0
984 0 0 1 29.41 0 0 0.0340
1090 1 0 1 17.98 0.0556 0 0.0556
Nterm,doc = The Number of Term Appears
tf = Nterm,doc/Edoc = Term-Frequency

TABLE IX
INVERSE DOCUMENT FREQUENCY.

digit beye controversi

dfterm (n doc contain term) 2 0 3
idfterm (1473 / dfterm) 736.5 0 491.0

“testIndex.dat” generated as follows.
digit|224:90;1090:46|0.0392,0.0556|736.5000
controversi|46:337,475;984:28;1090:24|0.0420,0.0340,0.0556|491.0000

The rankings for the document relevance is calcu-
lated through the dot-product. The results are displayed
in Table X.

The results are also same with the output of executed
application as follows.
type word(s) : digit beye controversi
Doc ID: 1090 / Doc Title: 16747
Doc ID: 224 / Doc Title: 15263
Doc ID: 46 / Doc Title: 14921
Doc ID: 984 / Doc Title: 16564
Total Doc(s): 4

IV. CONCLUSIONS AND FUTURE WORK

Results of applied algorithm in Python for both BR
and VSM are working properly when those are com-
pared to manual calculation. By using corpus Reuters
(2610 docs, 2 MB), we find there is no significant time
difference for creating inverted index for both method.
The differences come from querying index. Number
of generated indexes, generated file size, duration of
reading and searching index, and results found are
growing inline with corpus file number and file size.
However, choosing the appropriate method of BR or
VSM is basically depending on the need of document
ranking availability.

Comparing the implementation of BR and VSM can
be applied in many other fields. Further researches may
try non-Latin language, such as Chinese or Arab [3, 9].
There are also other bigger corpus to be used for next
experiments such as Reuters Corpora (RCV1, RCV2,
TRC2) [16], and can be combined with MapReduce
(Hadoop) [17, 18]. Validation for recall, precision,
accuracy, f-measure (f-score), and error rate are also
interesting topics for future works [3, 11].

REFERENCES

[1] S. Brin and L. Page, “Reprint of: The anatomy
of a large-scale hypertextual web search engine,”
Computer networks, vol. 56, no. 18, pp. 3825–
3833, 2012.

[2] A. Gomathi, J. Jayapriya, G. Nishanthi,
K. Pranav, and G. Praveen Kumar, “Ontology
based semantic information retrieval using
particle swarm optimization,” International
Journal of Applied Information Communication
Engineering, vol. 1, no. 4, pp. 5–8, 2015.

[3] M. O. Nassar, F. A. Mashagba, and E. A.
Mashagba, “Improving the user query for the
boolean model using genetic algorithms,” Inter-
national Journal of Computer Science Issues,
vol. 8, no. 1, pp. 66–70, 2011.

[4] E. Al Mashagba, F. Al Mashagba, and M. O. Nas-
sar, “Query optimization using genetic algorithms
in the vector space model,” International Journal
of Computer Science Issues (IJCSI), vol. 8, no. 5,
2011.

[5] A. Depeursinge, S. Duc, I. Eggel, and H. Muller,
“Mobile medical visual information retrieval,”
IEEE Transactions on information technology in
biomedicine, vol. 16, no. 1, pp. 53–61, 2012.

[6] R. Datta, D. Joshi, J. Li, and J. Z. Wang, “Image
retrieval: Ideas, influences, and trends of the new
age,” ACM Computing Surveys (Csur), vol. 40,
no. 2, p. 5, 2008.

[7] X. Peng, D. Ke, Z. Chen, and B. Xu, “Automated
chinese essay scoring using vector space models,”
in Universal Communication Symposium (IUCS),
2010 4th International. IEEE, 2010, pp. 149–
153.

[8] X. Peng, D. Ke, and B. Xu, “Automated essay
scoring based on finite state transducer: towards
asr transcription of oral english speech,” in Pro-
ceedings of the 50th Annual Meeting of the
Association for Computational Linguistics: Long
Papers-Volume 1. Association for Computational
Linguistics, 2012, pp. 50–59.

[9] W. Maitah, M. Al-Rababaa, and G. Kannan,
“Improving the effectiveness of information re-
trieval system using adaptive genetic algorithm,”
International Journal of Computer Science &
Information Technology, vol. 5, no. 5, p. 91, 2013.

[10] S. Sarkar, A. Roy, and B. S. Purkayastha, “Clus-
tering of documents using particle swarm opti-
mization and semantics information,” Int. J. of
Comput. Sci. & Inform. Technologies, vol. 5,
no. 3, 2014.

[11] M. Sharma and R. Patel, “A survey on infor-
mation retrieval models, techniques and applica-

38

Cite this article as: B. Yulianto, W. Budiharto, and I. H. Kartowisastro, “The Performance of Boolean
Retrieval and Vector Space Model in Textual Information Retrieval”, CommIT (Communication & Information
Technology) Journal 11(1), 33–39, 2017.

TABLE X
THE INVERSE DOCUMENT-FREQUENCY AND RANKED RELEVANT DOCUMENTS.

Vector Term Dot Product Sum Rank

digit beye controversi digit beye controversi

Query Vector 736.5 0 491.0
Doc Vector 0 0 0.042 0 0 20.62 20.62 3
Doc Vector 0.0392 0 0 28.82 0 0 28.82 2
Doc Vector 0 0 0.034 0 0 16.69 16.69 4
Doc Vector 0.0556 0 0.056 40.95 0 27.30 68.25 1

tions,” International Journal of Emerging Tech-
nology and Advanced Engineering, ISSN, vol. 3,
no. 11, pp. 542–545, 2013.

[12] S. Hassan, M. Rafi, and M. S. Shaikh, “Com-
paring svm and naive bayes classifiers for text
categorization with wikitology as knowledge en-
richment,” in Multitopic Conference (INMIC),
2011 IEEE 14th International. IEEE, 2011, pp.
31–34.

[13] K. Žubrinić, M. Miličević, and I. Zakarija, “Com-
parison of naive bayes and svm classifiers in
categorization of concept maps,” International
journal of computers, vol. 7, no. 3, pp. 109–116,
2013.

[14] C. D. Manning, P. Raghavan, and H. Schütze,
An Introduction to Information Retrieval. Cam-

bridge University Press, 2009.
[15] D. Dertat. (2012) Accessed on March 30, 2015.

[Online]. Available: http://www.ardendertat.com/
2012/01/11/implementing-search-engines/

[16] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li,
“Rcv1: A new benchmark collection for text cate-
gorization research,” Journal of machine learning
research, vol. 5, no. Apr, pp. 361–397, 2004.

[17] J. Dean and S. Ghemawat, “Mapreduce: simpli-
fied data processing on large clusters,” Communi-
cations of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[18] D. Hiemstra and C. Hauff, “Mirex: Mapreduce
information retrieval experiments,” CTIT, Tech.
Rep., 2010.

39

http://www.ardendertat.com/2012/01/11/ implementing-search-engines/
http://www.ardendertat.com/2012/01/11/ implementing-search-engines/

	Introduction
	Research Method
	Creating Inverted Index
	Querying Index

	Results and Discussion: Performance Test
	Conclusions and Future Work

