
CommIT (Communication & Information Technology) Journal 10(2), 85–87, 2016

OPTIMIZATION OF THE BUGS
CLASIFICATION OF THE TICKETING

SYSTEM IN SOFTWARE DEVELOPMENT:
A STUDY CASE

Danar Ardhito1 and Abba Suganda Girsang2
Master of Information Technology, Binus Graduate Programs, Bina Nusantara University

Jakarta 11480, Indonesia
Email: 1danarardhito@gmail.com, 2agirsang@binus.edu

Abstract—Computer bug elimination is an important
phase in the software development process. A ticketing
system is usually used to classify the identified bug type
and to assign a suitable developer. This system is handled
manually and error prone. This paper proposes a new
bug classification method using the fast string search
algorithm. The method searches the error string and
compares it to the full text. The approach is deployed
to the software development process at PT. Selaras
Anugerah Lestari and it results in a significant reduction
in the average value of the time required to handle the
bugs.
Keywords: Fast string searching; bugs; Ticketing System

I. INTRODUCTION

PT. Selaras Anugerah Lestari is a newly established
company. Its main business is the products related to
hospitality. It sales hospital care unit and supporting
tools. In order to run the business smoothly, it develops
a number of applications such as Credit Approval
Memorandum (CAM) system, Internal Memo, IT asset
system, and Financial and HR system. It uses the
ticketing system to record the bugs that occur during
the development process. The ticketing is also used
for the bug classification and to notify the relevant
developers. Currently, the classification process is per-
formed manually and it has the potential of human
errors especially in the cases where the application
contains many bugs.

A series of research in the area of software bug
classification has been initiated since a couple of
years ago [1–14]. The first research was done by
Ref. [15]. They introduced a new classification system
using a supervised text categorization so-called naı̈ve

Received: June 24, 2016; received in revised form: July 8, 2016;
accepted: July 29, 2016; available online: August 19, 2016.

Bayes (NB). The result showed that the accuracy level
was about 30%. The accuracy level is a condition
where the identified bug type matches the skill sets
of the assigned developer. The other research were
performed by Refs. [16, 17]. They used the earlier
research as the basis for their research and added
a number of extra features. Theirs approach is also
able to provide a list of the recommendation of the
developers. The results showed that the accuracy level
had increased to 57% for the Eclipse software project
and 74% for the Mozilla software project.

In this paper, we propose an approach to improve
the process of bug classification using Fast String
Searching Algorithm. Reference [18] stated that the
Boyer Moore algorithm is extremely efficient in most
cases in comparison to Knuth-Morris-Pratt and Brute
Force algorithm. Reference [19] compared various
exact string matching algorithms for virus signature-
detection and they concluded that the best algorithm
for a common searching purpose is Boyer Moore.
The Boyer Moore algorithm has no special memory
requirements and needs no preprocessing or complex
coding and thus can be surprisingly fast.

Every bug consists of two important parts: the
bug’s description and the application’s name. The bug
description expresses the detail information about the
error that happens in the application. Meanwhile, the
application name is the application where the bug
happens. Figure 1 shows the example of the bug
description and the application name. Figure 1 shows
all the important part of the bug which is the bug
description and application name. The information is
text based; thus, they perfectly match with the capacity
of the current algorithm.

Cite this article as: Danar Ardhito and Abba Suganda Girsang, “Optimization of the Bugs Classification of the
Ticketing System in Software Development”, CommIT (Communication & Information Technology) Journal
10(2), 85–87, 2016.

II. RESEARCH METHOD

The idea of the proposed method is to change the
manual classification process with the newly automatic
one using fast search string algorithm. The fast search
string algorithm is an algorithm which uses the search-
ing string and compares it to the full text. Figure 2
shows the algorithm.

Figure 3 shows an example of the fast string search
algorithm where it is used to search the bug on the
application name ‘CAM’. Once the error is found, an
appropriate software developed can assigned accord-
ingly.

III. RESULTS AND DISCUSSION

The results of the study are depicted in Tables I
and II. The former table shows the required time
for bug classification without and with fast search
string classification algorithm. From the table, one can
see that the algorithm generally requires shorter bug
classification time.

The difference between the two classification time
is statistically evaluated using the paired t-test for
comparison of the mean of two samples. Table II
compares a number of statistics of the two samples.
One can say that on average, the algorithm is able to
reduce the classification time. The Pearson correlation
suggests that the reduction occurs uniformly across the
variation of the bug number.

Fig. 1. The Example of the Bug’s Description and Application
Name.

 Stringlen Length of String I patlen Top: if I > stringlen then return false J < pathlen Loop: if j = 0 then return j=+1 if string(i) = pat(i) then J j - 1 I i – 1 go to Loop i i + max(delta1, (string(i)), delta2, (j)) go to Top

Fig. 2. The Fast String Search Algorithm.

1 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 2 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 3 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 4 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 5 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 6 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 7 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 8 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 9 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 20 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL 21 PAT : CAM STRING : PADA TAMPILAN HALAMAN FINANCIAL REVIEW APLIKASI CAM TIDAK MUNCUL
Fig. 3. An Example of the Process of Fast String Search Algorithm.

TABLE I
THE TEST RESULTS: BUG HANDLING TIME WITH AND

WITHOUT OPTIMIZATION.

#Bugs Bug Handling Time (MM:SS)

Without Optimization With Optimization

5 00:08.40 00:06.29
10 00:16.57 00:13.42
15 00:22.59 00:20.54
20 00:29.46 00:28.51
25 00:38.26 00:34.43
30 00:47.21 00:41.06
35 00:55.57 00:49.06
40 01:04.00 00:56.23
45 01:17.27 01:01.24
50 01:24.58 01:10.13

TABLE II
THE RESULTS OF THE t-TEST FOR A COMPARISON OF TWO

SAMPLES.

Statistic Without With

Mean 44.4 38.1
Variance 668.3 450.4
Observation 10 10
Pearson Correlation 0.99
Hypothesized Mean Difference 0
df 9

86

Cite this article as: Danar Ardhito and Abba Suganda Girsang, “Optimization of the Bugs Classification of the
Ticketing System in Software Development”, CommIT (Communication & Information Technology) Journal
10(2), 85–87, 2016.

IV. CONCLUSION

Software bugs are often unavoidable in the software
development process. Many software developers utilize
a ticketing system for bug classifications to facilitate
an efficient bug elimination process. This research
proposes the use of the fast string search algorithm
for the bug classification. The proposed method is
evaluated empirically. The results suggest that the new
approach is able to reduce the time required for the
bug classification.

REFERENCES

[1] J. Xuan, H. Jiang, Z. Ren, and W. Zou, “Devel-
oper prioritization in bug repositories,” in 2012
34th International Conference on Software Engi-
neering (ICSE). IEEE, 2012, pp. 25–35.

[2] T. Zhang, G. Yang, B. Lee, and I. Shin, “Role
analysis-based automatic bug triage algorithm,”
IPSJ SIG Technical Report, Tech. Rep., 2012.

[3] A. Tamrawi, T. T. Nguyen, J. M. Al-Kofahi,
and T. N. Nguyen, “Fuzzy set and cache-based
approach for bug triaging,” in Proceedings of the
19th ACM SIGSOFT symposium and the 13th
European conference on Foundations of software
engineering. ACM, 2011, pp. 365–375.

[4] B. Liblit, M. Naik, A. X. Zheng, A. Aiken, and
M. I. Jordan, “Scalable statistical bug isolation,”
ACM SIGPLAN Notices, vol. 40, no. 6, pp. 15–
26, 2005.

[5] S. Just, R. Premraj, and T. Zimmermann, “To-
wards the next generation of bug tracking sys-
tems,” in 2008 IEEE Symposium on Visual Lan-
guages and Human-Centric Computing. IEEE,
2008, pp. 82–85.

[6] G. Jeong, S. Kim, and T. Zimmermann, “Im-
proving bug triage with bug tossing graphs,” in
Proceedings of the the 7th joint meeting of the
European software engineering conference and
the ACM SIGSOFT symposium on The founda-
tions of software engineering. ACM, 2009, pp.
111–120.

[7] P. Bhattacharya and I. Neamtiu, “Fine-grained
incremental learning and multi-feature tossing
graphs to improve bug triaging,” in Software
Maintenance (ICSM), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1–10.

[8] D. Matter, A. Kuhn, and O. Nierstrasz, “Assign-
ing bug reports using a vocabulary-based exper-
tise model of developers,” in 2009 6th IEEE Inter-
national Working Conference on Mining Software
Repositories. IEEE, 2009, pp. 131–140.

[9] M. S. Zanetti, I. Scholtes, C. J. Tessone, and
F. Schweitzer, “Categorizing bugs with social net-
works: a case study on four open source software
communities,” in Proceedings of the 2013 In-
ternational Conference on Software Engineering.
IEEE Press, 2013, pp. 1032–1041.

[10] O. Baysal, M. W. Godfrey, and R. Cohen, “A
bug you like: A framework for automated assign-
ment of bugs,” in Program Comprehension, 2009.
ICPC’09. IEEE 17th International Conference
on. IEEE, 2009, pp. 297–298.

[11] M. M. Rahman, G. Ruhe, and T. Zimmermann,
“Optimized assignment of developers for fixing
bugs an initial evaluation for eclipse projects,”
in Proceedings of the 2009 3rd International
Symposium on Empirical Software Engineering
and Measurement. IEEE Computer Society,
2009, pp. 439–442.

[12] Z. Lin, F. Shu, Y. Yang, C. Hu, and Q. Wang, “An
empirical study on bug assignment automation
using chinese bug data,” in 2009 3rd International
Symposium on Empirical Software Engineering
and Measurement. IEEE, 2009, pp. 451–455.

[13] Q. Taylor, C. Giraud-Carrier, and C. D. Knutson,
“Applications of data mining in software engi-
neering,” International Journal of Data Analysis
Techniques and Strategies, vol. 2, no. 3, pp. 243–
257, 2010.

[14] J. Kanwal and O. Maqbool, “Bug prioritization to
facilitate bug report triage,” Journal of Computer
Science and Technology, vol. 27, no. 2, pp. 397–
412, 2012.

[15] D. Čubranić, “Automatic bug triage using text
categorization,” in In SEKE 2004: Proceedings of
the Sixteenth International Conference on Soft-
ware Engineering & Knowledge Engineering.
Citeseer, 2004.

[16] J. Anvik, L. Hiew, and G. C. Murphy, “Who
should fix this bug?” in Proceedings of the 28th
international conference on Software engineer-
ing. ACM, 2006, pp. 361–370.

[17] J. Anvik, “Automating bug report assignment,” in
Proceedings of the 28th international conference
on Software engineering. ACM, 2006, pp. 937–
940.

[18] R. S. Boyer and J. S. Moore, “A fast string search-
ing algorithm,” Communications of the ACM,
vol. 20, no. 10, pp. 762–772, 1977.

[19] M. Alenezi, K. Magel, and S. Banitaan, “Effi-
cient bug triaging using text mining,” Journal of
Software, vol. 8, no. 9, pp. 2185–2190, 2013.

87

	INTRODUCTION
	RESEARCH METHOD
	RESULTS AND DISCUSSION
	CONCLUSION

