
CommIT (Communication & Information Technology) 10(1), 15–26, 2016

IMPROVING SCALABILITY OF JAVA
ARCHIVE SEARCH ENGINE THROUGH

RECURSION CONVERSION AND
MULTITHREADING

Oscar Karnalim
Program of Information Technology, Faculty of Information Technology,

Maranatha Christian University, Bandung 40164, Indonesia
Email: oscar.karnalim@it.maranatha.edu

Abstract—Based on the fact that bytecode always exists
on Java archive, a bytecode based Java archive search
engine had been developed [1, 2]. Although the system is
quite effective, it still lacks of scalability because many
modules applying recursive calls and the system only
utilizes one core (single thread). In this research, Java
archive search engine architecture is redesigned in order
to improve its scalability. All recursions are converted
into iterative forms although most of these modules
are logically recursive and quite difficult to convert
(e.g., Tarjan’s strongly connected component algorithm).
Recursion conversion can be conducted by following its
respective recursive pattern. Each recursion is broken
down to four parts (before and after actions of current
and its children) and converted to iteration with the help
of caller reference. This conversion mechanism improves
scalability by avoiding stack overflow error caused by
method calls. System scalability is also improved by
applying multithreading mechanism which successfully
cut off its processing time. Shorter processing time may
enable system to handle larger data. Multithreading is
applied on major parts which are indexer, vector space
model (VSM) retriever, low-rank vector space model
(LRVSM) retriever, and semantic relatedness calculator
(semantic relatedness calculator also involves multipro-
cess). The correctness of both recursion conversion and
multithread design are proved by the fact that all
implementation yield similar result.
Keywords: Scalability; Recursion Conversion; Multi-
threading; Java Archive Search Engine; Multiprocess.

I. INTRODUCTION

Scalability is a prominent factor in a search engine
development since the size of index data the search
engine may grow rapidly [3]. Many techniques are ap-
plied to handle data growth such as algorithm optimiza-
tion, preprocessing, multithreading, and parallelism.

Received: March 22, 2016; received in revised form: March 28,
2016; accepted: March 30, 2016; available online: April 4, 2016.

Based on the fact that bytecode always exists on
Java archive, a bytecode based Java archive search
engine had been developed [1]. The system utilizes
bytecode on Java archive as its primary information
source and extracts many textual information on class
files as document terms through reverse engineering
mechanism (e.g., class name, field name, method name,
control flow weighted string literals in method content,
and method calls). Its retrieval model is also embedded
with relatedness in order to improve its recall [2].
Although the system works well, it still lacks of
scalability since many modules are applying recursive
calls and the system is single threaded.

Since recursion generates many function calls and
each function call is pushed on stack to keep the track
of the program flow [4], recursive calls may yield stack
overflow error in Java environment. Stack overflow
error occurs when memory stored in JVM stack is
larger than its size [5]. This error can be avoided by
converting all recursive algorithms to its iterative form.
However, some algorithms are logically recursive and
inconvenient enough to design it on iterative manner
(e.g., Tarjan algorithm for detecting strongly connected
components on graph [6]). Although logically recur-
sive algorithms are exceptional cases where recursive
approach is more beneficial than iterative approach in
software development [7], these algorithms are still
needed to be converted in order to avoid stack overflow
error.

As hardware technologies advances, many regular
computers are backed up with multi core processors
which enable operating system to complete many task
at a time using multithreading [8]. Liu & Wang [9]
applied multithreading on their ensemble learning in

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.
order to filter spam in Short Message Services (SMS).
Their multithread design runs faster than single thread
design which strengthens the proof that multithread
may reduce processing time. This mechanism may
also be utilized to reduce time latency in many search
engine tasks such as indexing and retrieving docu-
ments [10–12].

In this research, a bytecode based java archive
search engine is designed in more scalable way which
involve recursion conversion and multithreading. Three
main recursive algorithms which are converted to its
iterative form are loop encapsulation, recursive method
elimination, and method expansion. These algorithms
are needed at indexing phase in order to extract method
contents. The search engine architecture is also re-
designed as multithread search engine to diminish its
processing time.

II. METHODS

A. Recursion Conversion

It is known that all algorithms can be implemented
recursively or iteratively [13]. Some algorithms are
more convenient to be implemented with iterative
approach whereas the others are more convenient to be
designed as recursive one. Many nave and straightfor-
ward algorithms such as sequential searching, sorting,
and string processing are easier to be implemented
iteratively. However, some permutation and combina-
torial problems are easier to solve recursively (e.g.,
map coloring, insertion on binary tree, and traversing
all nodes in graph).

Recursive algorithms converted in this research are
logically recursive. Loop encapsulation is designed
similar to Depth First Search (DFS) pattern and uti-
lizes Tarjans Strongly Connected Component (SCC)
algorithm for loop detection. Recursive method elimi-
nation also utilizes similar Tarjan’s algorithm to detect
recursive methods although they do not share the
same data type. Therefore, object oriented technique
called Generics is applied in order to enable Tarjan’s
SCC algorithm takes various data types on its pro-
cess without explicit typecasting. Method expansion is
designed in recursive dynamic programming manner
which never re-expand already-expanded method to cut
off its processing time. Since stack overflow error is the
biggest issue in recursive implementation, especially
on large scale recursion [4, 5]. Therefore, all recursive
implementation in this research will be converted as
iterative one to improve the program scalability.

For clarity at conversion phase, some recursive parts
of algorithm in both implementation are marked with
different color which details can be seen in Table I.

Abbrevations are also given for each description to
simplify the illustration.

B. Loop Encapsulation

Loop encapsulation encapsulates loops based on
Miecznikowski’s algorithm [1, 14]. Loop encapsula-
tion example can be seen in Fig. 1. This module
takes control flow graph as its argument and utilizes
Miecznikowski’s to detect loop candidates. All nodes
which is a member of certain loop are wrapped and
merged as one loop node. Loop node is a wrapper
which consists of loop member nodes and inherits
its successors / predecessors. This loop replacement
mechanism is conducted repeatedly from inner-most
loops until no more loop exists.

Recursive implementation of loop encapsulation
module can be seen in Alg. 1. Control Flow Graph
(CFG) is represented as array of Control Flow (CF)
nodes which will be broke down as a bunch of sub-

TABLE I
RECURSIVE PARTS COLOR DETAILS.

Color Description

Blue Current process before processing its
children (B)

Red Current process after processing its chil-
dren (A)

Green Current children’s process before recur-
sion (CB)

Brown Current children’s process after recusion
(CA)

2 5 8 R423930272421189

Initial Control Flow Graph

2 5 8 R423930272421189

Loop Detector Result

2 5 R423930272421

Inner Loop Encapsulation

A

B RC

Outer Loop Encapsulation

Fig. 1. Loop encapsulation example.

16

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

graph based on Tarjan’s algorithm (getSCC function).
Each subgraph which consists of more than one node
is considered as loop candidates and its respective
conditional node is removed. Removing conditional
nodes is required to detect inner loop on remaining
nodes by executing similar mechanism recursively.

Converting loop encapsulation to iterative form is
quite simple since this algorithm follows simple DFS
pattern (without A and CA parts). Simple DFS pattern
can be remodeled to iterative form with the help of a
stack and a while loop (which are used to keep track
of recursive calls). Iterative loop encapsulation can be
seen in Alg. 2 where each recursive call is replaced by
pushing its recursive argument on a stack. B and CB
are translated as loop action whereas each element on
stack is popped and processed until the stack is empty.

C. Recursive Method Elimination

Recursive method elimination removes all recursive
methods from method expansion candidates since all
recursion may yield endless method expansion (each
expansion consists of additional recursive call). This
module takes method list as its argument, augments
it as method graph, detects recursion candidates, and
removes them from method expansion candidates.
Method graph is augmented from method calls where
each method is converted to a node and a method call

Algorithm 1 Recursive Loop Encapsulation.

engine tasks such as indexing and retrieving
documents [10, 11, 12].

In this research, a bytecode based java
archive search engine is designed in more scalable
way which involve recursion conversion and
multithreading. Three main recursive algorithms
which are converted to its iterative form are loop
encapsulation, recursive method elimination, and
method expansion. These algorithms are needed at
indexing phase in order to extract method contents.
The search engine architecture is also redesigned as
multithread search engine to diminish its
processing time.
METHOD
Recursion Conversion It is known that all algorithms can be
implemented recursively or iteratively [13]. Some
algorithms are more convenient to be implemented
with iterative approach whereas the others are more
convenient to be designed as recursive one. Many
naïve and straightforward algorithms such as
sequential searching, sorting, and string processing
are easier to be implemented iteratively. However,
some permutation and combinatorial problems are
easier to solve recursively (e.g. map coloring,
insertion on binary tree, and traversing all nodes in
graph).

Recursive algorithms converted in this
research are logically recursive. Loop
encapsulation is designed similar to depth first
search (DFS) pattern and utilizes Tarjan’s strongly
connected component (SCC) algorithm for loop
detection. Recursive method elimination also
utilizes similar Tarjan’s algorithm to detect
recursive methods although they do not share the
same data type. Therefore, Object oriented
technique called Generics is applied in order to
enable Tarjan’s SCC algorithm takes various data
types on its process without explicit typecasting.
Method expansion is designed in recursive
dynamic programming manner which never re-
expand already-expanded method to cut off its
processing time. Since stack overflow error is the
biggest issue in recursive implementation,
especially on large scale recursion [4, 5].
Therefore, all recursive implementation in this
research will be converted as iterative one to
improve the program scalability.

For clarity at conversion phase, Some
recursive parts of algorithm in both implementation
are marked with different color which details can
be seen in Table 1. Abbrevations are also given for
each descirption to simplify the illustration.

Loop Encapsulation Loop encapsulation encapsulates loops
based on Miecznikowski’s algorithm [1, 14]. Loop
encapsulation example can be seen in Fig. 1. This
module takes control flow graph as its argument

and utilizes Miecznikowski’s to detect loop
candidates. All nodes which is a member of certain
loop are wrapped and merged as one loop node.
Loop node is a wrapper which consists of loop
member nodes and inherits its successors /
predecessors. This loop replacement mechanism is
conducted repeatedly from inner-most loops until
no more loop exists.

Table 1: Recursive parts color details

Color Description
Blue Current process before processing its

children (B)
Red Current process after processing its

children (A)
Green Current children’s process before

recursion (CB)
Brown Current children’s process after

recursion (CA)

Fig 1: Loop encapsulation example

Recursive implementation of loop

encapsulation module can be seen in Fig. 2.
Control flow graph (CFG) is represented as array
of control flow (CF) nodes which will be broke
down as a bunch of subgraph based on Tarjan’s
algorithm (getSCC function). Each subgraph
which consist of more than one nodes is considered
as loop candidates and its respective conditional
nodes are removed. Removing conditional nodes is
required to detect inner loop on remaining nodes by
execute similar mechanism recursively.

procedure encapsLoopR(nodeList :CF[])
| CF[][] sccList= getSCC(nodelist) | for each scc in sccList | | if(scc.length > 1)
| | | encapsulate scc as loop node | | | detectLoopType(scc) | | | removeConditionalNodes(scc) | | | encapsulateLoopR(scc) | | end if | end for end procedure

Algorithm 2 Iterative Loop Encapsulation.

Fig 2: Recursive loop encapsulation

Converting loop encapsulation to iterative

form is quite simple since this algorithm follows
simple DFS pattern (without A and CA parts).
Simple DFS pattern can be remodeled to iterative
form with the help of a stack and a while loop
(which are used to keep track of recursive calls).
Iterative loop encapsulation can be seen in Fig. 3
where each recursive calls are replaced by pushing
its recursive argument on a stack. B and CB are
translated as loop action whereas each elements on
stack are popped and processed until the stack is
empty.

 Fig 3: Iterative loop encapsulation

Recursive Method Elimination Recursive method elimination removes all
recursive methods from method expansion
candidates since all recursion may yield endless

method expansion (each expansion consists of
additional recursive call). This module takes
method list as its argument, augments it as method
graph, detects recursion candidates, and removes
them from method expansion candidates. Method
graph is augmented from method calls where each
method is converted to a node and a method call is
converted as an edge from caller to called method.
Since this module only apply recursion on its
Tarjan’s SCC algorithm, This module will not be
discussed further.

Tarjan’s SCC Algorithm Since loop encapsulation and recursive
method elimination involve SCC detection on their
graph respectively, Tarjan’s SCC algorithm is also
converted to iterative form. Tarjan’s SCC
algorithm applies Generic which enables this
module to take various data types on its process
without explicit typecasting. Generics is a Java
feature which enable developer to use same class
for many kind of data types without using explicit
typecasting [15].

Tarjan’s SCC algorithm is logically
recursive which is quite difficult to convert it as
iterative algorithm. This algorithm also has all
recursive algorithm parts which declared at Table 1
(B, A, CB, and CA). Tarjan’s recursive
implementation can be seen in Fig. 4. This
algorithm can be conducted by calling getSCC.
Index and lowlink of each node are used to detect
SCC wherein -1 stands for unprocessed nodes.
Index variable in this algorithm is considered as
global variable.

 Fig 4: Recursive Tarjan’s SCC algorithm

function getSCC(nodeList:T[]) : T[][]
| T[][] sccList; Stack s; int index = 0 | for each node in nodeList | | if(node.index = -1)
| | | constructSCC(node, sccList, s, index, nodeList) | | end if | end for | return sccList end function procedure constructSCC(node : T, sccList : T[][], s : Stack, index : int, nodeList : T[])
| node.index = index; node.lowlink = index | stack.push(node); index = index + 1 | for each successor suc of nodein nodeList | | if(suc.index == -1)
| | | constructSCC(suc, sccList, stack, index, nodeList) | | | node.lowlink = min(suc.lowlink, node.lowlink) | | else if(suc.onStack)
| | | node.lowlink = min(suc.index, node.lowlink) | | end if | end for | if(node.index = node.lowLink)
| | T[] scc; T n | | do{
| | | n = stack.pop(); | | | scc.add(n) | | }while(node != n)
| | sccList.add(scc) | end if end procedure

procedure encapsLoopI(nodeList : CF[])
| Stack s | s.push(nodeList) | while(s is not empty)
| | CF[] tmp = s.pop() | | CF[][] sccList = getSCC(tmp) | | for each scc in sccList | | | if(scc.length > 1)
| | | | encapsulate scc as loop node | | | | detectLoopType(scc) | | | | removeConditionalNodes(scc) | | | | s.push(scc) | | | end if | | end for | end while
end procedure

is converted as an edge from caller to called method.
Since this module only apply recursion on its Tarjans
SCC algorithm, This module will not be discussed
further.

D. Tarjan’s SCC Algorithm

Since loop encapsulation and recursive method elim-
ination involve SCC detection on their graph respec-
tively, Tarjan’s SCC algorithm is also converted to
iterative form. Tarjan’s SCC algorithm applies Generic
which enables this module to take various data types
on its process without explicit typecasting. Generics
is a Java feature which enables developer to use same
class for many kind of data types without using explicit
typecasting [15].

Tarjans SCC algorithm is logically recursive which
is quite difficult to convert it as iterative algorithm.
This algorithm also has all recursive algorithm parts
which declared at Table I (B, A, CB, and CA). Tarjans
recursive implementation can be seen in Alg. 3. This
algorithm can be conducted by calling getSCC. Index
and lowlink of each node are used to detect SCC
wherein −1 stands for unprocessed nodes. Index
variable in this algorithm is considered as global vari-
able.

Despite of its iterative conversion difficulty, this al-
gorithm still can be converted by imitating its recursive
patterns with the help of caller reference. Tarjan’s
iterative implementation can be seen in Alg. 4. This
implementation follows some rules which are:

• Each data tuple is encapsulated as IterTuple which
has an additional field called caller reference.
Caller reference is used to keep track of its recur-
sive pattern and to perform its “after recursion”
part (A and CA).

• Procedure call of constructSCC is replaced
by a loop which perform similar pattern as
constructSCC.

• Current process is stored in cur and each re-
cursive call is replaced by assigning cur with
its recursive process (which is similar to let this
process visit its child first).

• A and CA parts are conducted after all of its
successor are “recursively” processed. A part is
conducted first before CA part since CA part
conducted in this phase is its parent process’s CA
(parent process is accessed using caller reference).

E. Method Expansion

Method expansion unwrap all method encapsula-
tion by replacing all method calls with its respective
method contents until no more method call exists
(which is quite similar to method inlining [16]). This

17

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

Algorithm 3 Recursive Tarjan’s SCC Algorithm.

Fig 2: Recursive loop encapsulation

Converting loop encapsulation to iterative

form is quite simple since this algorithm follows
simple DFS pattern (without A and CA parts).
Simple DFS pattern can be remodeled to iterative
form with the help of a stack and a while loop
(which are used to keep track of recursive calls).
Iterative loop encapsulation can be seen in Fig. 3
where each recursive calls are replaced by pushing
its recursive argument on a stack. B and CB are
translated as loop action whereas each elements on
stack are popped and processed until the stack is
empty.

 Fig 3: Iterative loop encapsulation

Recursive Method Elimination Recursive method elimination removes all
recursive methods from method expansion
candidates since all recursion may yield endless

method expansion (each expansion consists of
additional recursive call). This module takes
method list as its argument, augments it as method
graph, detects recursion candidates, and removes
them from method expansion candidates. Method
graph is augmented from method calls where each
method is converted to a node and a method call is
converted as an edge from caller to called method.
Since this module only apply recursion on its
Tarjan’s SCC algorithm, This module will not be
discussed further.

Tarjan’s SCC Algorithm Since loop encapsulation and recursive
method elimination involve SCC detection on their
graph respectively, Tarjan’s SCC algorithm is also
converted to iterative form. Tarjan’s SCC
algorithm applies Generic which enables this
module to take various data types on its process
without explicit typecasting. Generics is a Java
feature which enable developer to use same class
for many kind of data types without using explicit
typecasting [15].

Tarjan’s SCC algorithm is logically
recursive which is quite difficult to convert it as
iterative algorithm. This algorithm also has all
recursive algorithm parts which declared at Table 1
(B, A, CB, and CA). Tarjan’s recursive
implementation can be seen in Fig. 4. This
algorithm can be conducted by calling getSCC.
Index and lowlink of each node are used to detect
SCC wherein -1 stands for unprocessed nodes.
Index variable in this algorithm is considered as
global variable.

 Fig 4: Recursive Tarjan’s SCC algorithm

function getSCC(nodeList:T[]) : T[][]
| T[][] sccList; Stack s; int index = 0 | for each node in nodeList | | if(node.index = -1)
| | | constructSCC(node, sccList, s, index, nodeList) | | end if | end for | return sccList end function procedure constructSCC(node : T, sccList : T[][], s : Stack, index : int, nodeList : T[])
| node.index = index; node.lowlink = index | stack.push(node); index = index + 1 | for each successor suc of nodein nodeList | | if(suc.index == -1)
| | | constructSCC(suc, sccList, stack, index, nodeList) | | | node.lowlink = min(suc.lowlink, node.lowlink) | | else if(suc.onStack)
| | | node.lowlink = min(suc.index, node.lowlink) | | end if | end for | if(node.index = node.lowLink)
| | T[] scc; T n | | do{
| | | n = stack.pop(); | | | scc.add(n) | | }while(node != n)
| | sccList.add(scc) | end if end procedure

procedure encapsLoopI(nodeList : CF[])
| Stack s | s.push(nodeList) | while(s is not empty)
| | CF[] tmp = s.pop() | | CF[][] sccList = getSCC(tmp) | | for each scc in sccList | | | if(scc.length > 1)
| | | | encapsulate scc as loop node | | | | detectLoopType(scc) | | | | removeConditionalNodes(scc) | | | | s.push(scc) | | | end if | | end for | end while
end procedure

mechanism is applied to reweight terms since terms
used in frequently called methods should have greater
weight based on its occurences. Each inserted method
content is also weighted by its prior method call weight
in order to keep its relevancy to its caller method.
Since recursive calls may yield unlimited loop during
expansion phase, recursive methods are marked and
only expanded at N times (N is defined as a parameter
at indexing phase).

Method expansion applies dynamic programming to
speed up its process. Each method is only expanded
once and all unexpanded method which is called in
method content is expanded first. This module is
initially implemented with recursive approach because
of its natural recursive logic. Recursive implementation
of method expansion can be seen in Alg. 5 where its
iterative form can be seen in Alg. 6. Conversion of
this module imitates Tarjans SCC algorithm conversion
where each tuple is encapsulated as IterTuple with an
additional field caller reference. Although copying all
term in method with nID to mtt is considered both A
and CA parts, this instruction still can be converted by
duplicating its instruction (The first one is for A part
whereas the second one is for CA part).

F. Multithread Design

It is obvious to state that single thread program in
multi core processor is not efficient enough since it
only utilizes one core. To utilize all cores, program

must apply multithreading mechanism which let pro-
gram to do tasks at many different cores at the same
time. Therefore, program developed in this research is
redesigned to multithread manner in order to cut off
its processing time. Two major parts are redesigned
which are indexer and retriever. Indexer part conversion
is quite simple since its jobs can be split based on
documents (Java archives). Retriever part involves two
retriever mechanism which are VSM and LRVSM.
Unlike indexer part, this module requires some global
calculation after multithreading to yield similar result
as sequential one. In addition, semantic relatedness
calculator between term pairs is also redesigned in
multithread manner since semantic relatedness is re-
quired at EVSM retriever.

G. Multithread Indexer

Since document-partitioned indexes are more fre-
quently used than term-partitioned indexes in most
search engines [17], multithread indexing developed
in this research are based on document-partitioned
indexes. Documents (Java archives) are split and in-
dexed separately using many threads at the same time.
Because document-partitioned indexes assures that all
indexes are not tightly-coupled to each other, error-
neous indexes only affect the indexed documents and
the re-index phase will not affect remaining indexes.
Therefore, it may yields faster index error correction.

18

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

Algorithm 4 Iterative Tarjan’s SCC Algorithm.

International Journal of Communication & Information Technology (CommIT) Vol x (yy), pp 31-
Despite of its iterative conversion difficulty,

this algorithm still can be converted by imitating its
recursive patterns with the help of caller reference.
Tarjan’s iterative implementation can be seen in
Fig. 5. This implementation follows some rules
which are:

a. Each data tuple is encapsulated as
IterTuple which has an additional field
called caller reference. Caller reference is
used to keep track of its recursive pattern
and to perform its “after recursion” part (A
and CA).

b. Procedure call of constructSCC is
replaced by a loop which perform similar
pattern as constructSCC.

c. Current process is stored in cur and each
recursive call is replaced by assigning
cur with its recursive process (which is
similar to let this process visit its child
first).

d. A andCA parts are conducted after all of its
successor are “recursively” processed. A
part is conducted first before CA part since
CA part conducted in this phase is its
parent process’s CA (parent process is
accessed using caller reference).

Method Expansion Method expansion unwrap all method
encapsulation by replacing all method calls with its
respective method contents until no more method
call exists (which is quite similar to method
inlining [16]). This mechanism is applied to
reweight terms since terms used in frequently
called methods should have greater weight based
on its occurences. Each inserted method content is
also weighted by its prior method call weight in
order to keep its relevancy to its caller method.
Since recursive calls may yield unlimited loop
during expansion phase, recursive methods are
marked and only expanded at N times (N is defined
as a parameter at indexing phase).

 Fig 5: Iterative Tarjan’s SCC algorithm

function getSCC(nodeList : T[]): T[][]
| T[][] scc | int index = 0 | Stack stack | for each node in nodeList | | if(node.index == -1)
| | | IterTuple cur | | | cur.node = node; cur.caller = null | | | cur.node.index = index; cur.node.lowlink = index | | | stack.push(cur); index = index + 1 | | | while(true) | | | | if(cur.node has unprocessed successors which is nodeList member)
| | | | | IterTuple next | | | | | next.node = cur.node.getNextUnprocessedNode(); next.caller = cur | | | | | if(nodeList.contains(next.node)) | | | | | | if(next.node.index == -1)
| | | | | | | next.node.index = index; next.node.lowlink =index | | | | | | | stack.push(next); index = index + 1 | | | | | | | cur = next | | | | | | else if(next.node.onStack)
| | | | | | | cur.node.lowlink = min(cur.node.lowlink, next.node.index) | | | | | |end if | | | | else | | | | | if(cur.node.index = cur.node.lowlink)
| | | | | | T[] scc; IterTuple top | | | | | | do{
| | | | | | | top = stack.pop() | | | | | | | scc.add(top.node) | | | | | | }while(top.node.index != cur.node.index)
| | | | | | sccList.add(scc) | | | | | end if
| | | | | IterTuple caller = cur.caller | | | | | if(caller != null)
| | | | | | caller.node.lowlink = min(caller.node.lowlink, cur.node.lowlink) | | | | | | cur = caller | | | | | else break | | | | | end if | | | |end if | | |end while | | end if | end for | return sccList end function

Documents are partitioned based on greedy load-
balance mechanism which can be seen in Alg. 7.
The number of initialized stacks is similar with the
number of expected jobs wherein each document is
placed on the lowest document size stack at that time.
This mechanism intends to distribute documents evenly
among all jobs with greedy approach. Although greedy
approach does not always yield the best result, it may
yield fairly good distribution among all jobs at linear
time. Greedy approach is extremely faster than brute
force approach which complexity is O(N!).

Multithread indexer design can be seen in Fig. 2. All
documents are listed and distributed based on greedy
load-balance algorithm. Since each job yields an index
based on its given documents, this mechanism will
result many indexes rather than one. These indexes
need not to be merged as one since split indexes may
yields faster index error correction with the help of
distribution list. Distribution list is a comma separated

Document Enlistment

Job Distribution

. . .

In
d

e
x
1

In
d

e
x
e

r
1

In
d

e
x
e

r
2

In
d

e
x
e

r
3

In
d

e
x
e

r
N

In
d

e
x
2

In
d

e
x
3

In
d

e
x
N

D
is

tr
ib

u
ti
o

n
 L

is
t

Fig. 2. Multithread Indexer Design.

values file that contain document list for each job. This
file is also generated at indexing phase. Any weighting
schemes conducted in previous sequential design are
delayed to retriever part based on these reasons:

• Storing raw indexes is more scalable than pro-
cessed one since various weighting schemes may

19

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

Algorithm 5 Recursive Method Expansion Algorithm.

International Journal of Communication & Information Technology (CommIT) Vol x (yy), pp 31-

Method expansion applies dynamic
programming to speed up its process. Each method
is only expanded once and all unexpanded method
which is called in method content is expanded first.
This module is initially implemented with recursive
approach because of its natural recursive logic.
Recursive implementation of method expansion
can be seen in Fig. 6 where its iterative form can be
seen in Fig. 7. Conversion of this module imitates
Tarjan’s SCC algorithm conversion where each
tuple is encapsulated as IterTuple with an
additional field caller reference. Although copying
all term in method with nID to mtt is considered
both A and CA parts, this instruction still can be
converted by duplicating its instruction (The first
one is for A part whereas the second one is for CA
part).

Multithread Design It is obvious to state that single thread
program in multi core processor is not efficient
enough since it only utilize one core. To utilize all
cores, program must apply multithreading
mechanism which let program to do tasks at many
different cores at the same time. Therefore,
program developed in this research is redesigned to
multithread manner in order to cut off its
processing time. Two major parts are redesigned
which are indexer and retriever. Indexer part
conversion is quite simple since its jobs can be split
based on documents (Java archives). Retriever part
involves two retriever mechanism which are VSM
and LRVSM. Unlike indexer part, this module

require some global calculation after
multithreading to yield similar result as sequential
one. In addition, semantic relatedness calculator
between term pairs is also redesigned in
multithread manner since semantic relatedness is
required at EVSM retriever.

Multithread Indexer Since document-partitioned indexes are
more frequently used than term-partitioned indexes
in most search engines [17], multithread indexing
developed in this research are based on document-
partitioned indexes. Documents (Java archives) are
split and indexed separately using many threads at
the same time. Because document-partitioned
indexes assures that all indexes are not tightly-
coupled to each other, errorneous indexes only
affect its indexed documents and re-index phase
will not affect remaining indexes. Therefore, it may
yields faster index error correction.

Documents are partitioned based on greedy
load-balance mechanism which can be seen in Fig.
8. The number of initialized stacks is similar with
the number of expected jobs wherein each
document is placed on the lowest document size
stack at that time. This mechanism intends to
distribute documents evenly among all jobs with
greedy approach. Although greedy approach does
not always yield the best result, it may yield fairly
good distribution among all jobs at linear time.
Greedy approach is extremely faster than brute
force approach which complexity is O(N!).

 Fig 6: Recursive method expansion algorithm

function expand(beforeList : Data) : Data
| Data afterList | for each method with id curID in beforeList
| | methodExpansion(curID, beforeList, afterList) | return afterList end function procedure methodExpansion(curID : MethodID, beforeList : Data, afterList : Data) | if(afterList does not contain method with curID)
| | ExpandedMethod mtt | | ScoreTuple[] sList = get score tuple list of method with curID from beforeList | | for each ScoreTuple st in sList | | | if(st is string literal)
| | | | mtt.add(st) | | | else // st is method call
| | | | MethodID nID = st.getMethodID() | | | | if(beforeList contains method with nID) // need to be expanded | | | | | if(afterList does not contain method with nID) // not expanded yet
| | | | | | methodExpansion(curID, beforeList, afterList) | | | | | end if
| | | | | copy all term in method with nID to mtt// also included as CA part | | | | end if | | | end if | | end for
| | afterList.add(mtt) | end if end procedure

Algorithm 6 Iterative Method Expansion Algorithm.

 Fig 7: Iterative method expansion algorithm

 Fig 8: Greedy load-balance algorithm

Multithread indexer design can be seen in

Fig. 9. All documents are listed and distributed
based on greedy load-balance algorithm. Since
each job yields an index based on its given
documents, this mechanism will result many
indexes rather than one. These indexes need not to
be merged as one since split indexes may yields
faster index error correction with the help of
distribution list. Distribution list is a comma
separated values file that contain document list for
each job. This file is also generated at indexing
phase.

Any weighting schemes conducted in
previous sequential design are delayed to retriever
part based on these reasons :

a. Storing raw indexes is more scalable than
processed one since various weighting

schemes may be applied without re-
indexing.

b. Index error correction may be simplified
since it only focus on errorneous indexes
and its respective documents.

c. Many additional indexes can be embedded
during retrieval phase without modifying
preexisting indexes.

 Fig 9: Multithread indexer design

Multithread Retriever In this research, two retrieval models are
redersigned in multithread manner. These retrieval

functionsplitJob(path : String, n : int)
| Stack[] jobs = new Stack[n] | for eachfile finpath | | if(f is Java archive)
| | | minIdx = get lowest sJobs index | | | jobs[minIdx].add(f) | |end if | end for
end function

function expand(beforeList : Data) : Data
| Data afterList | for each method with id curID in beforeList
| | methodExpansion(curID, beforeList, afterList) | return afterList end function procedure methodExpansion(curID : MethodID, beforeList : Data, afterList : Data) | if(afterList does not contain method with curID)
| | IterTuple cur | | cur.id = curID; cur.caller = null | | cur.sList = get score tuple list of method with cur.id from beforeList | | while(true) | | | if(cur.sList has unprocessed ScoreTuple)
| | | | ScoreTuple st = cur.sList.getNextUnprocessedScoreTuple() | | | | if(st is string literal)
| | | | | cur.mtt.add(st) | | | | else// st is method call
| | | | | MethodID nID = st.getMethodID() | | | | | if(beforeList contains method with nID) // need to be expanded | | | | | | if(afterList does not contain method with nID) // notexpanded yet
| | | | | | | IterTuple next | | | | | | | next.id = nID; next.caller = cur | | | | | | | next.sList = get score tuple list of method with next.id from beforeList | | | | | | | cur = next | | | | | | else
| | | | | | | copy all term in method with nID to cur.mtt | | | | | | endif | | | | | endif | | | | end if | | | else
| | | | afterList.add(cur.mtt) | | | | if(cur.caller != null)
| | | | | insert all term in method with cur.id to cur.caller.mtt at its respective pos | | | | else break | | | | end if | | | end if | | end while | end if end procedure

20

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

Algorithm 7 Greedy Load-Balance Algorithm.

 Fig 7: Iterative method expansion algorithm

 Fig 8: Greedy load-balance algorithm

Multithread indexer design can be seen in

Fig. 9. All documents are listed and distributed
based on greedy load-balance algorithm. Since
each job yields an index based on its given
documents, this mechanism will result many
indexes rather than one. These indexes need not to
be merged as one since split indexes may yields
faster index error correction with the help of
distribution list. Distribution list is a comma
separated values file that contain document list for
each job. This file is also generated at indexing
phase.

Any weighting schemes conducted in
previous sequential design are delayed to retriever
part based on these reasons :

a. Storing raw indexes is more scalable than
processed one since various weighting

schemes may be applied without re-
indexing.

b. Index error correction may be simplified
since it only focus on errorneous indexes
and its respective documents.

c. Many additional indexes can be embedded
during retrieval phase without modifying
preexisting indexes.

 Fig 9: Multithread indexer design

Multithread Retriever In this research, two retrieval models are
redersigned in multithread manner. These retrieval

functionsplitJob(path : String, n : int)
| Stack[] jobs = new Stack[n] | for eachfile finpath | | if(f is Java archive)
| | | minIdx = get lowest sJobs index | | | jobs[minIdx].add(f) | |end if | end for
end function

function expand(beforeList : Data) : Data
| Data afterList | for each method with id curID in beforeList
| | methodExpansion(curID, beforeList, afterList) | return afterList end function procedure methodExpansion(curID : MethodID, beforeList : Data, afterList : Data) | if(afterList does not contain method with curID)
| | IterTuple cur | | cur.id = curID; cur.caller = null | | cur.sList = get score tuple list of method with cur.id from beforeList | | while(true) | | | if(cur.sList has unprocessed ScoreTuple)
| | | | ScoreTuple st = cur.sList.getNextUnprocessedScoreTuple() | | | | if(st is string literal)
| | | | | cur.mtt.add(st) | | | | else// st is method call
| | | | | MethodID nID = st.getMethodID() | | | | | if(beforeList contains method with nID) // need to be expanded | | | | | | if(afterList does not contain method with nID) // notexpanded yet
| | | | | | | IterTuple next | | | | | | | next.id = nID; next.caller = cur | | | | | | | next.sList = get score tuple list of method with next.id from beforeList | | | | | | | cur = next | | | | | | else
| | | | | | | copy all term in method with nID to cur.mtt | | | | | | endif | | | | | endif | | | | end if | | | else
| | | | afterList.add(cur.mtt) | | | | if(cur.caller != null)
| | | | | insert all term in method with cur.id to cur.caller.mtt at its respective pos | | | | else break | | | | end if | | | end if | | end while | end if end procedure

be applied without re-indexing.
• Index error correction may be simplified since

it only focuses on errorneous indexes and its
respective documents.

• Many additional indexes can be embedded dur-
ing retrieval phase without modifying preexisting
indexes.

H. Multithread Retriever

In this research, two retrieval models are reder-
signed in multithread manner. These retrieval model
are standard and low-rank vector space model. Low-
rank VSM (LRVSM) is extended VSM that utilizes
semantic relatedness in order to improve its recall.
VSM is selected since this model is a benchmark
of many other retrieval models whereas LRVSM is
the most effective extended VSM found in previous
research [2, 3]. Both retrievers takes directory path
which consists of all indexed files as its input and build
in-memory retrieval models.

I. Multithread VSM

On VSM retriever, multithreading is conducted at
reading indexes and retrieving documents. Both tasks
assume each index as one job and each job is handled
by one retriever (N indexes = N jobs = N retriever).
Multithread VSM index reader can be seen in Fig. 3.
Each index is listed and read separately in different
jobs. After all indexes are read, their respective terms
are weighted using tf-idf scoring and stored in separate
retrievers. Multithread VSM document retriever can
be seen in Fig. 4. Since each retriever is responsible
for an index, the number of jobs is equivalent to the
number of indexes. Each retriever retrieves its relevant
documents based on query input and merges it to global
result.

J. Multithread LRVSM

Multithread LRVSM works quite similar with mul-
tithread VSM except LRVSM involves pre-calculated
semantic relatedness. Since semantic relatedness be-
tween terms is stored in binary file, index reader should
load that file and document retriever should involve it

model are standard and low-rank vector space
model. Low-rank VSM (LRVSM) is extended
VSM that utilizes semantic relatedness in order to
improve its recall. VSM is selected since this
model is a benchmark of many other retrieval
models whereas LRVSM is the most effective
extended VSM found in previous research [2, 3].
Both retrievers takes directory path which consists
of all indexed files as its input and build in-memory
retrieval models.

Multithread VSM

On VSM retriever, Multithreading is
conducted at reading indexes and retrieving
documents. Both tasks assume each index as one
job and each job is handled by one retriever (N
indexes = N jobs = N retriever). Multithread VSM
index reader can be seen in Fig. 10. Each index are
listed and read separately in different jobs. After all
indexes are read, its respective terms are weighted
using tf-idf scoring and stored in separate
retrievers. Multithread VSM document retriever
can be seen in Fig. 11. Since each retriever is
responsible for an index, the number of jobs is
equivalent to the number of indexes. Each retriever
retrieves its relevant documents based on query
input and merges it to global result.

Fig 10: Multithread VSM index reader

Multithread LRVSM
Multithread LRVSM works quite similar

with multithread VSM except LRVSM involves
pre-calculated semantic relatedness. Since semantic
relatedness between terms is stored in binary file,
index reader should load that file and document
retriever should involves it on its retrieval
mechanism. Multithread LRVSM index reader can
be seen in Fig. 12. This module enlists all indexes
and relatedness file in order to load it on memory.
Following VSM index reader design, each file is
considered as one job and all index terms are
weighted using tf-idf scoring before stored in

memory. Multithread LRVSM document retriever
can be seen in Fig. 13. Relatedness data are stored
in array and shared among all retrievers. This
mechanism is thread-safe since only read action
permitted on shared data.

. . .

R
et

rie
ve

r 1

R
et

rie
ve

r 2

R
et

rie
ve

r 3

R
et

rie
ve

r N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Result Merger

Index Store

Query Processing

Fig 11: Multithread VSM document retriever

Index and Relatedness Enlistment

. . .

In
de

x
R

ea
de

r
1

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

TF-IDF Scoring

Index And Relatedness Store

Retriever Builder

In
de

x
R

ea
de

r
2

In
de

x
R

ea
de

r
3

In
de

x
R

ea
de

r
N

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

. . .

. . .

R
el

at
ed

ne
ss

R

ea
de

r
1

R
el

at
ed

ne
ss

R

ea
de

r
2

R
el

at
ed

ne
ss

R

ea
de

r
3

R
el

at
ed

ne
ss

R

ea
de

r
N

Fig 12: Multithread LRVSM index reader

Multithread and Multiprocess Semantic
Relatedness Calculator

Since semantic relatedness between terms is
pre-computed and takes a long time, this module is
also redesigned by involving multithread and
multiprocess which can be seen in Fig. 14. This
module takes all indexes as its input, generates
distinct terms, and calculates semantic relatedness
on separate processes. Separate processes is
implemented by executing many standalone
executable files. Processes are chosen instead of
threads because:

a. Many third-party semantic relatedness
libraries involve synchronized and static
methods which may yield bottlenecks if
implemented only in separate threads (e.g.

Fig. 3. Multithread VSM Index Reader.

model are standard and low-rank vector space
model. Low-rank VSM (LRVSM) is extended
VSM that utilizes semantic relatedness in order to
improve its recall. VSM is selected since this
model is a benchmark of many other retrieval
models whereas LRVSM is the most effective
extended VSM found in previous research [2, 3].
Both retrievers takes directory path which consists
of all indexed files as its input and build in-memory
retrieval models.

Multithread VSM

On VSM retriever, Multithreading is
conducted at reading indexes and retrieving
documents. Both tasks assume each index as one
job and each job is handled by one retriever (N
indexes = N jobs = N retriever). Multithread VSM
index reader can be seen in Fig. 10. Each index are
listed and read separately in different jobs. After all
indexes are read, its respective terms are weighted
using tf-idf scoring and stored in separate
retrievers. Multithread VSM document retriever
can be seen in Fig. 11. Since each retriever is
responsible for an index, the number of jobs is
equivalent to the number of indexes. Each retriever
retrieves its relevant documents based on query
input and merges it to global result.

Fig 10: Multithread VSM index reader

Multithread LRVSM
Multithread LRVSM works quite similar

with multithread VSM except LRVSM involves
pre-calculated semantic relatedness. Since semantic
relatedness between terms is stored in binary file,
index reader should load that file and document
retriever should involves it on its retrieval
mechanism. Multithread LRVSM index reader can
be seen in Fig. 12. This module enlists all indexes
and relatedness file in order to load it on memory.
Following VSM index reader design, each file is
considered as one job and all index terms are
weighted using tf-idf scoring before stored in

memory. Multithread LRVSM document retriever
can be seen in Fig. 13. Relatedness data are stored
in array and shared among all retrievers. This
mechanism is thread-safe since only read action
permitted on shared data.

. . .

R
et

rie
ve

r 1

R
et

rie
ve

r 2

R
et

rie
ve

r 3

R
et

rie
ve

r N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Result Merger

Index Store

Query Processing

Fig 11: Multithread VSM document retriever

Index and Relatedness Enlistment

. . .

In
de

x
R

ea
de

r
1

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

TF-IDF Scoring

Index And Relatedness Store

Retriever Builder

In
de

x
R

ea
de

r
2

In
de

x
R

ea
de

r
3

In
de

x
R

ea
de

r
N

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

. . .

. . .

R
el

at
ed

ne
ss

R

ea
de

r
1

R
el

at
ed

ne
ss

R

ea
de

r
2

R
el

at
ed

ne
ss

R

ea
de

r
3

R
el

at
ed

ne
ss

R

ea
de

r
N

Fig 12: Multithread LRVSM index reader

Multithread and Multiprocess Semantic
Relatedness Calculator

Since semantic relatedness between terms is
pre-computed and takes a long time, this module is
also redesigned by involving multithread and
multiprocess which can be seen in Fig. 14. This
module takes all indexes as its input, generates
distinct terms, and calculates semantic relatedness
on separate processes. Separate processes is
implemented by executing many standalone
executable files. Processes are chosen instead of
threads because:

a. Many third-party semantic relatedness
libraries involve synchronized and static
methods which may yield bottlenecks if
implemented only in separate threads (e.g.

Fig. 4. Multithread VSM Document Retriever.

on its retrieval mechanism. Multithread LRVSM index
reader can be seen in Fig. 5. This module enlists all
indexes and relatedness file in order to load it on
memory. Following VSM index reader design, each
file is considered as one job and all index terms are
weighted using tf-idf scoring before stored in memory.
Multithread LRVSM document retriever can be seen in
Fig. 6. Relatedness data are stored in array and shared
among all retrievers. This mechanism is thread-safe
since only read action permitted on shared data.

K. Multithread and Multiprocess Semantic Related-
ness Calculator

Since semantic relatedness between terms is pre-
computed and takes a long time, this module is also
redesigned by involving multithread and multiprocess

21

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

which can be seen in Fig. 7. This module takes
all indexes as its input, generates distinct terms, and
calculates semantic relatedness on separate processes.
Separate processes is implemented by executing many
standalone executable files. Processes are chosen in-
stead of threads because:

• Many third-party semantic relatedness libraries
involve synchronized and static methods which
may yield bottlenecks if implemented only in sep-
arate threads (e.g., Ws4J: WordNet Similarity for
Java [18]). Multithread design with bottlenecks
may yield longer processing time than the naive
one (single-thread) since multithreading needs ad-
ditional time to split and merge jobs.

• Standalone executable files may be built in many
programming language other than Java as long as
it follows its input and output template.

model are standard and low-rank vector space
model. Low-rank VSM (LRVSM) is extended
VSM that utilizes semantic relatedness in order to
improve its recall. VSM is selected since this
model is a benchmark of many other retrieval
models whereas LRVSM is the most effective
extended VSM found in previous research [2, 3].
Both retrievers takes directory path which consists
of all indexed files as its input and build in-memory
retrieval models.

Multithread VSM

On VSM retriever, Multithreading is
conducted at reading indexes and retrieving
documents. Both tasks assume each index as one
job and each job is handled by one retriever (N
indexes = N jobs = N retriever). Multithread VSM
index reader can be seen in Fig. 10. Each index are
listed and read separately in different jobs. After all
indexes are read, its respective terms are weighted
using tf-idf scoring and stored in separate
retrievers. Multithread VSM document retriever
can be seen in Fig. 11. Since each retriever is
responsible for an index, the number of jobs is
equivalent to the number of indexes. Each retriever
retrieves its relevant documents based on query
input and merges it to global result.

Fig 10: Multithread VSM index reader

Multithread LRVSM
Multithread LRVSM works quite similar

with multithread VSM except LRVSM involves
pre-calculated semantic relatedness. Since semantic
relatedness between terms is stored in binary file,
index reader should load that file and document
retriever should involves it on its retrieval
mechanism. Multithread LRVSM index reader can
be seen in Fig. 12. This module enlists all indexes
and relatedness file in order to load it on memory.
Following VSM index reader design, each file is
considered as one job and all index terms are
weighted using tf-idf scoring before stored in

memory. Multithread LRVSM document retriever
can be seen in Fig. 13. Relatedness data are stored
in array and shared among all retrievers. This
mechanism is thread-safe since only read action
permitted on shared data.

. . .

R
et

rie
ve

r 1

R
et

rie
ve

r 2

R
et

rie
ve

r 3

R
et

rie
ve

r N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Result Merger

Index Store

Query Processing

Fig 11: Multithread VSM document retriever

Index and Relatedness Enlistment

. . .

In
de

x
R

ea
de

r
1

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

TF-IDF Scoring

Index And Relatedness Store

Retriever Builder

In
de

x
R

ea
de

r
2

In
de

x
R

ea
de

r
3

In
de

x
R

ea
de

r
N

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

. . .

. . .

R
el

at
ed

ne
ss

R

ea
de

r
1

R
el

at
ed

ne
ss

R

ea
de

r
2

R
el

at
ed

ne
ss

R

ea
de

r
3

R
el

at
ed

ne
ss

R

ea
de

r
N

Fig 12: Multithread LRVSM index reader

Multithread and Multiprocess Semantic
Relatedness Calculator

Since semantic relatedness between terms is
pre-computed and takes a long time, this module is
also redesigned by involving multithread and
multiprocess which can be seen in Fig. 14. This
module takes all indexes as its input, generates
distinct terms, and calculates semantic relatedness
on separate processes. Separate processes is
implemented by executing many standalone
executable files. Processes are chosen instead of
threads because:

a. Many third-party semantic relatedness
libraries involve synchronized and static
methods which may yield bottlenecks if
implemented only in separate threads (e.g.

Fig. 5. Multithread LRVSM Index Reader.

Ws4J: WordNet Similarity for Java [18]).
Multithread design with bottlenecks may
yield longer processing time than the
naive one (single-thread) since
multithreading needs additional time to
split and merge jobs.

b. Standalone executable files may be built in
many programming language other than
Java as long as it follows its input and
output template.

c. Semantic relatedness calculator may be
freely designed by its developer. Internal
saving mechanism may also be added as
additional feature since calculating
semantic relatedness takes a long time
(calculating semantic relatedness of
40.978 distinct terms in previous research
using single thread takes about five days).

. . .

R
et

rie
ve

r 1

R
et

rie
ve

r 2

R
et

rie
ve

r 3

R
et

rie
ve

r N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Result Merger

Index and Relatedness Store

Query Processing

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

. . .

Relatedness Merger

Fig 13: Multithread LRVSM document retriever

Standalone executable file built for this

module must follow input and output template. It
takes 6 input arguments which are source file (CSV
file which consists all distinct terms), lower and
upper bound of first and second job, and target file.
The program should take all distinct term from
source file, calculate semantic relatedness between
terms on given job, and store it to target file in
binary format of hash map. Target hash map use
double as its value and string as its key. Key
represent concatenated term pair separated by
vertical bar ("|") whereas its value represent term
pair relatedness.

Since distinct terms are stored in array and
each term i is only paired with remaining terms
with larger index than i, semantic relatedness
calculation at the end of array should be faster than
the beginning part. To distribute term calculation
tasks evenly, each process (executable file) is given
two jobs. First one is from the beginning of an

array and the second one is from the end of an
array. Distinct terms are split to 2*N jobs and each
process i is assigned to job i and N-i where N
represent the number of processes.

Index Enlistment

. . .

R
ea

de
r

1

R
ea

de
r

2

R
ea

de
r

3

R
ea

de
r

N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Distinct Term Generator

R
el

at
ed

ne
ss

C

al
cu

la
to

r
1

R
el

at
ed

ne
ss

C

al
cu

la
to

r
2

R
el

at
ed

ne
ss

C

al
cu

la
to

r
3

. . .

R
el

at
ed

ne
ss

C

al
cu

la
to

r
N

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

Fig 14: Multithread semantic relatedness calculator

RESULTS AND DISCUSSION
Efficiency and effectiveness are two major

measurements which are commonly used to
determine the feasibility of a research. Since this
research focuses on module conversion in order to
improve its scalability, efficiency is measured
based on processing time and scalable design
whereas effectiveness is measured on converted
modules correctness. Evaluation conducted in this
research uses default dataset from [1] as a
benchmark. For clarity in each table, blue mark
represents the best result whereas red mark
represents the worst result for each factor.

Evaluating Recursion Conversion

To evaluate recursion conversion, some
schemes are augmented which are shown in Table
2. Each type consists of three symbols which
represent module implementation (I = Iteration and
R = Recursion). Its symbol order is equivalent to
module order shown in Table 2 columns. RRR and
III schemes are the benchmarks of this evaluation
since RRR represent recursive approach in all
modules and III represent iterative approach in all
modules. Type IRR, RIR, and RRI are used to
measure conversion impact of certain module.

Indexing time of each schemes on default
dataset can be seen in Table 3. Since processing
time is operating system dependent, each scheme is
measured five times using the same dataset and its

Fig. 6. Multithread LRVSM Document Retriever.

• Semantic relatedness calculator may be freely
designed by its developer. Internal saving mech-
anism may also be added as additional feature
since calculating semantic relatedness takes a long
time (calculating semantic relatedness of 40.978
distinct terms in previous research using single
thread takes about five days).

Standalone executable file built for this module must
follow input and output template. It takes six input ar-
guments which are source file (CSV file which consists
all distinct terms), lower and upper bound of first and
second job, and target file. The program should take
all distinct term from source file, calculate semantic
relatedness between terms on given job, and store it to
target file in binary format of hash map. Target hash
map uses double as its value and string as its key.
The key represents concatenated term pair separated
by vertical bar (“|”) whereas its value represents term
pair relatedness.

Since distinct terms are stored in array and each
term i is only paired with remaining terms with larger
index than i, semantic relatedness calculation at the end
of array should be faster than the beginning part. To
distribute term calculation tasks evenly, each process
(executable file) is given two jobs. First one is from
the beginning of an array and the second one is from
the end of an array. Distinct terms are split to 2 ×N
jobs and each process i is assigned to job i and N − i

Ws4J: WordNet Similarity for Java [18]).
Multithread design with bottlenecks may
yield longer processing time than the
naive one (single-thread) since
multithreading needs additional time to
split and merge jobs.

b. Standalone executable files may be built in
many programming language other than
Java as long as it follows its input and
output template.

c. Semantic relatedness calculator may be
freely designed by its developer. Internal
saving mechanism may also be added as
additional feature since calculating
semantic relatedness takes a long time
(calculating semantic relatedness of
40.978 distinct terms in previous research
using single thread takes about five days).

. . .

R
et

rie
ve

r 1

R
et

rie
ve

r 2

R
et

rie
ve

r 3

R
et

rie
ve

r N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Result Merger

Index and Relatedness Store

Query Processing

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

. . .

Relatedness Merger

Fig 13: Multithread LRVSM document retriever

Standalone executable file built for this

module must follow input and output template. It
takes 6 input arguments which are source file (CSV
file which consists all distinct terms), lower and
upper bound of first and second job, and target file.
The program should take all distinct term from
source file, calculate semantic relatedness between
terms on given job, and store it to target file in
binary format of hash map. Target hash map use
double as its value and string as its key. Key
represent concatenated term pair separated by
vertical bar ("|") whereas its value represent term
pair relatedness.

Since distinct terms are stored in array and
each term i is only paired with remaining terms
with larger index than i, semantic relatedness
calculation at the end of array should be faster than
the beginning part. To distribute term calculation
tasks evenly, each process (executable file) is given
two jobs. First one is from the beginning of an

array and the second one is from the end of an
array. Distinct terms are split to 2*N jobs and each
process i is assigned to job i and N-i where N
represent the number of processes.

Index Enlistment

. . .

R
ea

de
r

1

R
ea

de
r

2

R
ea

de
r

3

R
ea

de
r

N

In
de

x1

In
de

x2

In
de

x3

In
de

xN. . .

Distinct Term Generator

R
el

at
ed

ne
ss

C

al
cu

la
to

r
1

R
el

at
ed

ne
ss

C

al
cu

la
to

r
2

R
el

at
ed

ne
ss

C

al
cu

la
to

r
3

. . .

R
el

at
ed

ne
ss

C

al
cu

la
to

r
N

R
el

at
ed

ne
ss

1

R
el

at
ed

ne
ss

2

R
el

at
ed

ne
ss

3

R
el

at
ed

ne
ss

N

Fig 14: Multithread semantic relatedness calculator

RESULTS AND DISCUSSION
Efficiency and effectiveness are two major

measurements which are commonly used to
determine the feasibility of a research. Since this
research focuses on module conversion in order to
improve its scalability, efficiency is measured
based on processing time and scalable design
whereas effectiveness is measured on converted
modules correctness. Evaluation conducted in this
research uses default dataset from [1] as a
benchmark. For clarity in each table, blue mark
represents the best result whereas red mark
represents the worst result for each factor.

Evaluating Recursion Conversion

To evaluate recursion conversion, some
schemes are augmented which are shown in Table
2. Each type consists of three symbols which
represent module implementation (I = Iteration and
R = Recursion). Its symbol order is equivalent to
module order shown in Table 2 columns. RRR and
III schemes are the benchmarks of this evaluation
since RRR represent recursive approach in all
modules and III represent iterative approach in all
modules. Type IRR, RIR, and RRI are used to
measure conversion impact of certain module.

Indexing time of each schemes on default
dataset can be seen in Table 3. Since processing
time is operating system dependent, each scheme is
measured five times using the same dataset and its

Fig. 7. Multithread Semantic Relatedness Calculator.

22

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

where N represent the number of processes.

III. RESULTS AND DISCUSSION

Efficiency and effectiveness are two major measure-
ments which are commonly used to determine the
feasibility of a research. Since this research focuses on
module conversion in order to improve its scalability,
efficiency is measured based on processing time and
scalable design whereas effectiveness is measured on
converted modules correctness. Evaluation conducted
in this research uses default dataset from Ref. [1]
as a benchmark. For clarity in each table, blue mark
represents the best result whereas red mark represents
the worst result for each factor.

A. Evaluating Recursion Conversion

To evaluate recursion conversion, some schemes
are augmented which are shown in Table II. Each
type consists of three symbols which represent module
implementation (I = Iteration and R = Recursion). Its
symbol order is equivalent to module order shown
in Table II columns. RRR and III schemes are the
benchmarks of this evaluation since RRR represent
recursive approach in all modules and III represent
iterative approach in all modules. Type IRR, RIR, and
RRI are used to measure conversion impact of certain
module.

Indexing time of each schemes on default dataset can
be seen in Table III. Since processing time is operating
system dependent, each scheme is measured five times
using the same dataset and its average result is assigned
as its result to reduce its dependency bias.

As seen in Table III, each scheme that involves
iterative implementation takes more processing time
rather than RRR scheme. Following recursive logic in
iterative approach may yield longer processing time
since it requires many additional objects on its process
(e.g. IterTuple in Iterative Tarjans SCC algortihm).

TABLE II
RECURSION CONVERSION EVALUATION SCHEMES.

Type Module

Loop
Encapsu-
lation

Recursive
Method
Elimination

Method
Expander

RRR Rec Rec Rec
IRR Iter Rec Rec
RIR Rec Iter Rec
RRI Rec Rec Iter
III Iter Iter Iter

Although its processing time is less efficient, it is more
scalable than recursive approach. Stack overflow error
rarely appears on iterative approach since the number
of function call is greatly reduced. RRR scheme on
default dataset generates a stack overflow error when
run on JRE 1.8 whereas it runs well on JRE 1.7.
This is caused by many update in JRE 1.8 which
detects some processes in this program as endless
recursion (although it is not). Iterative form is also a
better approach than recursive form since the number
of recursive calls conducted on dataset is uncertain.
III scheme takes the longest indexing time since all
modules are implemented iteratively.

Recursion conversion correctness is measured by
comparing the result of iterative and recursive ap-
proaches. Its correctness is proved when both imple-
mentation yield similar results on various dataset. In
this evaluation, 11 dataset are tested where the first
dataset is default dataset in Ref. [1] and the rest are
sub dataset split from default dataset. Sub dataset are
resulted by splitting default dataset to 10 parts evenly.
Since these modules are indexer part, result comparison
is conducted based on indexes generated by both
implementation. As a result, both implementation yield
similar results on all schemes.

B. Evaluating Multithread Design

Multithread indexer, VSM, EVSM, and semantic re-
latedness calculator are measured in term of efficiency
and effectiveness. These evaluation are conducted in
Windows 7 Ultimate 32-bit with 4 GB RAM, and
Intel(IR) CoreTM i7-3770 CPU @ 3.40 GHz and
3.90 GHz as its processor. Each evaluated module
excepts semantic relatedness calculator is tested by
various number of jobs which are 1, N,N × 2, N ×
5, N × 10, N × 20, N × 40, and 552. N is the number
of physical cores −1, which is 3 in this evaluation en-
vironment whereas 552 is the number of Java archives
indexed in our dataset. To reduce its dependency bias,
each evaluation scheme is measured five times using
the same dataset and its average result is assigned as
its result.

TABLE III
INDEXING TIME OF RECURSION CONVERSION SCHEMES.

Type Indexing Time (s)

RRR 417.297
IRR 423.964
RIR 436.958
RRI 429.307
III 433.995

23

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

C. Evaluating Multithread Indexer

The quantitative efficiency measurement of multi-
thread indexer can be seen in Table IV. The best
indexing time is gained at N = 3 since all physical
cores are utilized (4 cores, 1 core is used for main
thread and the rest are used for side threads). N = 1
takes the longest indexing time since it only utilizes
1 side thread (which is quite similar to sequential
process). Index size is increased proportionally with
the number of jobs since each job generates an index
file and each index has its own header file.

Since the contents of generated indexes for each
scheme are equivalent with the contents of index
generated in previous research, multithread design on
this module is proved correct. Time reduction in mul-
tithread indexer also proves that multithreading may
improve scalability since it enables this system to
process larger dataset.

D. Evaluating Multithread VSM and LRVSM

Multithread VSM and LRVSM are measured with
similar factors since both of them are retriever mod-
ules. Measured retriever’s efficiency factors are index
load time and average query latency whereas effective-
ness is only measured based on its correctness.

The time efficiency measurement of multithread
VSM and LRVSM can be seen in Tables V and VI.
Since LRVSM evaluation is assumed to take related-
ness file as a single file, both results yield similar
conclusions which are:

• Index load time runs fastest at N = 3 since all
physical cores are utilized. The number of jobs is
proportional to index load time since job transfer
in thread takes time. N = 1 takes longer time
than N=3 since it only utilizes one thread instead
of three.

TABLE IV
TIME AND MEMORY EFFICIENCY OF MULTITHREAD INDEXING.

N
Efficiency Measurement

Indexing Time (s) Index Size (MB)

1 326.851 4,894
3 153.913 5,213
6 164.822 5,559

15 169.354 5,860
30 172.387 6,525
60 174.642 6,973

120 180.711 7,623
552 240.053 9,142

• Average query latency is affected by the number
of index partitioning. Retrieving a term from
one big chunk of index takes longer time than
retrieving it from many small chunks since large
index may yield more complicated structure than
the small one. Small indexes are also easier to be
cached in memory. But too many small indexes
may yield longer processing time since it needs to
iterate through these indexes. As seen in Table VI,
average query latency at N = 552 takes longer
time than N = 120 although it has more indexes
with smaller size.

Conversion correctness are proven by the fact that
both retriever yields similar result with its respective
sequential form for all queries from default dataset
(1860 queries). Multithread VSM and LRVSM is also
more scalable since shorter processing time may enable
system to handle larger data.

TABLE V
TIME EFFICIENCY OF MULTITHREAD VSM.

N
Efficiency Measurement

Indexing Time (s) Ave. Query Latency (s)

1 1.749 0.462
3 0.831 0.099
6 0.926 0.045

15 0.961 0.024
30 1.118 0.011
60 1.310 0.007

120 1.572 0.007
552 2.558 0.024

TABLE VI
TIME EFFICIENCY OF MULTITHREAD LRVSM.

N
Efficiency Measurement

Indexing Time (s) Ave. Query Latency (s)

1 56.041 0.091
3 55.563 0.047
6 55.759 0.046

15 56.603 0.043
30 57.128 0.042
60 57.287 0.041

120 57.884 0.039
552 59.208 0.152

24

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

TABLE VII
SEMANTIC RELATEDNESS EVALUATION DATASET.

Java Archive Distinct
Terms

Related Term
Pairs

javassist-2.5.1.jar 646 22.770
lucene-1.2.jar 553 15.434
jxl-2.4.2.jar 1.102 63.415

TABLE VIII
PROCESSING TIME OF SEMANTIC RELATEDNESS

CALCULATOR (S).

Java Archive Single Thread
Design

Multithread
Design

javassist-2.5.1.jar 2.237,249 1.355,221
lucene-1.2.jar 1.457,311 828,732
jxl-2.4.2.jar 5.249,131 3.372,989

E. Evaluating Multithread Semantic Relatedness Cal-
culator

Since semantic relatedness calculator requires stan-
dalone executable files for completing its task, a Java-
based standalone executable file (JAR) is build for
this research. This program follows algorithm template
given by multithread semantic relatedness calculator.
Since calculating semantic relatedness is time con-
suming, multithread design of this module is only
tested to three Java archives instead of entire default
dataset. These Java archives characteristics can be seen
in Table VII.

Processing time of multithread and single-thread
design of semantic relatedness calculator can be seen
in Table VIII. Each scheme is evaluated five times
and its average result is considered as that scheme
result. Evaluation is conducted by split distinct terms
to three jobs and utilize Lin’s semantic relatedness
algorithm described in Ref. [19]. As seen in Table VIII,
multithread design is more scalable since it takes less
time than single-thread by utilizing all physical cores.
This design also yields the same result as single-thread
design which proves its correctness.

IV. CONCLUSIONS

Based on evaluation in this research, scalability of
Java archive search engine can be improved through
recursion conversion and multithreading. Recursion
conversion improves scalability by avoiding stack over-
flow error whereas multithreading improves scalability
by reducing its execution time (which enables system
to process larger dataset).

Recursion conversion conducted in this research in-
volves three main recursive modules which are loop en-
capsulation, recursive method elimination, and method
expansion. Although these modules are inconvenient
enough to be redesigned as iterative one, it still can be
converted by following its recursive pattern with the
help of caller reference. Recursive pattern in iterative
implementation takes more time than its recursive
form since these modules are logically recursive and
require many additional objects during its execution.
The correctness of recursion conversion described is
also proved by the fact that both implementation yield
similar result.

Multithread design has been successfully imple-
mented in Java archive search engine which involves
indexer, VSM retriever, LRVSM retriever, and seman-
tic relatedness calculator. This mechanism cuts off its
respective processing time since it utilizes all physical
cores. Index partitioning may yield faster retrieval
model although too many small indexes may also yield
longer processing time. All multithread modules are
also proved correct by black box testing its results.

REFERENCES

[1] O. Karnalim and R. Mandala, “Java archives
search engine using byte code as informa-
tion source,” in Data and Software Engineering
(ICODSE), 2014 International Conference on.
IEEE, 2014, pp. 1–6.

[2] O. Karnalim, “Extended vector space model with
semantic relatedness on java archive search en-
gine,” Jurnal Teknik Informatika dan Sistem In-
formasi, vol. 1, no. 2, 2015.

[3] W. B. Croft, D. Metzler, and T. Strohman,
Search engines: Information retrieval in practice.
Addison-Wesley Reading, 2010, vol. 283.

[4] D. Grune, K. Van Reeuwijk, H. E. Bal, C. J.
Jacobs, and K. Langendoen, Modern compiler
design. Springer Science & Business Media,
2012.

[5] T. Lindholm, F. Yellin, G. Bracha, and A. Buck-
ley, The Java virtual machine specification. Pear-
son Education, 2014.

[6] R. Tarjan, “Depth-first search and linear graph
algorithms,” SIAM journal on computing, vol. 1,
no. 2, pp. 146–160, 1972.

[7] M. Carrano and T. Henry, Data Abstraction &
Problem Solving with C++: Walls and Mirrors,
6th ed. Prentice Hall, 2012.

[8] A. S. Tanenbaum, Modern Operating Systems,
4th ed. Prentice Hall, 2014.

25

Cite this article as: O. Karnalim, “Improving Scalability of Java Archive Search Engine Through Recursion
Conversion and Multithreading”, CommIT (Communication & Information Technology) Journal 10(1), 15–26,
2016.

[9] W. Liu and T. Wang, “Index-based online text
classification for sms spam filtering,” Journal of
Computers, vol. 5, no. 6, pp. 844–851, 2010.

[10] W. Premchaiswadi and A. Tungkatsathan, “On-
line content-based image retrieval system using
joint querying and relevance feedback scheme,”
WSEAS Transactions on Computers, vol. 9, no. 5,
pp. 465–474, 2010.

[11] C. Bonacic, C. Garcia, M. Marin, M. Prieto,
F. Tirado, and C. Vicente, “Improving search en-
gines performance on multithreading processors,”
in High Performance Computing for Computa-
tional Science-VECPAR 2008. Springer, 2008,
pp. 201–213.

[12] C. Bonacic and M. Marin, “Simulation study of
multi-threading in web search engine processors,”
in String Processing and Information Retrieval.
Springer, 2013, pp. 37–48.

[13] V. Skylarov, I. Skilarova, and B. Pimentel, “Fpga-
based implementation and comparison of re-
cursive and iterative algorithms,” in Field Pro-
grammable Logic and Applications, 2005. Inter-
national Conference on. IEEE, 2005, pp. 235–

240.
[14] J. Miecznikowski and L. Hendren, “Decompil-

ing java using staged encapsulation,” in Reverse
Engineering, 2001. Proceedings. Eighth Working
Conference on. IEEE, 2001, pp. 368–374.

[15] M. Naftalin and P. Wadler, Java generics and
collections. ” O’Reilly Media, Inc.”, 2006.

[16] C. Kustanto and I. Liem, “Automatic source code
plagiarism detection,” in Software Engineering,
Artificial Intelligences, Networking and Paral-
lel/Distributed Computing, 2009. SNPD’09. 10th
ACIS International Conference on. IEEE, 2009,
pp. 481–486.

[17] C. D. Manning, P. Raghavan, H. Schütze et al.,
Introduction to information retrieval. Cambridge
university press Cambridge, 2008, vol. 1, no. 1.

[18] H. Shima. (2015) Ws4j : Wordnet similarity for
java. Accessed on November 24, 2015. [Online].
Available: https://code.google.com/p/ws4j/

[19] D. Lin, “An information-theoretic definition of
similarity.” in ICML, vol. 98, 1998, pp. 296–304.

26

https://code.google.com/p/ws4j/

	INTRODUCTION
	METHODS
	Recursion Conversion
	Loop Encapsulation
	Recursive Method Elimination
	Tarjan's SCC Algorithm
	Method Expansion
	Multithread Design
	Multithread Indexer
	Multithread Retriever
	Multithread VSM
	Multithread LRVSM
	Multithread and Multiprocess Semantic Relatedness Calculator

	RESULTS AND DISCUSSION
	Evaluating Recursion Conversion
	Evaluating Multithread Design
	Evaluating Multithread Indexer
	Evaluating Multithread VSM and LRVSM
	Evaluating Multithread Semantic Relatedness Calculator

	CONCLUSIONS

