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Abstract—Robotic Operation System (ROS) is an im-
portant platform to develop robot applications. One area
of applications is for development of a Human Follower
Transporter Robot (HFTR), which can be considered
as a custom mobile robot utilizing differential driver
steering method and equipped with Kinect sensor. This
study discusses the development of the robot navigation
system by implementing Simultaneous Localization and
Mapping (SLAM).
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I. INTRODUCTION

Robotic Operation System (ROS) is important to
provide a flexible framework for developing robot
related applications [1]. ROS should be flexible and
capable to provide distributed computations, software
reuse, and rapid testing [2]. The modular nature of ROS
framework enables every aspect of the system to work
separately and efficiently in regards to communications
between nodes. By using ROS, community can develop
algorithms for various purposes that are easily inte-
grated to the framework and preserve the works for
public. The flexible nature of ROS enables for cou-
pling and message passing between existing processes
and facilitates rapid testing even for applications that
require advanced and stable data stream.

One of such systems has been developed previously
for Human Follower Transporter Robot (HFTR) [3, 4]
(see Fig. 1). The references have developed the robot

Received: June 10, 2015; received in revised form: July 25, 2015;
accepted: July 28, 2015; available online: July 28, 2015.

to be able to track and follow object based on the
object color. However, the existing planning, execution,
and monitoring (PEM) architecture is not sufficient
to evade dynamic obstacles. In addition, developing a
completely new algorithm requires significant amount
of time. The existing program is not easily integrated
to the next development phase for various reasons.

A number of studies related to ROS and HFTR
has been previously conducted. Reference [5] studied
the dynamic characteristics of bipedal robots. Ref-
erence [6] studied Segway robotic platform. Refer-

Fig. 1. An example of the Human Follower Transporter Robot
(HFTR).
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ence [7] studied navigation of wheel-legged hydraulic
robot. [8] proposed systems and methods for robotic
transport. Reference [9] discussed a near-term auton-
omy of follower robots.

This study intends to develop an improvement of
HFTR navigation system. The system requires sev-
eral inputs to function correctly such as the robot
odometry, sensor, map, and data transformation. By
utilizing ROS, the existing sensor system (Kinect) can
be adapted for appropriate input for mapping and
navigation (laser scan). It would enable implementation
of simultaneous localization and mapping (SLAM),
which is required to generate maps. HFTR would also
be reconfigured to use the existing ROS framework and
to transform data from encoder. Reconfiguration HFTR
is often unavoidable because most of the existing driver
is hard to be encapsulated to the ROS framework.
Sometimes, using a compatible driver is preferable
instead of adapting the old one.

II. RESEARCH METHODS

To implement and reconfigure the navigation stack
of ROS for HFTR, Fig. 2 shows the dependency of
the stack to the other modules. The stack depends on
sensor sources, map, data transform, odometry, and
base controller.

Firstly, the requirements for navigation stack are
sensor data, odometry data, and map. The sensor data
format follows the laser scan format to conserve the
computing power. The HFTR is already equipped with

Navigation Sensor Data Laser Scan

Kinect
Odometry

Transform

ROS Serial

Map

SLAM Differential Driver

URDF Arduino IDE

Fig. 2. The connection between modules in the robot operating
system. The directed line denotes dependency, for example, module
Navigation requires module Map.

Kinect camera; thus, a converter is required from
a depth image to laser scan. Consequently, Kinect
camera driver is also required, which in turn, requiring
data transformation where the data stream from their
origin to the rest of HFTR.

Secondly, the navigation stack requires odometry
that supplying information of the robot movement and
it is handled by the Differential Driver stack in the
ROS. The Differential Driver stack requires: PWM
adapters, which send a velocity command for robot
motors, in this case, is to Arduino board through a
serial port, and robot definition for virtual simulations.
The Odometry also requires Data Transform to record
the robot pose.

III. RESULTS AND DISCUSSION

In this section, we present the results of the im-
plementation and reconfiguration of the HFTR operat-
ing system. Firstly, in order to utilize the navigation
stack [2], the robot has to be configured in a specific
manner.

Figure 3 shows the overview of the required con-
figuration. The components in white boxed are those
that have already been implemented. Those in gray
are optional components and have also been imple-
mented. Those in blue should be created for each robot
platform. The navigation stack requires a transform
configuration, which is unique for each robot, sensor
information in a laser scan data type, odometry infor-
mation, base controller, and map [10].

The above navigation stack requires a static map,
which is created by Simultaneous Localization and
Mapping (SLAM) module. A gmapping package is a
ROS wrapper for OpenSlam’s gmapping. This pack-
age provides ROS a node called slam_gmapping,
which is a laser-based SLAM. Using this stack, a
two-dimension occupancy grid map can be created.
To utilize this package, the robot need to be able to
steam a laser scan data, as well as provides a relatively
accurate odometry data and transforms [11].

move_base

recovery_behaviors

local_planner Local_costmap

global_planner global_costmap

“move_base_simple/goal”

geometry_msgs/PoseStamped

Base controller

“cmd_vel” geometry_msgs/Twist

Odometry source

Sensor transforms

amcl

map_server
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Fig. 3. The navigation stack overview [4]. Those components in
white blocks have been developed, in gray are optional, and in blue
are those created for each robot platform.
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In addition, the navigation stack also requires dif-
ferential driver. The differential_drive stack
provides basic tools to interface with differential drive
robots with the ROS navigation stack. This stack can
take twist message from navigation stack or other
nodes, and publish messages for left wheel and right
wheel of a differential drive robot. It also receives
feedback from wheels encoder and generates trans-
form messages as required by the ROS navigation
stack [6]. This package provides four nodes [7]:
diff_tf that provides transform for the robot base,
pid_velocity that is a basic PID controller for mo-
tor speed, twist_to_motors that translates twist
messages to a two-motor velocity target for the differ-
ential drive robots, and virtual_joystick that is
a GUI controller with twist output (see Fig. 4).

Figure 5 shows active nodes and topics from
rqt_graph for navigation stack. Figures 6–9 show
the enlarged portions of Fig. 5, and the figures respec-
tively are the left, center, upper right, and lower right
sections.

The active nodes include driver sections, sensor

hardware
pid_velocity

pid_velocity

twist_to_motors
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twist
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Fig. 4. The differential drive package [12].

Fig. 5. The navigation nodes from rqt_graph.

sections, navigation sections, localization nodes, and
map server. The navigation section is centered on the
topic move_base which governing where the robot
should go through twist topic. The localization node,
amcl, functions as pose matcher for the robot. The
map_server node simply publishes a static map for
the navigation section.

The launch file for the nodes in Fig. 5 is shown in
Fig. 10. To execute map_server and amcl nodes,
the code needed in launch file is displayed in Fig. 10.
It also displays the launch code for move_base node
which retrieve parameters from:

• costmap_common_params.yaml,
• local_costmap_params.yaml,
• global_costmap_params.yaml, and

Fig. 6. The navigation nodes from rqt_graph: Section 1.

Fig. 7. The navigation nodes from rqt_graph: Section 2.

Fig. 8. The navigation nodes from rqt_graph: Section 3.
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• base_local_planner_params.yaml.
In Fig. 11, the costmap common parameters is

presented. These parameters are used by both global
costmap and local costmap. In this file, the ob-
stacle range and ray trace range is defined, which
means at which range the obstacle is detected and at
which range the robot would attempt to seek a clear
path. The footprint is the shape of the robot on two
dimension, which have to be defined since the HFTR
cannot represented by a circle but by a polygon. The
observation source is the sensor input, which in this
case is laser scan sensor.

Figure 12 shows the local costmap parameters. It
simply defines the publish rate and update rate of the
map, and local costmap’s properties. It also defines the
odometry topic and robot base.

Figure 13 shows the global costmap parameters,
which define map topic, update frequency and robot
base. Figure 14 displays the base local planner pa-
rameters, in this file, the maximum and minimum
velocity and acceleration both translation and rotation
of the robot is defined. Figure 15 shows a virtual
representation of the HFTR with a static map inside
rviz. The map used is that of FB311. In Fig. 16 the
global costmap is shown on top of static map. In
Fig. 17 the local costmap is shown on top of the static
map. Finally, in Fig. 18 both map are shown on top of
the static map. In Fig. 19, sending a navigational goal
is shown, and in Figure 20, the virtual representation
of HFTR can be moved inside rviz by sending two-
dimension position estimation data [13].

We identified a few limitations on the current de-
velopment and they may become topics for future

Fig. 9. The navigation nodes from rqt_graph: Section 4.

<launch>
<node pkg="rosserial_python" type="serial_node.py" name="serial_node">

<rosparam>
port: /dev/ttyACM0

</rosparam>
</node>
<param name="robot_description" textfile=˜$(find teegut)/

urdf/teegut.urdf"/>
<rosparam param="ticks_meter">694,5</rosparam>
<node pkg="differential_drive" type="pid_velocity.py"

name="lpid_velocity">
<remap from="wheel" to="lwheel"/>
<remap from="motor_cmd" to="lmotor_cmd"/>
<remap from="wheel_vtarget" to="lwheel_vtarget"/>
<remap from="wheel_vel" to="lwheel_vel"/>
<rosparam param="Kp">276</rosparam>
<rosparam param="Kt">2160</rosparam>
<rosparam param="Kd">8.5</rosparam>
<rosparam param="out_min">255</rosparam>
<rosparam param="out_max">255</rosparam>
<rosparam param="rate">30</rosparam>

</node>
<node pkg="differential_drive" type="pid_velocity.py"

name="rpid_velocity">
<remap from="wheel" to="rwheel"/>
<remap from="motor_cmd" to="rmotor_cmd"/>
<remap from="wheel_vtarget" to="rwheel_vtarget"/>
<remap from="wheel_vel" to="rwheel_vel"/>
<rosparam param="Kp">276</rosparam>
<rosparam param="Kt">2160</rosparam>
<rosparam param="Kd">8.5</rosparam>
<rosparam param="out_min">255</rosparam>
<rosparam param="out_max">255</rosparam>
<rosparam param="rate">30</rosparam>

</node>

<node pkg="differential_drive" type="virtual_joystick.py"
name="virtual_joystick" output="screen"/>

<node name="robot_state_publisher" pkg="robot_state_publisher"
type="state_publisher"/>

<node name="tf_setup" pkg="transformf_setup" type="transform" />

<include file="$(find freenect_launch)/launch/examples/
freenect-xyz.launch"/>

<node pkg="depthimage_to_laserscan" type=depthimage_to_laserscane"
name"depthimage_to_laserscane">
<remap from="image" to="camera/depth/image_rect" />
<remap from="camera_info" to="camera/depth/camera_info" />

</node>

<!--- Run the map server -->
<node name="map_server" pkg="map_server" type="map_server"

args="$(find maps)/map.pgm 0.05"/>

<!--- Run AMCL -->
<include file="$(find amcl)/examples/amcs_diff.launch"/>

<node pkg="move_base" type="move_base" respawn="false"
name="move_base" output="screen">
<rosparam file="$(find teegut)/costmap_commom_params.yaml"
command="load" ns="global_costmap"/>
<rosparam file="$(find teegut)/costmap_common_params.yaml"
command="load" ns="local_costmap"/>
<rosparam file="$(find teegut)/local_costmap_params.yaml"
command="load"/>
<rosparam file="$(find teegut)/global_costmap_params.yaml"
command="load"/>
<rosparam file="$(find teegut)/base_local_planner_params.yaml"
command="load"/>
<remap from="cmd_vel" to="twist"\>

</node>
<node pkg="rvtz" type="rviz" output="screen"/>

</launch>

Fig. 10. The navigation launch file.

obstacle_range: 1.5
raytrace_range: 2.0
footprint: [[-0.19,0.24],[-0.19,-0.24],[0.19,-0.24],[0.328564,-0.32],

[0.553564,-0.19],[0.553564,0.19], [0.328564,0.32], [0.19,0.24]]
#robot_radius: ir_of_robot
inflation_radius: 0.25

observation_sources: laser_scan_sensor

laser_scan_sensor: {sensor_frame: camera_link, data_type: LaserScan,
topic: scan, marking: true, clearing: true}

point_cloud_sensor: {sensor_frame: frame_name, data_type: PointCloud,
topic: topic_name, marking: true, clearing: true

Fig. 11. costmap_common_params.yaml
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developments. The first is regarding the processing
power. The current processor is unable to process three
dimensions data at an acceptable rate. Thus, a better
processor can be used, or once ROS is able to run
across network, the computer can be used to host nodes
with high processing power requirement. In PEM ar-
chitecture, the processing parts, which require high
processing powers, can be placed in an appropriate
computer, while the execution and monitoring can be
handled in on-board mini-PC.

The second is regarding the mapping. The ideal
way to create a map is to start with searching the
most optimum parameters from a set of records and

local_costmap:
global_frame: odom
robot_base_frame: base_link
update_frequency: 5.0
publish_frequency: 2.0
static_map: false
rolling_window: true
width: 6.0
height: 6.0
resolution: 0.05

Fig. 12. local_costmap_params.yaml

global_costmap:
global_frame: /map
robot_base_frame: base_link
update_frequency: 5.0
static_map: true

Fig. 13. global_costmap_params.yaml

TrajectoryPlannerROS:
max_vel_x: 0.2
min_vel_x: 0.05
max_rotational_vel: 0.2
min_in_place_rotational_vel: 0.05

acc_lim_th: 0.05
acc_lim_x: 0.05
acc_lim_y: 0.05

holonomic_robot: false

Fig. 14. base_local_planner_params.yaml

Fig. 15. Virtual Representation of HFTR with Static map

then use the parameters in real-time mapping. The
mapping process should be done indoors within Kinect
sensor range and with sufficient lighting. The mapping
process may be affected by surrounding noise, this
should be further studied.

Fig. 16. Virtual Representation of HFTR with Global Costmap

Fig. 17. Virtual Representation of HFTR with Local Costmap

Fig. 18. Virtual Representation of HFTR with Global and Local
Costmap
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Fig. 19. Sending Navigation Goals through rviz

Fig. 20. Moving Virtual Representation of HFTR in rviz

The last is regarding the navigation. It is impor-
tant to perform experiments with static and dynamic
obstacle avoidance using navigation stack. Currently,
only holonomic and differential drive mobile robots is
supported by navigation stack. A system or package
should be developed for other types of robots with
same or similar function of navigation stack.

IV. CONCLUSIONS

The Robot Operating System software has been
implemented and reconfigured to work with Hu-
man Follower Transporter Robot. The following are
the related packages. The ROS serial package is
required to enable communication through serial
port with Arduino, which controls DC motors. The
differential_drive package can act as a motors
driver for the HFTR, as well as providing odometry
and transform data. Kinect sensor can be utilized with
ROS software; there are drivers for Kinect available
within ROS framework, freenect_launch pack-
age, which include with coordinate frame transform

program associated with Kinect’s shape. ROS frame-
work structure lends a flexibility to change the sensor
data input, it enable streaming two dimension laser
scan data from Kinect sensor. The slam_gmapping
node works well with HFTR, the generated map can be
used directly for navigation purpose without external
changes. Navigation stack is able to be implemented
and reconfigured for HFTR. It can control the move-
ment of the HFTR reasonably well. Despite the unique
mechanical design of the HFTR, ROS is able to
function well with it. Thus it can be concluded that:
ROS framework is generic, which means it can work
with a lot of robot types. The absence of HFTR from
ROS database and library means that the developed
programs can be made into new package for HFTR
in ROS library. Robot model which can be used to
virtually represent the HFTR can be used in rviz. The
models evolution also can be seen as implementation
process of ROS. With better implementation of ROS,
various parameters and data can be included in URDF
file for more complete description, which results in
more detailed model. From the navigation experiments,
it can be concluded that: the navigation stack can be
implemented and reconfigured in HFTR; the navigation
stack can register static map and obstacle; the occu-
pational value in grid map can be seen from global
costmap (wall) and local costmap (obstacle) which
depends on distance from the object (inflation); and,
the navigation pose and goal can be sent through rviz.
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