
CommIT (Communication & Information Technology) Journal 10(2), 63–69, 2016

IMPLEMENTATION OF RSA 2048-BIT
AND AES 256-BIT WITH DIGITAL

SIGNATURE FOR SECURE ELECTRONIC
HEALTH RECORD APPLICATION

Mohamad Ali Sadikin1 and Rini Wisnu Wardhani2
Cryptography Engineering, Faculty of Engineering, National Crypto Institute, Bogor 16330, Indonesia

Email: 1mohamadalisadikin@gmail.com, 2rini.wisnu@stsn-nci.ac.id

Abstract—This research addresses the implementa-
tion of encryption and digital signature technique for
electronic health record to prevent cybercrime such as
robbery, modification and unauthorised access. In this
research, RSA 2048-bit algorithm, AES 256-bit and SHA
256 will be implemented in Java programming language.
Secure Electronic Health Record Information (SEHR)
application design is intended to combine given services,
such as confidentiality, integrity, authentication, and non-
repudiation. Cryptography is used to ensure the file
records and electronic documents for detailed informa-
tion on the medical past, present and future forecasts
that have been given only to the intended patients. The
document will be encrypted using an encryption algo-
rithm based on NIST Standard. In the application, there
are two schemes, namely the protection and verification
scheme. This research uses black-box testing and white-
box testing to test the software input, output, and code
without testing the process and design that occurs in
the system.We demonstrated the implementation of cryp-
tography in SEHR. The implementation of encryption
and digital signature in this research can prevent archive
thievery.
Keywords: Electronic Medical Record; Digital Signature;
Cryptography; Java Programming

I. INTRODUCTION

Medical records based on paper still have some
flaws and problems. Those problems occur ranging
from physical security, requiring storage area, difficult
to transfer or communication the information, easily
damaged and destroyed. If the storage process is not
performed properly, it will complicate the search pro-
cess or the information retrieval. In addition to the
many possible disasters, health record information are
personal data for someone and human life. For that,
we need a solution to resolve the issue.

Received: August 1, 2016; received in revised form: August 10,
2016; accepted: August 11, 2016; available online: August 19, 2016.

The process of manually organising and managing
on paper media has a few shortcomings in the aspect
of information security that is confidentiality, data
integrity, availability, non-repudiation, and authentica-
tion [1]. The electronic health records (EHR) has great
benefits to health services such as primary and referral
service facilities and hospitals.

The perceived benefits are increasing availability
of electronic patient records in hospitals, improving
the efficiency of the health care retrieval process [2],
facilitating retrieval of patient information [3], easy
access to patient information that ultimately help in
clinical decision-making, and reducing operational im-
pact cost and earnings improvement in health care
facilities especially hospitals [4].

The EHR should only be accessed and shared by
authorised healthcare providers such as doctors, nurses,
lab technicians due to its function to record any critical
information for every patient. That critical informa-
tion such as the enforcement of diagnosis, therapy,
avoids allergic reactions and drug duplication [5]. This
practice is consistent with ethical considerations in
the application of information [5] technology, where
all healthcare providers have a moral code that re-
quires the balance between the patient privacy and
the care needs including the access to the records of
patients [6].

A recent research article proposed that Public Key
Infrastructure (PKI), symmetric key and login pass-
word for authentication are used for the security of
the EHR [7]. Based on ISO/TS 18308 standard [8],
the primary purpose of the EHR is to provide a
documented record of care which supports both present
and future care received by the patient from the same or
other clinicians or care providers. This documentation
provides a mean of communication among clinicians

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.
contributing to the patient’s care.

In this paper, EHR was designed and built using
digital signature and file encryption. Digital signature
and file encryption are used not only to solve confi-
dentiality, data integrity, availability, non-repudiation,
and authentication problem but also to prevent robbery,
modification and unauthorised access. Secure Elec-
tronic Health Record Information (SEHR) is a secure
electronic health record which uses RSA 2048 bit [9],
AES 256 bit [10] and SHA 256-bit algorithm that is
implemented in Java programming. The cryptography
aspect is expected to ensure the file records and elec-
tronic documents on patient’s identity, examination,
treatment, action and service given and the authorised
person.

II. FUNDAMENTAL THEORY

A. Electronic Health Record

Electronic Health Record (EHR) is a comprehensive
patient’s health information electronic record which
is an integration of the multiple health information
databases. The record contains patient demographics,
progress notes, problems, medications, vital signs, past
medical history, immunisations, laboratory data and
radiology reports [11].

The EHR includes all information contained in a
traditional health record including a patients health pro-
file, behavioural and environmental information. The
EHR also includes the dimension of time, which allows
inclusion of information across multiple episodes and
providers, which will ultimately evolve into a lifetime
record [12]. The EHR defined here contains all per-
sonal health information belonging to an individual.
Those data are entered and accessed electronically
by healthcare providers over the patient’s lifetime.
The EHR contains data beyond the acute inpatient
situations, including all ambulatory care settings at
which the patient receives care [13]. Based on the
Regulation of the Minister of Health about the filling
of medical records, it is stated that legal sanction can
be given to the hospital or health workers who fail to
pay a close attention and commit mistakes in filling
the pages of medical records [14].

B. Digital Signature

Cryptography focuses on the issue of maintaining
the confidentiality of information by using methods
and mathematical techniques that include confiden-
tiality, the data integrity, entity authentication, and
data origin authentication [15]. RSA (Rivest, Shamir,
Adleman) algorithm is an asymmetric cryptographic
invented by Rivest, A. Shamir, and L. Adleman in
1997 [15]. In this research, RSA algorithm is applied

as a digital signature scheme. The RSA algorithm is
used due to its fast computation compared to ECDSA
and DSA [16].

In the process of signature generation and verifi-
cation, an entity A marks the message m ∈ M.
The entity B can verify A’s signature and return the
message m from the signature. The procedure is of the
following (see Fig. 1).

1) Key Generation in RSA Digital Signature.
• Determine randomly two large prime num-

bers p and q.
• Compute n = pq and ∅ = (p− 1)(q − 1).
• Choose a random integer e in 1 < e < ∅,

so that gcd(e,∅) = 1.
• Use the extended Euclidean algorithm to

compute d where 1 < d < ∅, so that
ed ≡ 1(mod∅)

• Public key: (n, e) and the private key: d.
2) Signing

• Compute m̃ = R(m), an integer in the range
of [0, n− 1]

• Compute s = m̃2mod(n)
• A’s digital signature for m: s.

3) Verification
• Getting A’s public key: (n, e)
• Compute s′ = s̃e mod(n).

Verification: if the value of s = s′ then the digital
signature is authentic.

C. Advanced Encryption Standard

Advanced Encryption Standard (AES) is a block
cipher algorithm which is intended to replace DES
algorithm as a standard and is recognized for some
applications [18]. AES is also a standard algorithm
for data encryption and decryption (Eric Conrad, Ad-
vanced Encryption Standard). In this research, AES is
used because due to its advantages to secure documents
and is proven to be safe based on NIST Standard [10].
The AES algorithm is outlined in Fig. 2.

Fig. 1. The Digital Signature Scheme [17].

64

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.

For the decryption process, inverse process is used
at the transformation stage. The process starts from
InvSubBytes, InvShiftRows, and ends in InvMix-
Columns. Because of this, S-box for encryption and
decryption are different. In the decryption process, the
used S-box is the inverse S-box.

D. Secure Hash Algorithm 256 bit

Secure Hash Algorithm (SHA) is used to generate
hash value from the message M with the length l bit,
where 0 ≤ 1 ≤ 264. The algorithm is

1) Message Schedule for 64 words 32-bit. Words
of the message schedule are labeled as
W0,W1, . . . ,W6.

2) Eight 32-bit variables labeled as a, b, . . . , h.
3) The hash has value of eight 32-bit words are

labeled as Hi
0, H

i
1, . . . ,H

i
7.

The preprocessing consists of three steps, namely
padding of the message M , split up the message into
message blocks, and set the initialization hash value
H0; then, proceed with to the SHA-256 computing
process.

III. SECURE ELECTRONIC HEALTH RECORD
APPLICATION

A. General Description The Application

Secure Electronic Health Record application is an
application that applies the concept of digital signa-
tures using RSA and SHA-256 algorithms and AES-
256 block cipher algorithm for the encryption process.

The application will be implemented in Java pro-
gramming language that guarantees the integrity, con-
fidentiality, authentication and non-repudiation. Java
language is used because it is more mobile, multi-
platform, object-oriented, portable, and open source.
It has two schemes which are the protection scheme
and verification scheme. It is assumed that the pro-
tection and verification processes are contained in one

Fig. 2. Encryption Process Diagram [19].

application. The protection step is on the tab SIGN
& ENCRYPT and the verification process is on the
VERIFICATION tab. The details of the two processes
are of the following.

1) Signing and Encryption Scheme: On the protec-
tion schemes, two processes are running: the securing
process (encryption) and the authenticating process
(signing). The generation of the private key and the
public key is done before the encryption and signing
process executed. The scheme of securing and authenti-
cating documents is done in a simple manner following
the scheme in Fig. 3.

2) Verification Scheme: The verification process is
done by reversing the signing process (see Fig. 4). The
file is firstly decrypted using a key that has been used
previously in the encryption process. After this process,
the file is hashed and then digital signature calculations
using a public key that has been generated and stored
in the protection stage is performed. The verification
process is the process of calculating the digital sig-
nature value of the hashed document using the public
key. If appropriate, it will display a notification that
the document is successfully decrypted and proven to
be authentic. If it does not match, the notification will
show that the document was not authentic or has been
a change.

B. Implementation of Secure Electronic Health Record
Application (SEHR)

The implementation of digital signature File En-
cryption includes steps using SEHR application. The
steps in the implementation of SEHR application are
as follows:

1) Login process: When the user runs the applica-
tion, the Welcome message will appear to start
logging the process (see Fig. 5). The user needs
to fill the USERNAME and PASSWORD fields.
By pressing the LOGIN button, the login process

Fig. 3. The Encryption and Signing Scheme

65

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.

Fig. 4. The Verification Scheme

Fig. 5. The Login Page of the System.

will be executed. The application will verify the
username and password submitted by the user. If
the password corrects, the application main view
will be displayed. However, if the username,
password, or both incorrect, then notification
appears and the user cannot access to the next
application process. Following is a snippet from
the source code of the Class login():
String UserName = jTextField1.getText();
String Password = jPasswordField1.getText();
if(UserName.equals("dikin")&&(Password.equals("123456"))){

JOptionPane.showMessageDialog(null,"LOGIN SUCCESS" + " \n
WELCOME TO Electronic Medical Record Application" + " \n
Application by: MOHAMAD ALI SADIKIN" + " \n
SEKOLAH TINGGI SANDI NEGARA" + " \n
1413101075", "file", JOptionPane.INFORMATION_MESSAGE);
dispose(); new latjab().setVisible(true);

} else {
JOptionPane.showMessageDialog(null,
"WHO ARE YOU ?? I DONT KNOW YOU (-_-’)",
"ERROR !!",JOptionPane.ERROR_MESSAGE);}

}

2) Generate RSA Key: The user generates the key
by pressing Generate RSA KEY button (see
Fig. 6). In the application, a secure random is
used to generate RSA private key and public
key parameters. Furthermore, by pressing the
SAVE button, the private key and public key
will be stored on the file extension *.txt and
a notification that the private key and public key
have been successfully generated and stored is
displayed. The folowing is a snippet from the
source code of Class RSA and the view of
application when RSA key generated.

public class RSA {
private BigInteger p;
private BigInteger q;
private BigInteger N;
private BigInteger phi;
private BigInteger e;
private BigInteger d;
private int bitlength = 1024;
private int blocksize = 256; // blocksize in byte
private SecureRandom r;
BigInteger pesan;
String Privat;
String Public;
string g;
BigInteger s, v;
String y;
public RSA(){

r = new SecureRandom();
p = BigInteger.probablePrime(bitlength, r);
q = BigInteger.probablePrime(bitlength, r);
N = p.multiply(q);
byte [] byt=p.toByteArray();
phi= p.subtract(BigInteger.ONE).multiply(

q.subtract(BigInteger.ONE));
e = BigInteger.probablePrime(bitlength/2, r);
while(phi.gcd(e).compareTo(BigInteger.ONE) > 0 &&

e.compareTo(phi) < 0){
e.add(BigInteger.ONE);

}
d = e.modInverse(phi);
Public=e.toString();
Privat=d.toString()

}
public RSA (BigInteger e, BigInteger d, BigInteger N){

this.e = e; this.d = d; this.N = N;
}

Fig. 6. The Generated RSA Key.

3) Signing and Encryption: The user needs to input
the document in the field FILE to start the
signing and encrypting process (see Fig. 7). Fur-
thermore, the user inputs the key in the field IN-
PUT KEY. To encrypt the document user needs
to press the ENCRYPT button. When the user
pressing SIGN button, signcrypt method will
be running and the document has been signed
and encrypted. Following is a snippet from the
source code of Class signcrypt and the
application view when the application executes
the signing and encryption process. The output
of this process stored in a location where the
document was taken with a different file name
with the original file. Signed and encrypted files
are stored as a file extension *.txt. Further-
more, these files will be used in the verification
process.
Class signcrypt{Private void jButton4ActionPerformed

(java.awt.event.ActionEvent evt)} {
String kunciaes=jTextField2.getText();
File file = new File(NamaFile);
try {

pesanstring = FileUtils.readFileToString(file);
}
catch(IOExceptionex){

Logger.getLogger
(latjab.class.getName()).log(Level.SEVERE, null, ex);

66

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.

}
try{

pesanterenkrip=AES.encryptAES(pesanstring,kunciaes);
}
catch(Exceptionex){

Logger.getLogger
(latjab.class.getName()).log(Level.SEVERE,null,ex);

}
String aku= "e:/LSM1";
File file1=new File(aku,"encryptedaes.txt");
try{

FileUtils.write(file1, pesanterenkrip);
}
catch(IOExceptionex){

Logger.getLogger
(latjab.class.getName()).log(Level.SEVERE, null, ex);

}
}
private void jButton5ActionPerformed
(java.awt.event.ActionEvent evt){
try {b.encrypt(a.k);
JOptionPane.showMessageDialog(null,

"FILE SUCCESSFULLY SIGNED AND ENCRYPTED",
"DONE",JOptionPane.INFORMATION_MESSAGE);}

catch (IOException ex) {
Logger.getLogger(latjab.class.getName()).

log(Level.SEVERE,null,ex);
}

}

4) Verification: The implementation of verification
scheme is made separately with the protection
schemes even though they are contained in a
single application (see Fig. 8). To run the ver-
ification process, it takes three inputs which are
a document file that has been encrypted (file
results from encryption process with extension
*.txt), the signature file (file output from
signing process with extension *.txt), and
the key to decrypt the encrypted file. In this
process, the user is asked to input encrypted
file documents, digital signature, decryption keys
and then press the Verify button. After that, the
application will verify the digital signature. The
output of this process is a notification whether
the verified decrypted document is same as the
original. Following is a snippet from the source
code of Class verification and the application
view when the verification process is executed.

Fig. 7. Signing and Encryption on SEHR Application.

On verification process source code pieces and
figure, it can be seen that in order to verify the
documents it takes three documents which are
the decrypted document, signature, and public
key. If one among those there is not appropriate,
then the document will not be verified. It can be
stated that the verification failed.
Private void jButton10ActionPerformed

(java.awt.event.ActionEvent evt)
{
String kunciaes=jTextField5.getText();
try{

pesandekrip=AES.decryptAES(pesanterenkrip, kunciaes);
}
catch (Exception ex){

Logger.getLogger(latjab.class.getName()).
log(Level.SEVERE, null, ex);

}
System.out.println("pesan hasil dekripsi = "+ pesandekrip);}
private void jButton8ActionPerformed

(java.awt.event.ActionEvent evt) {
try{

b.dekrip();
}
catch (IOException ex){

Logger.getLogger(latjab.class.getName()).
log(Level.SEVERE, null, ex);

}
if (b.v.equals(a.k)){

JOptionPane.showMessageDialog(null,
"DOCUMENT IS AUTHENTIC \n"

+ "FILE SUCCESSFULLY DECRYPTED \n",
"VERIFIED", JOptionPane.INFORMATION_MESSAGE);

} else {
JOptionPane.showMessageDialog(null,

"DOCUMENT IS NOT AUTHENTIC\n" +
"FILE UNSUCCESSFULLY DECRYPTED \n", "UNVERIFIED",

JOptionPane.ERROR_MESSAGE);
}

}

IV. RESULT

A. Black-box Testing

The black-box approach is a testing method in which
the test data are derived from the specified functional
requirements without regard to the final program struc-
ture [20]. It is also termed data-driven, input/output
driven [21], or requirements-based testing [22]. In the
current research, the black-box testing activities are
presented in Tables I and II. The result of black-box
testing shows that all output are exactly match the
expected outputs.

Fig. 8. Verification on SEHR Application.

67

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.

TABLE I
THE BLACK-BOX TESTING ON SIGNING AND ENCRYPTION.

No Given Input Expected Output

1 User input username,
password, and press
LOGIN button

The system checks the username and
password. If the username and pass-
word are approperiate according to the
database, it will go to the application

2 User press generate
RSA KEY button

Application show key pair of RSA key

3 User press SAVE
button

The system save key pair on the
database

4 User press HASH
button

The application show hash value of
message and save it into database

5 User input key and
press ENCRYPT
button

The application show the key, encrypt
the message with AES-256 bits and save
the cipher text into database

6 User press SIGN
button

The application will show notification
that file is succesfully encrypted and
signed. Then signature is saved into
database

TABLE II
THE BLACK-BOX TESTING ON VERIFICATION.

No Given Input Expected Output

1 User press BROWSE
button

The application show the encrypted and
signed file.

2 User input key and
press decrypt button

Application show the key, decrypt the
file and saved it into database.

3 User press VERIFI-
CATION button

The system show notification that file is
succesfully decrypted and is authentic.

TABLE III
TESTING OF CORRECTNESS ASPECT

Filename #lines of code

Folder/src
AES.java 68
RSA.java 127
SHA.java 40
Login.java 150
Main.java 600

Folder/nbproject
Build-impl.xml 1430
Project.xml 10
Private.xml 5

Total of Lines Code 2430
Total of KLOC 2.430

B. White-box Testing

The white-box testing is testing that takes the in-
ternal mechanism of a system or component into ac-
count [23]. In the development of the current software,
the white box testing is done by using Kilo-Lines-of-
Code calculation mechanism. For that, first, calculating
the lines of code for each file that containing program
code. Amount of code in each file are presented in
Table III.

Doty Model is not used because total of code are
less than 9000 lines. Folowing table are the results
of correctness calculations testing using the Waltson-

TABLE IV
THE METHODS OF CORRECNESS CALCULATION [25].

Method Fomulas

Walston-Felix Model E = 5.2×KLOC0.91

Bailey-Basili Model E = 5.5 + 0.73×KLOC1.16

Boehm simple Model E = 3.2×KLOC1.05

Doty model for KLOC > 9 E = 5.288×KLOC1.047

Felix, Bailey-Basili and Boehm methods in Table IV.
The obtained error density value was 11.67, 7.54, and
8.29 with size of project less than 16,000 lines of code,
then the value of the error density is in the range 0-40
per KLOC error as stated by Steve McConnell [24].
Therefore, it can be concluded that the application of
Secure Electronic Health Record Using Java Program-
ming Languages has meet the standards of software
quality for correctness aspect.

V. CONCLUSIONS

This work has demonstrated the implementation of
the encryption Secure Electronic Health Record. The
implementation is performed using Java programming
implementation and it has been tested. The result of
black-box testing shows that all output exactly match
what are expected. The white box testing shows that
the obtained error density value was 11.67, 7.54 and
8.29 with the size of the project of less than 16000
lines of code.

REFERENCES

[1] M. H. Setiawan, “Perancangan secure electronic
health record information system (studi kasus:
Rumah sakit pusat angkatan darat gatot soe-
broto),” Bachelor Thesis, Sekolah Tinggi Sandi
Negara, 2011.

[2] L. Wilcox, “Using the electronic medical record
to keep hospital patients informed,” Sciences,
vol. 10, no. 4, 2010.

[3] J. L. Schnipper, J. A. Linder, M. B. Palchuk,
J. S. Einbinder, Q. Li, A. Postilnik, and B. Mid-
dleton, ““smart forms” in an electronic medi-
cal record: documentation-based clinical decision
support to improve disease management,” Journal
of the American Medical Informatics Association,
vol. 15, no. 4, pp. 513–523, 2008.

[4] J. Spruell, D. Vicknair, and D. S., “Xxx,” XXX,
2016.

[5] D. Garets and M. Davis, “Electronic medical
records vs. electronic health records: yes, there
is a difference,” Policy white paper. Chicago,
HIMSS Analytics, pp. 1–14, 2006.

68

Cite this article as: M A Sadikin and R W Wardhani, “Implementation of RSA 2048-bit and AES 256-bit with
Digital Signature for Secure Electronic Health Record Application”, CommIT (Communication & Information
Technology) Journal 10(2), 63–69, 2016.

[6] B. Kozier, Praktik keperawatan profesional: Kon-
sep dan perspektif. Jakarta, Indonesia: EGC,
2007.

[7] R. Zhang and L. Liu, “Security models and
requirements for healthcare application clouds,”
in 2010 IEEE 3rd International Conference on
Cloud Computing. IEEE, 2010, pp. 268–275.

[8] TS 18308 Health Informatics-Requirements for
an Electronic Health Record Architecture, ANSI
ISO Std., 2004.

[9] Recommendation for Transition the Use of Cryp-
tography Algorithms and Key Lenghts., NIST Std.
NIST Special Publication 800-131A, 2011.

[10] Guideline for Implementing Cryptography In the
Federal Government., NIST Std. NIST Special
Publication 800-21A, 2005.

[11] NCH. (2006) Electronic health records overview.
Healthcare Information and Management
Systems Society. Download on October 15,
2011. [Online]. Available: http://www.himss.org/
electronic-health-records-overview-nih-national-center-research-resources

[12] D. T. Mon, “Defining the differences between the
cpr, emr, and ehr.” Journal of AHIMA/American
Health Information Management Association,
vol. 75, no. 9, pp. 74–5, 2004.

[13] WHO, Electronic health records: manual for de-
veloping countries. World Health Organization:
Manila: WHO Regional Office for the Western
Pacific, 2006.

[14] “Peraturan menteri kesehatan republik indone-

sia nomor 269/menkes/per/iii/2008 tentang rekam
medis.”

[15] A. J. Menezes, P. C. Van Oorschot, and S. A.
Vanstone, Handbook of Applied Cryptography
(1992 CRC Press). ISBN, 1997.

[16] S. P. Singh and R. Maini, “Comparison of data
encryption algorithms,” International Journal of
Computer Science and Communication, vol. 2,
no. 1, pp. 125–127, 2011.

[17] Sumarkidjo and et al, “Jelajah kriptologi,” 2007,
national Crypto Agency.

[18] W. Stalling, Cryptography and Network Security,
4th ed. Prentice Hall, 2005.

[19] R. Munir, “Otentikasi dan tanda tangan dig-
ital,” Departemen Teknik Informatika, Institut
Teknologi Bandung., Tech. Rep., 2004.

[20] W. E. Perry, A Standard for Testing Application
Software, 1990. Auerbach Publishers, 1989.

[21] G. J. Myers, C. Sandler, and T. Badgett, The art
of software testing. John Wiley & Sons, 2011.

[22] W. C. Hetzel and B. Hetzel, The complete guide
to software testing. John Wiley & Sons, Inc.,
1991.

[23] IEEE Standard Glossary of Software Engineering
Terminology, IEEE Std., Dec 1990.

[24] S. McConnell, Code complete. Pearson Educa-
tion, 2004.

[25] R. S. Pressman, Software engineering: a practi-
tioner’s approach, 7th ed. Palgrave Macmillan,
2010.

69

http://www.himss.org/electronic-health-records-overview-nih-national-center-research-resources
http://www.himss.org/electronic-health-records-overview-nih-national-center-research-resources

	INTRODUCTION
	FUNDAMENTAL THEORY
	Electronic Health Record
	Digital Signature
	Advanced Encryption Standard
	Secure Hash Algorithm 256 bit

	SECURE ELECTRONIC HEALTH RECORD APPLICATION
	General Description The Application
	Signing and Encryption Scheme
	Verification Scheme

	Implementation of Secure Electronic Health Record Application (SEHR)

	RESULT
	Black-box Testing
	White-box Testing

	CONCLUSIONS

