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Abstract—This article discusses a method within the
area of brain-computer interface. The proposed method is
to use the features extracted from the Electroencephalo-
graph signal and a three-hidden-layer artificial neural
network to map the brain signal features to the computer
cursor movement. The evaluated features are the root
mean square and the average power spectrum. The
empirical evaluation using 200 records taken from 2003
BCI Competition dataset shows that the current approach
can accurately classify a simple cursor movement within
92.5% accuracy in a short computation time.
Keywords: Electroencephalography (EEG); Brain Com-
puter Interface (BCI); Fast Fourier Transform (FFT)

I. INTRODUCTION

Brain Computer Interface (BCI) is a communication
system that translates the direct action of the user’s
brain activity into signals. BCI can be used to spell,
browsing the Internet, controlling robotic devices, or
perform other tasks with thoughts alone [1–3]. BCI
that there is often used to present information in the
signal to assess the state of the brain of subjects with
different categories of EEG signals.

Feature extraction methods and an accurate identifi-
cation corresponding specific users and specific appli-
cation requirements might be a problem for EEG-based
communication in order to be efficient. Slow Cortical
Potential (SCP) by using the mu and beta rhythm is
used as input for BCI [4–6].

EEG signals from a person, generally, consist of the
wave components that can be differentiated according
to their frequency ranges, i.e., alpha waves in the
range of 8–13 Hz and often appear in the waking
state, eyes closed, and relaxed conditions, beta waves
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in the range of 14–30 Hz and often arises when
the person is thinking, theta waves in range of 4–
7 Hz and usually occurs when someone is in a light
sleep, sleepy or stressed, delta waves in the range of
0.5–3 Hz and often present in the person in a state
of deep sleep. EEG signal analysis has been widely
represented in the frequency domain and this has been
done by researchers. Representation in the frequency
domain, among others, for the identification of the
waves on the EEG signals using Fourier Transform
and Neural Network to distinguish between normal and
epilepsy [7].

Reference [8] studied BCI by using only two elec-
trode channels, Channel 4 and 6, four features from
the combination of the slow cortical potentials (SCPs),
the wavelet transform for the feature extractions, and
the neural network for classification. They were able
to classify the BCI 2003 competition data at 92%
of the level of accuracy. Using the same dataset and
classification methods, but different feature extraction
method, that was the wavelet packet decomposition,
Ref. [9] was able to classify the brain signals at 91%
of the level of accuracy.

In this study, the first to present is method of
Fast Fourier Transform (FFT) to measure the level
of violence EEG signal. Signal was approached by
calculating the Root Mean Square (RMS) and use
the Average Power Spectrum. The pattern of EEG
signals that are recognized are subject of imagine
cursor movement upward and downward movement of
the cursor.

This article is decomposed into four sections. Sec-
tion II presents the data used in the current study and
the data feature extraction methods. Section III dis-
cusses the developed artificial neural network model,
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and shows some examples of the EEG features, and the
performance of the current brain-computer interface
method. Finally, Section IV briefly restates the research
problem and summarizes the current findings.

II. RESEARCH METHOD

A. Data

The data for the current investiation are obtained
from 2003 BCI competition. They were taken from
healthy subjects from the University of Tuebingen
in Germany [10, 11]. During the data acquition, the
subjects were asked to move cursor using their brain
signals. Each experiment lasted for 6 s. Each channel
contained 896 sample data.

During recording, the subjects were asked to move
the cursor upward and downward. Each experiment
lasted for 6 s. There are 896 samples in each chan-
nel. The training data for the experiments contained
135 records of Class 0 and 135 records of Class 1.
The testing data data are 293 records.

B. Feature Extraction using Fast Fourier Transforma-
tion

1) Root Mean Square: The Root Mean Square
(RMS) is used to measure the signal strength. The
RMS average is a statistical description to measure
the magnitude of a varying signal. The RMS is useful
when the signal contains positive and negative vari-
ations, e.g., the sinusoid signal. The RMS is widely
used in the signal processing for various applications.
The RMS is defined by

RMS =

√∑M
i=1 |Xi|2
M

, (1)

where |�| denotes the modulus, Xi is the ith com-
ponent of the signal x(t) in the frequency domain.
Figure 2 shows the example of the spectra of the signal
x(t).

2) Average Power Spectrum: In addition RMS, the
EEG signal is also featured with its average power

Fig. 1. The montage of Electroencephalograph electrode following
international system of 10-20.

spectrum. The quantity is denoted by P and is com-
puted by

Px =
1

2T
lim

T→∞

∫ T

−T
[x(t)]2 dt. (2)

Prior computing its average power spectrum, the signal
is passed through the Hamming window, which is
defined by:

w(n) = 0.54− 0.46 cos

(
2πn

N − 1

)
, (3)

where N is the signal length and n is the index within
the range of [0, N − 1].

III. RESULTS AND DISCUSSION

A backpropagation neural network model is estab-
lished to map the features reduced from the EEG
signal to the cursor movement in upward or downward
directions. In the current work, the features are the
signal root mean square obtained by using Eq. (1) and
the average power spectrum obtained by using Eq. (2).
The neural network consists of three hidden layers
having 8, 17, and 15 units of neurons, respectively.
Figure 3 shows the neuron architecture.

The current study evaluates 200 EEG signals of
single channel (C3) splitted equally into two datasets
for the training and testing phases. Each signal contains
1409 data point. Some examples of the EEG signal fea-
tures and the cursor movements are shown in Tables I
and II.

TABLE I
SOME EXAMPLES OF THE ROOT MEAN SQUARE (RMS) VALUES

OF EEG SIGNALS AND THE RELATED CURSOR MOVEMENTS.

Cursor Movement RMS of Some Signals

1 2 3 4 5

Upward 1876 1824 2009 2718 2716
Downward 3524 3525 4245 5495 5516

Fig. 2. The example of the spectra of the EEG signal.
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Fig. 3. The backpropagation neural network architecture that re-
ceives the input data of the EEG signal root mean square and average
power spectrum and produces the output of the cursor directions:
upward or downward. The network consists of three hidden layers
with 8, 17, and 15 units of neurons.

TABLE II
SOME EXAMPLES OF THE AVERAGE POWER SPECTRA (APS)
VALUES OF THE EEG SIGNALS AND THE RELATED CURSOR

MOVEMENTS.

Cursor Movement APS of Some Signals

1 2 3 4 5

Upward 8.78 9.03 8.15 7.15 8.65
Downward 6.33 8.88 5.60 3.38 7.81

The data for the EEG features and cursor movements
are used to train the ANN model. During the training
process, the learning rate parameter was set to 0.1
and the optimal model was concluded when the model
mean-squared error (MSE) reached a value below
1.0 × 10−3. The number of hidden layers was also
optimized.

The analysis results are presented in Table III. The
results suggest that the highest classification accuracy
is obtained by using three-hidden-layer ANN model.
The accuracy can reach the level of 92.5%. The model
also has very low mean square error in order of
1.0 × 10−3. However, it requires a slightly longer
computational time.

IV. CONCLUSIONS

This study discusses a method to control the com-
puter cursor movement using a brain-computer in-

Fig. 4. The reduction of the mean-squared error during iteration for
the ANN model having three hidden layers.

TABLE III
A COMPARISON OF THE PERFORMANCE OF THE NEURAL
NETWORK FOR VARIOUS NUMBER OF HIDDEN LAYERS.

Indicator The Number of Hidden Layers

1 2 3

Time (s) 32 60 65
Iteration 1000 1000 563
MSE 1.48× 10−1 2.80× 10−2 1.00× 10−3

Accuracy (%) 79.0 83.0 92.5

terface. It uses the data of the brain signal and a
three-hidden-layer neural network to map the signal
features and the cursor movement. Only a simple
cursor movement is studied, upward and downward.
The brain signal is extracted for their unique features
and is represented using the root mean square and
the average power spectrum. The method is evaluated
empirically using the data of BCI 2003 competition.
The work also studies the optimum number of the
hidden layer. The empirical evaluation suggests that
the use of the three-hidden-layer neural network is the
most optimum where the classification accuracy can
reach the level of 92.5% within a short computation
time and a low mean square error.
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