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Abstract—Energy efficiency in home appliances is a
critical area of research that addresses the growing
demand for reducing energy consumption. The rapid
growth in artificial intelligence has prioritized the devel-
opment of advanced methods to improve sustainable en-
ergy consumption, particularly by optimizing the energy
efficiency of home appliances. The research introduces a
novel deep learning-based framework to enhance energy
efficiency in home appliances by leveraging insights from
Indoor Air Quality (IAQ) metrics. Unlike conventional
energy management approaches, which face challenges
such as limited datasets, computational inefficiencies,
and a lack of generalizability, the research incorporates
advanced preprocessing and augmentation techniques.
Specifically, a hybrid Synthetic Minority Over-sampling
Technique - Edited Nearest Neighbors (SMOTE-ENN)
approach addresses class imbalance, while Z-score nor-
malization ensures consistent feature scaling. Among
the evaluated models, the Bidirectional Gated Recur-
rent Unit (GRU) and the Stacked Long Short-Term
Memory (LSTM) stand out, achieving exceptional val-
idation accuracies of 99.81% and 99.64%, respectively,
demonstrating superior generalization. This framework
uniquely integrates IAQ data to optimize energy usage
dynamically, showcasing how environmental factors such
as CO2, humidity, and temperature can inform sus-
tainable energy practices. These findings underscore the
transformative potential of deep learning in fostering eco-
friendly innovations for smart home energy management.
They show the broader potential for integrating artificial
intelligence-driven approaches into energy policies and
sustainability strategies, enabling more effective reduc-
tions in residential energy consumption and combating
climate change.

Index Terms—Deep Learning, Home Appliances, En-
ergy Efficiency, Air Quality Level (AQL)
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I. INTRODUCTION

S INCE the 21st century began, the world has
experienced significant growth in global energy

consumption across almost all regions. It has been
observed that energy consumption often increases due
to factors such as economic growth, demographic ex-
pansion, and higher electricity usage per capita [1]. Op-
timizing the efficiency of household appliances plays
a crucial role in mitigating this rise in energy demand
because of its contribution of over 30% by residential
consumers in certain nations. It also addresses both
the economic and environmental impacts of rising
energy consumption, which signifies the importance
of sustainable practices in residential energy manage-
ment [2]. Moreover, such improvements also contribute
to reducing pollution, in addition to their individual
contributions to climate change. In fact, an energy-
efficient home integrates some advanced technologies
and designs that lessen the use of energy and maintain
the same level of safety, convenience, comfort, and
visual attractiveness as traditional homes [3]. Figure 1
displays the percentage of energy consumed by home
appliances.

Globally, policies aimed at enhancing energy ef-
ficiency provide significant benefits to both energy
suppliers and consumers, yielding environmental, so-
cial, and economic advantages. Efficient energy use is
essential for strengthening energy supply amid rising
demand and economic expansion. It includes advance-
ments in energy management to mitigate peak energy
demands, optimize the usage of household appliances,
and develop increasingly efficient appliances [5]. Par-
ticular importance is placed on improving the effi-
ciency of heating and cooling systems, which consti-
tute significant energy loads within residential settings.
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Fig. 1. Energy contributions by different home appliances to
highlight their share in total residential energy consumption [4].

The Air Quality Index (AQI) also serves as a crucial
metric for optimizing the performance and energy
efficiency of household appliances. Increased levels of
pollutants, such as dust, can affect the effectiveness
of air purifiers and fans, which require adjustments to
maintain optimal Indoor Air Quality (IAQ). Similarly,
higher CO2 levels, indicative of increased occupancy,
may require optimal use of heating, ventilation, and
lighting systems for efficient operation [6]. Analyz-
ing past IAQ index data enables the identification of
patterns and correlations, which facilitate personalized
recommendations to optimize appliance performance
by considering air quality conditions. Thus, using
an IAQ index will help people to predict how the
appliances will perform and aid people to plan ahead
to keep them working efficiently in different indoor
conditions [7].

There are various conventional techniques to en-
hance the energy efficiency of home appliances. They
involve the implementation of energy-efficiency stan-
dards, the improvement of appliance design, and the
promotion of energy-efficient technologies. However,
these methods also face challenges in terms of the
complexity of appliance design, resistance to stan-
dards and regulations from manufacturers, and the
influence of consumer behaviour [8]. To address these
issues, deep learning provides a promising solution by
optimizing appliance design through data-driven in-
sights. Moreover, deep learning algorithms can identify
correlations and patterns by analyzing large datasets
on appliance performance, energy consumption, and
IAQ that traditional methods may overlook. Hence, it
enables the development of more efficient appliance
designs that not only save energy but also contribute
to improved IAQ [9].

Several studies have demonstrated the contribution

of machine and deep learning techniques to the energy
efficiency of home appliances. Previous researchers
have proposed an Artificial Intelligence-based Energy
Management Model (AI-EMM) for green buildings
to prioritize comfort and safety of users, along with
energy efficiency. They have utilized a universal in-
frared communication system and a Long Short-Term
Memory (LSTM) model to optimize energy consump-
tion, emphasizing airside design optimization of the
Heating, Ventilation, and Air Conditioning (HVAC)
system to display both economic and environmental
benefits. Green buildings benefitted from the AI-EMM
compute high-performance ratio of 94.3%, reduced en-
ergy consumption of 15.7%, accuracy (97.4%), energy
management level (95.7%), and prediction accuracy
(97.1%) [10]. Another research has used correlation
analysis to collect data to discard redundant sensors
and focused on optimizing Internet of Things (IoT)
system design for smart homes. It has used data
analysis and prediction techniques to enhance energy
efficiency by correlating heterogeneous IoT sensor
data and proposed a machine learning-based intelli-
gent service model, which is evaluated using Root
Mean Squared Error (RMSE). The results indicate that
the gradient-boosting regressor is the most effective,
achieving an RMSE of 22.29 [11].

Additionally, various architectures of Deep Recur-
rent Neural Networks (DRNNs) are examined. Those
are tailored for medium- and long-term energy demand
predictions, specifically for heating and electricity con-
sumption at a 1-hour resolution. In previous research,
the proposed DRNN model outperforms the Support
Vector Machine (SVM) and Gradient Boosting (GB)
regression models by 5.4% and 7.0%, respectively, in
terms of energy forecasting accuracy. A novel model is
also proposed, which consists of three components, i.e.,
smoothing, which employs a Kalman filter for elimi-
nating the noise from data, optimization to minimize
the cost error in real-time data by using firefly and
genetic algorithms, and control to manage the distri-
bution of energy for lightning, temperature, and others,
efficiently using Mamdani fuzzy logics. The previous
researchers also compare their work with the existing
techniques and find that their model outperforms and
highlights the importance of using optimizers for en-
ergy efficiency. It improves user comfort along with
the impact of adaptive controllers to overcome incor-
rect Proportional–Integral–Derivative (PID) controller
selections [12].

Then, previous research has sourced data from Kag-
gle, which comprises 29 features to focus on the
minimal consumption of energy using various machine
learning models, such as LSTM, along with opti-
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mization techniques like genetic algorithm and Grey
Wolf Optimization (GWO) to fine-tune hyperparam-
eters. While evaluating, GWO-LSTM highlights its
superior performance, showcasing exceptional predic-
tive capabilities with minimal errors [13]. Another re-
search has used One Dimensional Deep Convolutional
Neural Network, LSTM, and scheduling algorithm to
extract features, load forecasting based on features that
have been extracted, and optimized appliance operation
times, respectively, to develop an energy consumption
control system for smart homes. It validates the model
through simulation scenarios with authentic datasets,
which demonstrate its effectiveness in meeting energy
demands without requiring additional energy sources.
It finds that the proposed system displays advancement
in smart home energy management [14]. Another re-
search has explored deep learning techniques for air
quality forecasting, focusing on Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN),
LSTM, and spatiotemporal networks for modelling
nonlinear spatiotemporal features. It also discusses
challenges such as overfitting and the practical impli-
cations for real-world deployment [15].

Although existing research has made significant
strides in developing models to enhance energy effi-
ciency in smart rooms, several challenges and limi-
tations persist. There is often a lack of consideration
for the substantial computational time required to train
these models, which can impact practical implementa-
tion. Previous researchers have also encountered chal-
lenges related to the availability of limited datasets,
leading to potential biases or issues with generaliz-
ability. Furthermore, data inconsistency across different
sources poses a significant challenge, affecting the
reliability and accuracy of the models. Addressing
these challenges is crucial for advancing the field and
developing more effective strategies for enhancing the
energy efficiency of home appliances in smart rooms.

Moreover, even though existing studies have ex-
plored various methods to optimize energy efficiency in
residential settings, the integration of IAQ as a critical
factor remains underexplored. The research bridges
that gap by incorporating IAQ parameters, such as CO2
levels, humidity, and temperature, into a novel deep
learning framework, enabling dynamic and context-
aware energy management. By employing advanced
models like Bidirectional Gated Recurrent Unit (GRU),
Stacked LSTM, and others, the researchers capture
both short-term and long-term temporal dependencies,
ensuring accurate predictions of appliance performance
under varying environmental conditions. The use of a
hybrid Synthetic Minority Over-sampling Technique -
Edited Nearest Neighbors (SMOTE-ENN) technique to

address class imbalance further enhances the reliability
and generalizability of the results. This approach not
only highlights the synergy between IAQ and energy
efficiency but also sets a foundation for scalable and
adaptive energy solutions in smart homes. Such work
underscores the transformative potential of integrating
IAQ metrics into sustainable energy management prac-
tices, paving the way for smarter, healthier, and more
energy-efficient residential environments.

A. Research Coverage

The research aims to develop an automated system
that utilizes deep learning techniques to identify and
classify Air Quality Level (AQL) based on multiple
parameters, including indoor AQI. The contribution to
performing the research is as follows:

1) Initially, a dataset consisting of approximately 1.3
Lakh records with seven attributes, such as CO2
levels, humidity, Passive Infrared (PIR), temper-
ature, IAQ index, and AQL of rooms. The data
are collected from two rooms of 415 (Data I) and
776 (Data II).

2) Subsequently, the data are preprocessed to check
for null or missing values, followed by graphical
visualization to understand the pattern of the
dataset.

3) To address the class imbalance issue, the
Synthetic Minority Over-sampling Technique
(SMOTE) is employed, and the features of the
dataset are standardized through scaling.

4) Various deep learning techniques are applied and
trained with the dataset. The performances of
these techniques are later examined using various
standard metrics, including the learning curves,
confusion matrix, and computational time.

II. RESEARCH METHOD

The researchers define the phases that have been
used to predict and classify the AQL of a room using
hybrid advanced deep learning techniques, as shown in
Fig. 2. The dataset collects records from 255 sensors,
which have been located across 51 rooms spanning
from 4 floors of Sutardja Dai Hall at UC Berkeley.
It includes diverse attributes like PIR sensor, Carbon
Dioxide (CO2) tiers, humidity, temperature, and lumi-
nosity, with readings recorded every five seconds time
series information in the form of UNIX EPOCH TIME
timestamp [16].

During the data preprocessing phase, initially, a
thorough analysis is carried out to identify any missing
or null values in each attribute for all 51 rooms.
It is done to make sure that the data are complete
and accurate, as shown in Table I. The K-Nearest
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Fig. 2. Proposed system for air quality assessment using deep learning classifiers. Note: Air Quality Index (AQI), Air Quality Level
(AQL), K-Nearest Neighbors (KNN), Synthetic Minority Over-sampling Technique - Edited Nearest Neighbors (SMOTE-ENN), Multilayer
Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM).

Neighbors (KNN) imputer technique is employed to
fill in missing values based on information from nearby
data points [17]. This approach helps to maintain the
structure and patterns within the dataset. Afterward,
using a comprehensive dataset, the AQI values for each
room are calculated. This process entails collecting and
analyzing several characteristics linked to each space
to calculate a comprehensive measure that represents
the air quality. However, it is noted throughout this pro-
cedure that certain estimated AQI values are negative,
which are not suitable for meaningful interpretation
and analysis. To tackle this problem, the dataset is
improved by removing records with negative AQI
values and concentrating only on the data from two
rooms, specifically 415 (Data I) and 776 (Data II),
which are chosen randomly from the original 51 rooms.
Subsequently, utilizing the AQI data, the researchers
derive the AQL values and establish the desired classes
as Low (0-50), Average (51-100), and Severe (101-
500).

Next, Exploratory Data Analysis (EDA) is used to
uncover crucial information that helps understand the
complex relationships between energy consumption
and various environmental factors. Figure 3 illustrates
the correlation between computed IAQ index (AQI)
values and corresponding AQL classes, including Low,
Average, and Severe. The purpose is to determine the
minimum and maximum indoor AQI values recorded
from both rooms 415 (Data I) and 776 (Data II). This

TABLE I
COMPARISON OF MISSING VALUES ACROSS ATTRIBUTES IN
DATA I AND DATA II TO EMPHASIZE THE SIGNIFICANCE OF

IMPUTING MISSING DATA FOR ACCURATE ANALYSIS.

Attributes Data I (Room 415) Data II (Room 776)

CO2 0 1095
Humidity 1113 1
Light 1113 1
Passive Infrared (PIR) 55875 59171
Temperature 1114 0

information is crucial for improving the classification
system and establishing distinct thresholds for different
AQL. Ultimately, it can enhance comprehension and
enable effective management of indoor environmental
conditions.

The graphical depiction in Figs. A1 and A2 (see
Appendix) portrays the distribution of attribute values,
encompassing CO2 concentration, PIR, light intensity,
humidity, and temperature, across varying levels of air
quality: Low, Average, and Severe. Upon analyzing the
data from Room 415 in Fig. A1 (see Appendix), it
is observed that the highest frequency of occurrences
indicating Low air quality is found within the following
intervals: 450 to 500 for CO2 concentration, 23.0 to
23.5 for temperature, 58 to 60 for humidity, and 0
to 25 for light intensity. Similarly, for the Average
air quality category, peak incidences manifest within
the ranges of 690 to 700 for CO2, 23.5 to 23.9 for
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Figure 3 Air Quality Index (AQI) values of Data I and Data II for different categories of 

Air Quality Level (AQL).

 

Fig. 3. Air Quality Index (AQI) values of Data I and Data II for different categories of Air Quality Level (AQL).

temperature, 54 to 55 and 58 to 58.5 for humidity, and
40 to 80 for light intensity. Conversely, in the Severe air
quality classification, predominant values are recorded
between 1050 to 1100 for CO2 concentration, 23.65
to 23.70 for temperature, below 58 (e.g., 57.84) for
humidity, and 40 to 50 for light intensity. It is note-
worthy that these values are approximations and not

fixed constants.

Similarly, the researchers have extracted analogous
information from the data recorded for Room 776,
as illustrated in Fig. A2 (see Appendix). The highest
frequency of occurrences indicating low air quality is
observed within the intervals of 450 to 500 for CO2
concentration, 23.0 to 23.5 for temperature, 57 to 58
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generates synthetic instances for the minority class, which increases its representation in the 
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classes, resulting in a balanced and cleaner dataset overall [17]. By effectively addressing 
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standard oversampling techniques, like standalone SMOTE, are effective in increasing the 

representation of minority classes by generating synthetic samples. However, these methods 
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class boundaries, which can degrade model performance. Traditional undersampling 

methods, on the other hand, focus on removing data from the majority class to achieve 
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Figure 6 Class balancing achieved using the Synthetic Minority Over-sampling 

Technique - Edited Nearest Neighbors (SMOTE-ENN) technique to improve the 

distribution of Air Quality Level (AQL) in Data I and Data I.

In the feature scaling process, Z-scores are useful to identify outliers within a dataset. Data 

points with Z-scores significantly greater than or less than zero are considered outliers, as 

they deviate substantially from the average values of the dataset. By standardizing the data 

using Z-scores, it becomes easier to identify and understand the significance of outliers and to 

Fig. 4. Class balancing achieved using the Synthetic Minority Over-sampling Technique - Edited Nearest Neighbors (SMOTE-ENN)
technique to improve the distribution of Air Quality Level (AQL) in Data I and Data II.

for humidity, and 0 to 10 for light intensity. For the
average air quality category, peak incidences manifest
within the ranges of 700 to 720 for CO2, around 25.0
for temperature, 54 to 55 for humidity, and 60, and 90
to 100 for light intensity. Conversely, in the severe air
quality classification, predominant values are recorded
at approximately 700 for CO2 concentration, around
25.2 for temperature, 54.5 for humidity, and 80 to
100 for light intensity. Additionally, for PIR, there are
some occurrences of values apart from zero across all
attributes. It is important to note that these values are
approximations and not fixed constants.

These visualizations aim to enhance energy effi-
ciency. Optimizing the detection and management sys-
tems based on these identified thresholds can facilitate
proactive interventions. It can ensure that resource
allocation aligns with actual environmental conditions,
thereby minimizing energy consumption while main-
taining air quality standards.

In the data augmentation process, a hybrid approach
of SMOTE and ENN has been used to augment the data
by overcoming the issue of class imbalance, as shown
in Fig. 4. SMOTE generates synthetic instances for
the minority class, which increases its representation in
the dataset. Meanwhile, ENN removes noisy instances
from both the minority and majority classes, resulting
in a balanced and cleaner dataset overall [18]. By effec-
tively addressing class imbalance and reducing noise,
SMOTE-ENN enhances the performance of applied
learning models. It can be represented as Eq. (1).

SMOTE + ENN(X, y) =

ENN(SMOTE(Xminority), yminority, k). (1)

Here, X refers to the feature matrix of the dataset,
y represents the target vector of class labels, and
k denotes the number of nearest neighbors used in

both SMOTE and ENN. Many standard oversampling
techniques, like standalone SMOTE, are effective in
increasing the representation of minority classes by
generating synthetic samples. However, these methods
can inadvertently introduce noise by creating synthetic
samples near outliers or overlapping class boundaries,
which can degrade model performance. Traditional
undersampling methods, on the other hand, focus on
removing data from the majority class to achieve
balance. However, it often results in the loss of valuable
information.

In the feature scaling process, Z-scores are useful
to identify outliers within a dataset. Data points with
Z-scores significantly greater than or less than zero
are considered outliers, as they deviate substantially
from the average values of the dataset. By standard-
izing the data using Z-scores, it becomes easier to
identify and understand the significance of outliers and
to compare data points across different datasets with
varying means and standard deviations [19], as shown
in Eq. (2). Here, x is the value of the input data point,
µ is the mean of the population, and σ is the standard
deviation of the population.

z =
x− µ

σ
. (2)

The next process is classifiers. In the context of
indoor energy efficiency, the Multilayer Perceptron
(MLP) structure is customized to analyze various
environmental parameters, including temperature, hu-
midity, occupancy, and lighting situations, collected
from sensors deployed within a building. The structure
commonly includes an input layer, in which envi-
ronmental data is fed into the model, followed with
the aid of one or extra hidden layers, which perform
nonlinear adjustments and feature extraction. Each
neuron within those hidden layers applies weighted
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connections and activation capabilities to get the input
records. Finally, an output layer produces predictions
for energy-efficient operation based on the discovered
patterns [20]. The mathematical equation of MLP is
represented as Eqs. (3) and (4). Here, n represents
the input features, wl

ij and z
(l)
j refer to the weight

connected to the j-th neuron, blj is the bias, xi is the
input feature, f(.) is the activation function, and a

(l)
j

is the output of the j-th neuron. The j refers to the
neuron number within a given layer.

z
(l)
j =

n∑
i=1

wl
ijxi + blj , (3)

a
(l)
j = f(z

(l)
j ). (4)

The RNN is a type of artificial neural network that
is mostly used for processing sequential data to make
it applicable for multiple tasks in optimizing energy
efficiency for indoor environments. Its architecture in-
cludes an input, hidden, and output layer with recurrent
connections, which enable the network to maintain
information about past entered data in memory during
processing of current data [21]. By utilizing the se-
quential nature of environmental data obtained indoors,
these types of networks contribute to optimizing energy
use by enhancing occupant comfort and promoting
sustainability in indoor spaces. The hidden state (ht)
in RNN is defined by Eq. (5). Here, Whx and Whh

imply the weight matrix for input to hidden and hidden
to hidden connections, σ is activation function, and bh
is the bias vector, and xt is the input vector at step t.

ht = σ(Whxxt +Whhht−1 + bh). (5)

The LSTM network is one variant of RNN archi-
tectures that is designed for taking long-time depen-
dencies in sequential primarily based information and
addressing the problems related to vanished gradients.
This property of LSTM makes it particularly efficient
for the obligations which are associated with energy
efficiency in indoor environments. The structure of
an LSTM includes memory cells with self-connected
devices, referred to as gates. These gates consist of
an input, forget, and an output gate, which alter the
flow of data through the network and manipulate it
at different levels of processing [22]. In the area of
efficient use of indoor energy, LSTM network excels at
predicting complicated temporal styles in sensor data,
which include fluctuations in temperature, tendencies
of occupancy, and energy consumption profiles. The
gates are presented in Eqs. (6)–(11). Here, Wf , Wi,
Wo, and Wc represent the weight matrices for the
forget, input, and output gates, and the candidate cell
state, respectively. The bf , bi and bo represent bias for

forget, input and output gates, respectively, whereas bc
represents bias for candidate cell state. Then, σ and
tanh refer to the activation and the hyperbolic tangent
activation function, respectively, and (.) represents
matrix multiplication.

Forget gate(ft) = σ(Wf · [ht−1, xt] + bf ), (6)
Input gate(it) = σ(Wi · [ht−1, xt] + bi), (7)

Output gate(ot) = σ(Wo · [ht−1, xt] + bo). (8)
Candidate cell state(c̃t) =
tanh(Wc · [ht−1, xt] + bc), (9)

Cell state update(ct) = ft · ct−1 + it · c̃t, (10)
Hidden state update(ht) = ot · tanh(ct). (11)

The other variation of RNN is the GRU structure.
This architecture is similar to LST. However, it copes
with the restrictions of conventional RNN. Addition-
ally, it is also able to fetch long-term dependencies
in sequential facts efficiently. The structure of GRU is
based entirely on gating mechanisms, which consist of
a reset gate and a forget gate. These gates control the
flow of records through the network and allow the GRU
to retain or forget about data selectively from previous
time steps. This characteristic permits the network to
capture long-time period dependencies while reducing
the vanishing gradient problem [23]. Historical records
may be used to train the GRU network for learning
the underlying patterns in addition to the dynamics of
indoor environments. It enables adaptive energy man-
agement techniques that work for conditions in real-
time. It is mathematically represented by Eqs. (12)–
(15). Here, Wz , Wr, and Wh refer to the weight
matrices of update, reset gate, and candidate hidden
state, bz and br represent the bias for update gate and
reset gate. The

⊙
implies element-wise multiplication,

and h̃t is the current hidden state.

Update gate(zt) = σ(Wz · [ht−1, xt] + bz), (12)
Reset gate(rt) = σ(Wr · [ht−1, xt] + br), (13)

Candidate hidden state(h̃t) =

tanh(Wh · [rt
⊙

ht−1, xt] + bh), (14)

Hidden state update(ht) = (1− zt)
⊙

ht−1

+zt
⊙

h̃t. (15)

The architecture of Bidirectional LSTM (Bi-LSTM)
incorporates records from both past and future time
steps. It consists of two LSTM layers, where one
layer processes the input information in a forward
order, and the other layer processes it in reverse order.
While processing the data in both instructions, the
Bi-LSTM captures data from both past and future
contexts. This property of Bi-LSTM allows it to learn
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deeper representations of the enter records and enables
it higher to recognize the temporal dynamics of indoor
environmental data. Likewise, the architecture of a Bi-
GRU consists of two GRU layers, which fit precisely
like a Bi-LSTM. The bidirectional nature of the model
allows it to fetch information from each beyond and
future contexts concurrently to learn complex repre-
sentations of the enter data [24, 25]. The mathematical
representation of Bi-LSTM is shown in the form of
forward (Eqs. (16)–(21)) as well as backward direction
(Eqs. (22)–(27)). Similarly, for Bi-GRU, the forward
GRU is represented in Eqs. (28)–(31), and the back-
ward GRU is in Eqs. (32)–(35). Ultimately, the output
of both networks at timestamp t is computed using
Eq. (36). The superscripts of f and b represent forward
and backward.

Forget gate(f (f)
t ) = σ(W

(f)
f · [h(f)

t−1, xt]

+b
(f)
f ), (16)

Input gate(i(f)t ) = σ(W
(f)
i · [h(f)

t−1, xt]

+b
(f)
i ), (17)

Output gate(o(f)t ) = σ(W (f)
o · [h(f)

t−1, xt]

+b(f)o ), (18)

Candidate cell state(c̃(f)t ) =

tanh(W (f)
c · [h(f)

t−1, xt] + b(f)c ), (19)

Cell state update(c(f)t ) = f
(f)
t · c(f)t−1

+i
(f)
t · c̃(f)t , (20)

Hidden state update(h(f)
t ) = o

(f)
t · tanh(c(f)t ), (21)

Forget gate(f (b)
t ) = σ(W

(b)
f · [h(b)

t−1, xt] + b
(b)
f ), (22)

Input gate(i(b)t ) = σ(W
(b)
i · [h(b)

t−1, xt] + b
(b)
i ), (23)

Output gate(o(b)t ) = σ(W (b)
o · [h(b)

t−1, xt] + b(b)o ), (24)

Candidate cell state(c̃(b)t ) =

tanh(W (b)
c · [h(b)

t−1, xt] + b(b)c ), (25)

Cell state update(c(b)t ) = f
(b)
t · c(b)t−1

+i
(b)
t · c̃(b)t , (26)

Hidden state update(h(b)
t ) = o

(b)
t · tanh(c(b)t ), (27)

Update gate(zft ) = σ(W f
z · [hf

t−1, xt] + bfz ), (28)

Reset gate(rft ) = σ(W f
r · [hf

t−1, xt] + bfr ), (29)

Candidate hidden state(h̃f
t ) = tanh(W f

h · [rft⊙
hf
t−1, xt] + bfh), (30)

Hidden state update(hf
t ) = (1− zft )

⊙
hf
t−1

+zft
⊙

h̃f
t , (31)

Update gate(zbt ) = σ(W b
z · [hb

t−1, xt] + bbz), (32)

Reset gate(rbt ) = σ(W b
r · [hb

t−1, xt] + bbr), (33)

Candidate hidden state(h̃b
t) =

tanh(W b
h · [rbt

⊙
hb
t−1, xt] + bbh), (34)

Hidden state update(hb
t) = (1− zbt )

⊙
hb
t−1

+zbt
⊙

h̃b
t , (35)

ht = [h
(f)
t , h

(b)
t ]. (36)

A stacked LSTM architecture consists of multiple
LSTM layers, which are stacked on top of each other.
Here, each LSTM layer processes the input data se-
quentially, where the output of one layer is served
as the input to the next layer. When multiple LSTM
layers are stacked, it allows the model to capture both
short-term and long-term dependencies in the data
to make it more capable of capturing the complex
dynamics of indoor environmental variables. Likewise,
the Stacked GRU operates on the same concept as the
Stacked LSTM. However, it uses GRU units. In this
structure, various GRU layers are stacked on peak of
every different layer to create a deep network. Every
layer in a Stacked GRU architecture comprises a series
of GRU units, each with its own set of parameters
to analyze the patterns and relationships in the input
data. The output of one GRU layer serves as the
input to the subsequent layer, allowing the network to
learn hierarchical representations of information across
multiple stages of abstraction [26, 27].

In addition, the hyperparameter values used for
training the models are also mentioned in Table II.
Here, the learning rate is set to 0.001 to provide a
stable balance between convergence speed and train-
ing stability. A batch size of 16 is chosen to al-
low efficient gradient amendments while sustaining
manageable memory usage. The training process for
the datasets is conducted over 15 epochs to ensure
convergence without significant overfitting. The Adam
optimizer is used due to its consistent learning rate
capability, which speeds up convergence compared to
traditional stochastic gradient descent. Then, a dropout
rate of 0.5 is chosen to apply in the hidden layers
so that the problem of overfitting can be addressed.
The ReLU activation function is chosen for hidden
layers due to its efficiency in handling non-linearity
and avoiding vanishing gradients. Softmax activation
is selected in the output layer to enable probabilistic
multi-class classification.

Last, there are performance metrics. In the context
of energy efficiency for smart home appliances based
on the IAQ index and AQL, various key metrics are

228



Cite this article as: J. S. Saini, S. Arora, and S. Kamboj, “Deep Learning Techniques to Enhance Energy
Efficiency of Home Appliances by Analyzing Air Quality Levels”, CommIT Journal 19(2), 221–248, 2025.

TABLE II
HYPERPARAMETERS AND THEIR SELECTED VALUES FOR

MODEL TRAINING.

Hyperparameter Value

Learning Rate 0.001
Batch Size 16
Epochs 15
Optimizer Adam
Dropout Rate 0.5
Activation Layer ReLU in hidden, Softmax in output

typically used to evaluate the performance of clas-
sification models. Accuracy (Eq. (37)) provides an
overall measure of model performance by calculating
the proportion of correctly classified instances [28].
It has True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN). Loss (Eq. (38))
quantifies the difference between predicted and actual
values. It is often measured using metrics like cross-
entropy, which serves as a gauge of model optimization
and convergence [29]. In addition to these metrics,
there are other measures, such as Precision (Eq. (39)).
It is crucial to assess the ability of the model to
avoid false positives to identify the equipment that
is responsible for poor air quality. It is a measure
of the proportion of correctly predicted positive cases
among all predicted positive cases. Meanwhile, Recall
(Eq. (40)) computes the ability of the model, which
captures all actual positive cases that are correctly
identified. Then, the F1-Score (Eq. (41)) is most useful
when there is no synchronization between positive and
negative instances, allowing models to balance their
performance based on these metrics [30, 31].

Accuracy =
TP + TN

TP + TN + FP + FN
, (37)

Loss =
(Actual Value − Predicted Value)2

Number of observations
, (38)

Precision =
TP

TP + FP
, (39)

Recall =
TP

TP + FN
, (40)

F1-Score = 2
Precision ∗ Recall
Recall + Precision

. (41)

III. RESULTS AND DISCUSSION

A. Analysis of Models for Data I in Room 415

Table III presents the performance metrics of various
neural network models, including MLP, RNN, GRU,
LSTM, and combinations of these models. They are
evaluated on training and validation datasets. The met-
rics considered are accuracy and loss, where higher
accuracy and lower loss values indicate better perfor-
mance.

Notably, during the training phase, the MLP model
achieves the best accuracy of 99.53% with the lowest
loss of 0.0146, making it the best performer in terms of
training metrics compared to the other models. RNN
model achieves the accuracy of 99.44% with the loss
of 0.0169 in terms of training metrics. Bidirectional
versions of GRU and LSTM additionally show strong
overall performance, with Bidirectional LSTM slightly
outperforming Bidirectional GRU in terms of lowest
loss (0.0148 vs. 0.0152) and marginally better accu-
racy (99.47% vs. 99.46%). This result shows that the
bidirectional nature of those models efficaciously cap-
tures temporal dependencies in both directions, thereby
enhancing their learning capability. Meanwhile, the
Stacked LSTM and Stacked GRU architectures achieve
accuracies of 99.40% and 99.45%, respectively. How-
ever, the values are slightly lower than their non-
stacked counterparts (LSTM and GRU, with accura-
cies of 99.41% and 99.49%, respectively). The results
indicate that deeper networks no longer necessarily
enhance performance for this dataset.

During the validation phase, the Bidirectional GRU
and LSTM models achieve exceptionally high valida-
tion accuracy (99.81% and 99.72%, respectively) with
low loss values (0.0081 and 0.0066, respectively). The
results indicate strong generalization capabilities due
to their ability to capture temporal dependencies in
both directions. The MLP achieves good performance
with a validation accuracy of 99.16% and a loss of
0.0200. However, they are slightly underperformed
by RNN-based models with a validation accuracy of
99.75% and a loss of 0.0061 due to their limited ability
to capture sequential dependencies. LSTM and GRU
models perform well, with accuracy of 99.57% and
99.79% and losses of 0.0104 and 0.0082, respectively.
The results underscore their effectiveness for sequen-
tial data. Meanwhile, the Stacked LSTM and Stacked
GRU architectures exhibit solid performance but do
not significantly surpass their single-layer counterparts,
achieving accuracies of 99.56% and 99.51%, respec-
tively.

Figures A3–A5 in Appendix illustrates the learning
curves of the models for training and validation accu-
racy, as well as loss, over 15 epochs. It has been found
that MLP and RNN exhibit a good fit in their learning
curves, while the remaining models display some zig-
zag movement, indicating minor fluctuations in their
performance. In addition, the curve of validation loss
is lower than the training loss. It indicates that the
validation dataset may be easier for the model to
predict than the training dataset. Likewise, the curve
of validation accuracy is higher than training accuracy
from the beginning of the epoch. The validation dataset
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TABLE III
ACCURACY AND LOSS METRICS FOR TRAINING AND VALIDATION PHASES OF VARIOUS MODELS APPLIED TO DATA I.

Model Training Validation

Accuracy Loss Accuracy Loss

Multilayer Perceptron (MLP) 99.53 0.0146 99.16 0.0200
Recurrent Neural Network (RNN) 99.44 0.0169 99.75 0.0061
Bidirectional GRU 99.46 0.0152 99.81 0.0081
Bidirectional LSTM 99.47 0.0148 99.72 0.0066
Long Short-Term Memory (LSTM) 99.41 0.0166 99.57 0.0104
Gated Recurrent Unit (GRU) 99.49 0.0149 99.79 0.0082
Stacked LSTM 99.40 0.0173 99.56 0.0102
Stacked GRU 99.45 0.0162 99.51 0.0156

TABLE IV
ANALYSIS OF MODELS FOR ENERGY EFFICIENT HOME

APPLIANCES IN DATA I.

Model Precision Recall F1-Score

Multilayer Perceptron (MLP) 0.9971 0.9915 0.9914
Recurrent Neural Network (RNN) 0.9975 0.9975 0.9974
Bidirectional GRU 0.9980 0.9982 0.9979
Bidirectional LSTM 0.9972 0.9972 0.9972
Long Short-Term Memory (LSTM) 0.9957 0.9957 0.9956
Gated Recurrent Unit (GRU) 0.9979 0.9980 0.9979
Stacked LSTM 0.9955 0.9955 0.9954
Stacked GRU 0.9951 0.9950 0.9950

may be easier or have a different distribution than the
training set, which leads to higher performance.

Table IV presents Precision, Recall, and F1-Score
for various neural network models, providing a com-
prehensive evaluation of their performance. After com-
paring the performance of all the applied classifiers, it
has been found that Bidirectional GRU computes the
highest scores for Precision, Recall, and F1-Score, with
values of 0.9980, 0.9982, and 0.9979, respectively.
GRU follows the result with Precision of 0.9979,
Recall of 0.9980, and F1-Score of 0.9979. This per-
formance depicts that these models can classify the
instances correctly. RNN, LSTM, and Bidirectional
LSTM also indicate their effectiveness by generat-
ing the balanced values of Precision (0.9975, 0.9957,
and 0.9972, respectively), Recall (0.9975, 0.9957, and
0.9972, respectively), and F1-Score (0.9974, 0.9956,
and 0.9972, respectively). Likewise, Stacked LSTM
and Stacked GRU also perform similarly by main-
taining a balance between Precision, Recall, and F1-
Score with their generated values. However, it has been
observed that MLP generates the least value in terms of
Recall and F1 Score, with values of 0.9915 and 0.9914,
respectively. The results show that the MLP requires
further improvement to enhance its performance for
this specific dataset.

A 3×3 confusion matrix has also been created in
Figs. A6 and A7 in Appendix. This matrix provides
a class-wise distribution of correctly and incorrectly

predicted samples across the Low, Average, and Se-
vere classes. The confusion matrix enables a deeper
understanding of the strengths and weaknesses of each
model by highlighting the distribution of true posi-
tives, true negatives, false positives, and false negatives
across all the categories, rather than overall accuracy,
which combines the performance into a single metric.

It is observed from the analysis that all models show
very high accuracy in predicting the Low and Severe
classes, with very minimal misclassifications. The re-
sults point out that these two classes are relatively well-
separated in the feature space, allowing the models
to identify them with high confidence. However, mi-
nor misclassifications are noted in the Average class.
Such behavior is expected, as the Average air quality
range often shares characteristics with its neighboring
classes, making it harder to distinguish.

In the applied models, the inference is that RNN and
the gated variants, such as GRU and LSTM, exhibit
little misclassification in the Average class compared
to MLP, thus confirming the advantage of sequence-
based architectures in handling temporal variations in
indoor environmental data. The Bidirectional GRU and
Bidirectional LSTM further improve class separation
by incorporating contextual information from both past
and future time steps, reducing confusion between
adjacent classes. Therefore, the conclusion is that the
confusion matrix analysis validates the robustness of
all the models, highlighting the comparative superiority
of recurrent architectures in minimizing class overlaps.

Table V presents the performance metrics of models
across three different classes of smart home datasets,
Low, Average, and Severe, based on Precision, Re-
call, and F1-Score, to evaluate their effectiveness in
classifying data. It has been observed that in the
case of the Low class, all models have performed
well, scoring perfect precision scores of 1.0000. It
means that every positive prediction made by the
model is indeed a TP, with slight variations among the
Recall and F1-Score values. This variation indicates
that models identify TP with differing success rates.
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TABLE V
CLASS-WISE ANALYSIS OF MODELS FOR DATA I BY SHOWING PRECISION, RECALL, AND F1-SCORE VALUES ACROSS LOW,

AVERAGE, AND SEVERE AIR QUALITY CLASSES.

Model Class Precision Recall F1-Score

Multilayer Perceptron (MLP) Low 10.000 0.9918 0.9958
Average 0.9751 1.0000 0.9873
Severe 1.0000 0.9829 0.9913

Recurrent Neural Network (RNN) Low 1.0000 0.9980 0.9989
Average 0.9980 0.9946 0.9962
Severe 0.9945 1.0000 0.9972

Bidirectional GRU Low 1.0000 0.9951 0.9975
Average 0.9951 0.9995 0.9972
Severe 0.9991 1.0000 0.9990

Bidirectional LSTM Low 1.0000 0.9965 0.9982
Average 0.9965 0.9951 0.9958
Severe 0.9951 1.0000 0.9975

Long Short-Term Memory (LSTM) Low 1.0000 0.9967 0.9983
Average 0.9967 0.9904 0.9935
Severe 0.9905 1.0000 0.9952

Gated Recurrent Unit (GRU) Low 1.0000 0.9948 0.9973
Average 0.9941 0.9997 0.9968
Severe 0.9997 0.9997 0.9997

Stacked LSTM Low 1.0000 0.9950 0.9974
Average 0.9949 0.9917 0.9932
Severe 0.9917 1.0000 0.9958

Stacked GRU Low 1.0000 0.9959 0.9979
Average 0.9959 0.9892 0.9925
Severe 0.9895 1.0000 0.9947

Some models may be missing more TP (higher FN)
than others. For this class, the highest Recall and F1-
Score values are achieved by the RNN, with 0.9980
and 0.9989, respectively. It is followed by LSTM and
bidirectional LSTM, with Recall scores of 0.9967 and
0.9965, respectively, and F1-Score values of 0.9983
and 0.9982, respectively. However, MLP shows a high
number of FN and misses many TP by computing
the lowest Recall and F1-Score values of 0.9918 and
0.9958, respectively.

In the case of the Average class of AQL, only
MLP achieves a perfect recall of 1.0000, compared to
other models. The result indicates that MLP correctly
identifies all the true positive cases without missing any
data. While examining the rest of the parameters, such
as Precision, the highest value is computed by RNN
with 0.9980. It is followed by LSTM and Bidirectional
LSTM, with 0.9967 and 0.9965, respectively. The
results define the TP prediction made. Likewise, for
Recall and F1-Score, the highest values are achieved
by GRU with 0.9997 and 0.9968, respectively, as well
as Bidirectional GRU with 0.9995 and 0.9972, respec-
tively. Then, the lowest values for all performance
metrics are obtained by GRU in the case of Precision,
with 0.9941, and by Stacked GRU in terms of Recall
and F1-Score, with 0.9892 and 0.9925, respectively.

For the Severe class, only MLP computes the perfect
Precision score, while the rest of the models, such as

RNN, Bidirectional GRU, Bidirectional LSTM, LSTM,
Stacked LSTM, and Stacked GRU, obtain the perfect
Recall scores of 100%. GRU maintains the balance
relationship between the metrics by computing 0.9997.
It means a very low number of FP and FN in the
Severe class. In addition, Stacked GRU achieves the
lowest Precision value of 0.9895, while MLP has the
least Recall and F1-Score values, indicating room for
improvement.

B. Analysis of Models for Data II in Room 776
Table VI presents a comparative analysis of various

deep learning models based on their training accuracy
and loss for the data collected from Room 776. In
the training phase, the Bidirectional GRU achieves the
highest training accuracy of 99.27%, closely followed
by the RNN with 99.26% and the GRU with 99.24%.
The results suggest that these recurrent-based models
are particularly effective in capturing the patterns in
the training data. In terms of training loss, which
indicates how well the model fits the training data
(with lower values being better), the Bidirectional GRU
also performs the best, with the lowest loss of 0.0238.
The RNN follows this result with a loss of 0.0240,
and the GRU with 0.0247. These low-loss values, in
conjunction with their high accuracies, suggest that
these models not only learn well but also generalize
effectively on the training data without overfitting.
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TABLE VI
ACCURACY AND LOSS VALUES FOR TRAINING AND VALIDATION PHASES OF NEURAL NETWORK MODELS APPLIED TO DATA II.

Model Training Validation

Accuracy Loss Accuracy Loss

Multilayer Perceptron (MLP) 99.17 0.0276 99.58 0.0140
Recurrent Neural Network (RNN) 99.26 0.0240 99.43 0.0158
Bidirectional GRU 99.27 0.0238 99.41 0.0151
Bidirectional LSTM 99.14 0.0273 99.45 0.0130
Long Short-Term Memory (LSTM) 99.20 0.0255 99.47 0.0143
Gated Recurrent Unit (GRU) 99.24 0.0247 99.63 0.0118
Stacked LSTM 99.13 0.0281 99.64 0.0117
Stacked GRU 99.16 0.0264 99.34 0.0177

TABLE VII
ANALYSIS OF MODELS FOR ENERGY EFFICIENT HOME

APPLIANCES IN DATA II.

Model Precision Recall F1-Score

Multilayer Perceptron (MLP) 0.9957 0.9957 0.9957
Recurrent Neural Network (RNN) 0.9943 0.9943 0.9942
Bidirectional GRU 0.9940 0.9940 0.9939
Bidirectional LSTM 0.9945 0.9945 0.9945
Long Short-Term Memory (LSTM) 0.9920 0.9973 0.9946
Gated Recurrent Unit (GRU) 0.9963 0.9963 0.9962
Stacked LSTM 0.9959 0.9964 0.9961
Stacked GRU 0.9961 0.9966 0.9949

On the other hand, models like the Stacked LSTM
and Stacked GRU, while still achieving high accu-
racy (99.13% and 99.16%, respectively), show slightly
higher loss values (0.0281 and 0.0264, respectively)
compared to their simpler counterparts. It can imply
that the added complexity of stacking layers does not
necessarily translate to better performance on the train-
ing data and may even lead to marginally increased
training loss.

From the validation data, all models show high
performance, with accuracy ranging from 99.34% to
99.64%, and low loss values between 0.0117 and
0.0177. The Stacked LSTM model achieves the highest
validation accuracy at 99.64%, closely followed by
the GRU with 99.63%, indicating that these models
generalize particularly well to unseen data. This high
performance suggests that these models effectively
capture the underlying patterns in the dataset. In terms
of validation loss, which measures how well the model
fits the validation data (with lower values indicating
better performance), the Stacked LSTM again performs
the best, with a loss of 0.0117, closely followed
by the GRU with a loss of 0.0118. These low-loss
values reinforce the superior generalization capability
of these models. Interestingly, the MLP model, despite
its simpler architecture, achieves a very high validation
accuracy of 99.58% and a low loss of 0.0140. It
is also a strong performer and can be considered a
competitive model for this task. The RNN, Bidirec-

tional GRU, and Bidirectional LSTM models show
slightly lower validation accuracies (99.43%, 99.41%,
and 99.45%, respectively) and higher losses (0.0158,
0.0151, and 0.0130, respectively) compared to the
GRU and Stacked LSTM. The results suggest that
while they are still effective, they may not capture
the validation data patterns as well as the GRU-based
models and the Stacked LSTM. The Stacked GRU
model achieves 99.34% validation accuracy at a higher
loss of 0.0177. The results indicate the possibility
of overfitting or difficulty in effectively training the
deeper architectures.

Similar to the case of Data I, the learning curves
for the models’ training and validation accuracy, as
well as loss, over 15 epochs are defined in Figs. A8–
A10 in Appendix. According to the research findings,
it has been observed that MLP and RNN models
exhibit a good fit of learning curves. Meanwhile, in
the case of Bidirectional GRU, a peak can be seen,
which indicates that the model may not have learned
enough to make accurate predictions. However, as
the training progresses, the model learns to capture
more complex patterns in the data, which leads to its
improved performance.

Table VII analyzes the performance of various deep
learning models based on their Precision, Recall, and
F1-Score. GRU and Stacked GRU indicate the effec-
tiveness in minimizing the false positives by obtain-
ing the highest precision values of 0.9963, 0.9961,
and 0.9959, respectively. The results are followed by
Stacked LSTM and MLP, with scores of 0.9959 and
0.9957 respectively. Models, like Bi-Directional GRU,
RNN, Bi-Directional GRU and LSTM, have very low
precision values. On the other hand, in terms of Recall,
LSTM, with a value of 0.9973, reflects its ability
to identify true positives, albeit at the expense of
lower precision, 0.9920. It ultimately computes 0.9946
as the F1-Score. Apart from LSTM, Stacked GRU
and Stacked LSTM also demonstrate their efficiency
in predicting actual instances, achieving top Recall
values of 0.9966, 0.9964, and 0.9963, respectively.
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TABLE VIII
EVALUATION OF MODEL PERFORMANCE IN DISTINGUISHING AIR QUALITY LEVEL (AQL) (LOW, AVERAGE, AND SEVERE) IN DATA

II.

Model Class Precision Recall F1-Score

Multilayer Perceptron (MLP) Low 1.0000 0.9911 0.9955
Average 0.9912 0.9961 0.9936
Severe 0.9961 1.0000 0.9980

Recurrent Neural Network (RNN) Low 1.0000 0.9918 0.9958
Average 0.9918 0.9911 0.9914
Severe 0.9912 1.0000 0.9955

Bidirectional GRU Low 1.0000 0.9905 0.9952
Average 0.9903 0.9916 0.9909
Severe 0.9918 1.0000 0.9958

Bidirectional LSTM Low 1.0000 0.9931 0.9966
Average 0.9932 0.9904 0.9918
Severe 0.9903 1.0000 0.9951

Long Short-Term Memory (LSTM) Low 0.9922 10.000 0.9961
Average 0.9921 0.9919 0.9919
Severe 0.9919 1.0000 0.9959

Gated Recurrent Unit (GRU) Low 1.0000 0.9913 0.9956
Average 0.9914 0.9977 0.9945
Severe 0.9976 1.0000 0.9987

Stacked LSTM Low 1.0000 0.9914 0.9957
Average 0.9913 0.9979 0.9945
Severe 0.9964 1.0000 0.9982

Stacked GRU Low 1.0000 0.9900 0.9949
Average 0.9898 0.9999 0.9948
Severe 0.9902 1.0000 0.9950

Then, they have an F1-score of 0.9949, 0.9961, and
0.9962, respectively. The MLP model also demon-
strates its robustness by achieving a good F1-Score of
0.9957, while Bidirectional GRU, RNN and Bidirec-
tional LSTM generate the lowest values of Precision
and Recall at 0.9940, 0.9943 and 0.9945, respectively.
It suggests that the models may not perform as con-
sistently well as the other models.

A 3×3 confusion matrix for Data II is generated
to analyze the class-wise performance of the models
across Low, Average, and Severe classes. The matrix
provides a precise view that how accurately each model
predicts individual classes, moving beyond aggregate
performance metrics, such as accuracy and loss. By
segmenting the predictions into true positives, false
positives, true negatives, and false negatives, the con-
fusion matrix allows a more transparent evaluation of
strengths and weaknesses of the models as shown in
Figs. A11 and A12 (see Appendix).

The results project that all models maintain a high
level of accuracy across all the three classes, with very
strong performance in predicting the Low and Severe
air quality categories. Like observed in Data I, in here,
the Average category possesses greater challenges, as
it is more prone to overlap with neighboring classes.
In some cases, misclassifications occur when Average
samples are inaccurately predicted as either Low or
Severe.

When the models are compared, the RNN and its
gated extensions, like GRU and LSTM, show better
handling of the Average class compared to the MLP. It
focuses on the advantage of sequence-based learning in
capturing subtle temporal variations in environmental
data. Furthermore, the Bidirectional GRU and Bidirec-
tional LSTM show the improved discrimination across
all classes by utilizing both past and future contextual
information that helped to reduce overlaps between
adjacent categories. It is concluded that the confusion
matrix analysis for Data II validates that recurrent mod-
els, especially the bidirectional versions, outperform
the MLP by providing more consistent and balanced
classification across all AQLs. This further proves the
claim that temporal modeling is crucial for accurate
energy-efficient indoor environment management.

Table VIII analyzes the performance of applied clas-
sifiers based on three different classes of dataset (Low,
Average, and Severe) using evaluation metrics, such as
Precision, Recall, and F1-Score. For the Low class, all
models demonstrate their robustness in both classifying
and identifying the classes perfectly. They obtain a
perfect precision score of 100% except for LSTM, as
this model computes the perfect Recall score. However,
there are also a few classifiers that compute the lowest
Recall values, like MLP (0.9911), RNN (0.9918),
Bidirectional GRU (0.9905), GRU (0.9913), Stacked
LSTM (0.9914), and Stacked GRU (0.9900). These
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models are failing to correctly identify a significant
number of true positive instances for this particular
class. In addition, the Bidirectional LSTM shows slight
variations, with a Recall of 0.9931, resulting in an F1-
Score of 0.9966. It depicts slightly better performance
compared to others.

Likewise, in the case of the Average class, all models
except Stacked GRU maintain high Precision, Recall,
and F1-Score, typically above 0.99. However, models
like the Bidirectional GRU, RNN, LSTM, and Bidirec-
tional LSTM have slightly lower F1-Score of 0.9909,
0.9914, 0.9919, and 0.9918, respectively, due to their
slight fall in performance in either Precision or Recall.
The stacked GRU exhibits a highly sensitive nature in
detecting instances of the average class, achieving the
highest Recall value of 0.9999, but a lower Precision
score of 0.9898. Ultimately, this leads to an F1-Score
of 0.9948. Similarly, the lowest Recall values have
also been computed by the models such as RNN
(0.9911), Bidirectional GRU (0.9916), Bidirectional
LSTM (0.9904), and LSTM (0.9919). It means that
they are not able to classify the actual positive values
correctly.

In the Severe class, all models again demonstrate
very high performance, achieving a perfect Recall
score of 1.0000. This characteristic indicates that the
models can identify all instances of the Severe class
correctly. In the case of the F1-Score, GRU and
Stacked LSTM models stand out by computing the
highest values of 0.9987 and 0.9982, respectively.
Meanwhile, the other models, such as MLP and RNN,
obtain slightly lower F1-Score (0.9980 and 0.9955,
respectively). In addition, Stacked GRU and Bidirec-
tional LSTM obtain the lowest Precision score of
0.9902 and 0.9903. The results indicate that these
models are not able to predict the true positive classes
and require room for improvement.

C. Overall Results

Table IX provides a detailed analysis of the time
frame taken by different deep learning models to
process Data I and Data II. Because of its simple
architecture, the MPL stands out with the shortest
training time of 1 hour. The result indicates its faster
computational efficiency compared to the other models.
On the other hand, due to their deeper and complex
architectures, the Stacked LSTM and Stacked GRU
require longer training times of 1 hour and 40 minutes
and 2 hours, respectively. Similarly, the Bidirectional
LSTM and Bidirectional GRU models are computed in
the longest training times of 2 hours and 5 minutes and
2 hours, respectively. Meanwhile, RNN, LSTM, and
GRU models train in an average period of time, with

TABLE IX
OVERALL EXECUTION TIME OF APPLIED LEARNING MODELS

FOR DATA I AND DATA II TO UNDERSCORE THE IMPACT OF
MODEL COMPLEXITY ON COMPUTATIONAL EFFICIENCY.

Model Time Frame

Long Short-Term Memory (LSTM) 1 hour, 25 minutes
Gated Recurrent Unit (GRU) 1 hour, 40 minutes
Stacked LSTM 1 hour, 40 minutes
Stacked GRU 2 hours
Multilayer Perceptron (MLP) 1 hour
Recurrent Neural Network (RNN) 1 hour, 30 minutes
Bidirectional GRU 2 hours
Bidirectional LSTM 2 hours, 5 minutes

training times of 1 hour and 30 minutes, 1 hour and
25 minutes, and 1 hour and 40 minutes, respectively.

Overall, in terms of practical application scenarios,
the excellent performance of Bidirectional GRU and
Stacked LSTM models in accuracy and loss can be ap-
plied to real-time energy optimization systems in smart
homes. These models can dynamically adjust energy
usage for heating, ventilation, and lighting based on
IAQ parameters, such as CO2 levels and temperature,
ensuring energy efficiency while maintaining comfort.
Additionally, insights from the learning curves, which
highlight fluctuations in training and validation accu-
racy, can guide practical decisions in hyperparameter
tuning during the deployment of models in real-world
scenarios. The SMOTE-ENN technique for class bal-
ancing can be effectively applied in homes with un-
even energy consumption patterns, such as those with
varying seasonal appliance usage, ensuring that mod-
els handle such imbalances for accurate predictions.
Lastly, the execution times of different models, detailed
in Table IX, can inform decisions in scenarios where
computational efficiency is crucial, such as real-time
energy management systems requiring rapid model
updates and predictions. These practical applications
demonstrate how deep learning models can be directly
translated into impactful and energy-saving solutions
for residential buildings, contributing to sustainability
and efficiency.

IV. CONCLUSION

The research highlights significant advancements in
applying deep learning techniques to improve energy
efficiency in home appliances. By analyzing factors
such as CO2 levels, humidity, and temperature, the
models demonstrate impressive results in optimiz-
ing energy consumption and promoting sustainability.
Among the classifiers tested, Bidirectional GRU and
Stacked LSTM outperform others in terms of accuracy
and loss for data collected from Rooms 415 and
776. The results showcase the potential of artificial
intelligence-driven approaches to revolutionize energy
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management in smart homes. Furthermore, these mod-
els can optimize real-time decision-making in smart ap-
pliances, contributing to significant energy cost savings
and a reduced environmental footprint. The research
highlights the broader potential for integrating artificial
intelligence-driven approaches into energy policies and
sustainability strategies, enabling more effective reduc-
tions in residential energy consumption and combating
climate change.

Nevertheless, the research’s dependency on specific
datasets and observed fluctuations during training and
validation highlight limitations such as overfitting and
constrained generalizability. Addressing these issues
requires diversifying datasets, adjusting learning rates,
increasing batch sizes, or employing regularization
techniques to stabilize training and enhance model
robustness. Future research should also explore ad-
vanced optimization methods, such as Adaptive Mo-
ment Estimation, Root Mean Square Propagation, and
Evolutionary algorithms. Additionally, integrating IoT
devices and real-time data processing can enhance
responsiveness and scalability, bridging the gap be-
tween technological advancements and their practical
deployment in sustainable energy systems.
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(i)                                                                     (ii) 

 
(iii) 

 

Figure 4 Distribution of values of Data I features across various classes of Air Quality 

Level (AQL)  

Similarly, the researchers have extracted analogous information from the data recorded for 

Room 776, as illustrated in Figure 5. The highest frequency of occurrences indicating low air 

quality is observed within the intervals of 450 to 500 for CO2 concentration, 23.0 to 23.5 for 

temperature, 57 to 58 for humidity, and 0 to 10 for light intensity. For the average air quality 

category, peak incidences manifest within the ranges of 700 to 720 for CO2, around 25.0 for 

Fig. A1. Distribution of values of Data I features across various classes of Air Quality Level (AQL).
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temperature, 54 to 55 for humidity, and 60, and 90 to 100 for light intensity. Conversely, in 

the severe air quality classification, predominant values are recorded at approximately 700 

for CO2 concentration, around 25.2 for temperature, 54.5 for humidity, and 80 to 100 for 

light intensity. Additionally, for PIR, there are some occurrences of values apart from zero 

across all attributes. It is important to note that these values are approximations and not fixed 

constants. 

 

  
(i)                                                                             (ii) 

 

 
(iii) 

 

Fig. A2. Distribution of values of Data II features across various classes of Air Quality Level (AQL).
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Multilayer Perceptron (MLP) 

 

 
 

Recurrent Neural Network (RNN) 

 

 
 

Bidirectional Gated Recurrent Unit (GRU) 

 

 Fig. A3. Learning curves depicting accuracy and loss in the training and validation datasets for models applied to Data I to indicate
convergence and generalization trends (1).
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Bidirectional Long Short-Term Memory (LSTM) 

 

 

  
Long Short-Term Memory (LSTM) 

 

  

Gated Recurrent Unit (GRU) 

Fig. A4. Learning curves depicting accuracy and loss in the training and validation datasets for models applied to Data I to indicate
convergence and generalization trends (2).
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Stacked Long Short-Term Memory (LSTM) 

 

 

 
 

Stacked Gated Recurrent Unit (GRU) 

 

 

Figure 7 Learning curves depicting accuracy and loss in the training and validation 

datasets for models applied to Data I to indicate convergence and generalization trends.

Table 4 presents Precision, Recall, and F1-Score for various neural network models, 

providing a comprehensive evaluation of their performance. After comparing the 

performance of all the applied classifiers, it has been found that Bidirectional GRU computes 

the highest scores for Precision, Recall, and F1-Score, with values of 0.9980, 0.9982, and 

0.9979, respectively. GRU follows the result with Precision of 0.9979, Recall of 0.9980, and 

F1-Score of 0.9979. This performance depicts that these models can classify the instances 

correctly. RNN, LSTM, and Bidirectional LSTM also indicate their effectiveness by 

generating the balanced values of Precision (0.9975, 0.9957, and 0.9972, respectively), Recall 

(0.9975, 0.9957, and 0.9972, respectively), and F1-Score (0.9974, 0.9956, and 0.9972, 

respectively). Likewise, Stacked LSTM and Stacked GRU also perform similarly by 

maintaining a balance between Precision, Recall, and F1-Score with their generated values. 

However, it has been observed that MLP generates the least value in terms of Recall and F1 

Score, with values of 0.9915 and 0.9914, respectively. The results show that the MLP 

requires further improvement to enhance its performance for this specific dataset. 

 

Fig. A5. Learning curves depicting accuracy and loss in the training and validation datasets for models applied to Data I to indicate
convergence and generalization trends (3).
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Fig. A6. Confusion matrix depicting the performance of models on Data I for three air quality classes: Low, Average, and Severe (1). Note:
Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory (LSTM).
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Figure 8 Confusion matrix depicting the performance of models on Data I for three air 

quality classes: Low, Average, and Severe. Note: Multilayer Perceptron (MLP), 

Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term 

Memory (LSTM). 

It is observed from the analysis that all models show very high accuracy in predicting the 

Low and Severe classes, with very minimal misclassifications. The results point out that these 

two classes are relatively well-separated in the feature space, allowing the models to identify 

them with high confidence. However, minor misclassifications are noted in the Average 

class. Such behavior is expected, as the Average air quality range often shares characteristics 

with its neighboring classes, making it harder to distinguish. 

In the applied models, the inference is that RNN and the gated variants, such as GRU and 

LSTM, exhibit little misclassification in the Average class compared to MLP, thus 

confirming the advantage of sequence-based architectures in handling temporal variations in 

indoor environmental data. The Bidirectional GRU and Bidirectional LSTM further improve 

class separation by incorporating contextual information from both past and future time steps, 

reducing confusion between adjacent classes. Therefore, the conclusion is that the confusion 

matrix analysis validates the robustness of all the models, highlighting the comparative 

superiority of recurrent architectures in minimizing class overlaps. 

Table 5 presents the performance metrics of models across three different classes of smart 

home datasets, Low, Average, and Severe, based on Precision, Recall, and F1-Score, to 

Fig. A7. Confusion matrix depicting the performance of models on Data I for three air quality classes: Low, Average, and Severe (2).
Note: Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM).
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Bidirectional Gated Recurrent Unit (GRU) 

 
Fig. A8. Learning curves for models trained on Data II to highlight differences in performance between training and validation datasets
(1).
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Long Short-Term Memory (LSTM) 

 

  

Gated Recurrent Unit (GRU) 

Fig. A9. Learning curves for models trained on Data II to highlight differences in performance between training and validation datasets
(2).
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Stacked Long Short-Term Memory (LSTM) 

 

 
  

Stacked Gated Recurrent Unit (GRU) 

 

Figure 9 Learning curves for models trained on Data II to highlight differences in 

performance between training and validation datasets.  

Table 7 analyzes the performance of various deep learning models based on their Precision, 

Recall, and F1-Score. GRU and Stacked GRU indicate the effectiveness in minimizing the 

false positives by obtaining the highest precision values of 0.9963, 0.9961, and 0.9959, 

respectively. The results are followed by Stacked LSTM and MLP, with scores of 0.9959 and 

0.9957 respectively. Models, like Bi-Directional GRU, RNN, Bi-Directional GRU and 

LSTM, have very low precision values. On the other hand, in terms of Recall, LSTM, with a 

value of 0.9973, reflects its ability to identify true positives, albeit at the expense of lower 

precision, 0.9920. It ultimately computes 0.9946 as the F1-Score. Apart from LSTM, Stacked 

GRU and Stacked LSTM also demonstrate their efficiency in predicting actual instances, 

achieving top Recall values of 0.9966, 0.9964, and 0.9963, respectively. Then, they have an 

F1-score of 0.9949, 0.9961, and 0.9962, respectively. The MLP model also demonstrates its 

robustness by achieving a good F1-Score of 0.9957, while Bidirectional GRU, RNN and 

Bidirectional LSTM generate the lowest values of Precision and Recall at 0.9940, 0.9943 and 

0.9945, respectively. It suggests that the models may not perform as consistently well as the 

other models. 

 

Fig. A10. Learning curves for models trained on Data II to highlight differences in performance between training and validation datasets
(3).
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Table 7 Analysis of Models for Energy Efficient Home Appliances in Data II 
Models Precision Recall F1-

Score 

MLP 0.9957 0.9957 0.9957 

RNN 0.9943 0.9943 0.9942 

Bidirectional 

GRU 

0.9940 0.9940 0.9939 

Bidirectional 

LSTM 

0.9945 0.9945 0.9945 

LSTM 0.9920 0.9973 0.9946 

GRU 0.9963 0.9963 0.9962 

Stacked LSTM 0.9959 0.9964 0.9961 

Stacked GRU 0.9961 0.9966 0.9949 

Note: Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit 

(GRU), and Long Short-Term Memory (LSTM). 

A 3×3 confusion matrix for Data II is generated to analyze the class-wise performance of the 

models across Low, Average, and Severe classes. The matrix provides a precise view that 

how accurately each model predicts individual classes, moving beyond aggregate 

performance metrics, such as accuracy and loss. By segmenting the predictions into true 

positives, false positives, true negatives, and false negatives, the confusion matrix allows a 

more transparent evaluation of strengths and weaknesses of the models as shown in Figure 

10. 

 
 

Fig. A11. Confusion matrix depicting the performance of models on Data II for three air quality classes: Low, Average, and Severe
(1). Note: Multilayer Perceptron (MLP), Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term Memory
(LSTM).
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Figure 10 Confusion matrix depicting the performance of models on Data II for three 

air quality classes: Low, Average, and Severe. Note: Multilayer Perceptron (MLP), 

Recurrent Neural Network (RNN), Gated Recurrent Unit (GRU), and Long Short-Term 

Memory (LSTM). 

The results project that all models maintain a high level of accuracy across all the three 

classes, with very strong performance in predicting the Low and Severe air quality categories. 

Like observed in Data I, in here, the Average category possesses greater challenges, as it is 

more prone to overlap with neighboring classes. In some cases, misclassifications occur when 

Average samples are inaccurately predicted as either Low or Severe. 

When the models are compared, the RNN and its gated extensions, like GRU and LSTM, 

show better handling of the Average class compared to the MLP. It focuses on the advantage 

of sequence-based learning in capturing subtle temporal variations in environmental data. 

Furthermore, the Bidirectional GRU and Bidirectional LSTM show the improved 

discrimination across all classes by utilizing both past and future contextual information that 

helped to reduce overlaps between adjacent categories. It is concluded that the confusion 

matrix analysis for Data II validates that recurrent models, especially the bidirectional 

versions, outperform the MLP by providing more consistent and balanced classification 

Fig. A12. Confusion matrix depicting the performance of models on Data II for three air quality classes: Low, Average, and Severe (2).
Note: Gated Recurrent Unit (GRU) and Long Short-Term Memory (LSTM).
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