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Abstract—As software systems become increasingly
complex, detecting bugs in source code has become a
critical challenge in software development and mainte-
nance. Manual debugging is time-consuming and error-
prone, prompting the need for automated bug detection
solutions. The research explores the use of machine
learning models, specifically, Random Forest and Neural
Network, for identifying bugs in Python source code. Fea-
tures are extracted using Abstract Syntax Trees (ASTs),
which enable the structured parsing of syntactic ele-
ments such as functions, classes, variables, conditionals,
and exception blocks. These features serve as input to
train both models for binary classification: distinguishing
between buggy and non-buggy code files. Both buggy
and non-buggy code files have 200 Python scripts. The
models are evaluated using accuracy, confusion matrices,
Receiver Operating Characteristic (ROC) curves, and
classification reports across multiple training epochs.
Experimental results show that the Random Forest model
achieves stable performance with an accuracy of 86.67%
and an Area Under the Curve (AUC) score of 0.97
on the test set, without significant improvement across
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epochs. In contrast, the Neural Network demonstrates
gradual accuracy improvement from 68.33% at epoch 5
to 85% at epoch 300, along with higher sensitivity in
bug detection, although it requires longer training times.
Additionally, both models are used to predict specific
lines of code containing potential bugs. Based on these
findings, the choice of model depends on the application
context. Random Forest offers faster deployment and
consistent performance, while Neural Networks provide
better adaptability to complex patterns and improved
accuracy with sufficient training.

Index Terms—Bug Detection, Syntactic Features, Ran-
dom Forest, Neural Network

I. INTRODUCTION

TODAY’S increasingly complex software systems
have made development and maintenance more

demanding than ever. Developers devote significant
time and effort to revising code, adding new features,
identifying bugs, and fixing errors. Predictive models
are increasingly used to automate error detection and
improve overall efficiency to support these efforts [1–
4]. However, software bugs remain a persistent chal-
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lenge in the fast-paced development cycle, not only
disrupting functionality and reliability but also leading
to financial losses and reduced user satisfaction. As
such, efficient bug detection methods have attracted
considerable attention from researchers and practition-
ers alike [5].

Several approaches have been proposed to address
the software bug prediction problem. Machine Learn-
ing (ML) approaches, in particular, have gained promi-
nence due to their ability to learn patterns from histor-
ical data and predict defective modules using various
metrics and computational techniques [6–10]. Several
studies have explored different ML and Deep Learning
(DL) methods for this purpose. The first example has
empirically evaluated eight well-known algorithms for
software bug prediction and found that DL models,
particularly Long Short-Term Memory (LSTM), out-
perform others, achieving an accuracy of 87% [11].
However, this approach is limited to sequential data
and does not exploit structural or syntactic features
of source code, which can enhance detection perfor-
mance. The second example has applied ML tech-
niques to analyze bug reports and prioritize severity
levels [12]. While it demonstrates promising results
with Random Forest (75% accuracy), it lacks scala-
bility for multi-file analysis and does not incorporate
syntax-based feature extraction.

The third example has introduced an Adaptive Arti-
ficial Jellyfish Optimization algorithm combined with
LSTM for software bug prediction. It achieves high ac-
curacy (93.41% on the Promise dataset), outperforming
traditional classifiers. Despite its success, the method
relies heavily on hyperparameter tuning and requires
extensive training times, making it inefficient for real-
time applications. Furthermore, like many previous
studies, it does not consider the structural charac-
teristics of code, limiting its generalizability across
programming languages. The fourth example has used
natural language processing on DL features to identify
software bugs, showing that combining feature selec-
tion, transfer learning, and ensemble techniques signif-
icantly improves prediction accuracy [13]. Meanwhile,
the fifth example has applied feature transformation to
raw software metrics, resulting in a 4.25% average im-
provement in recall values. However, it is based solely
on textual or statistical features without leveraging the
actual syntactic structure of code [14].

The DL has also been employed for bug priori-
tization. For instance, previous research has utilized
RNN-LSTM networks on JIRA datasets, achieving
90% accuracy and improving the F-measure by up to
15.2% compared to KNN [15]. Another research has
applied ensemble learning for bug report classification,
reaching up to 96.72% accuracy with text augmenta-

tion [16]. Despite these advancements, most models
still treat code as plain text or numerical data rather
than exploiting its hierarchical structure. One recent
approach has explored the use of Abstract Syntax Trees
(ASTs) for code evaluation, highlighting their potential
in capturing syntactic relationships within code [17].
However, it focuses primarily on code similarity and
plagiarism detection rather than bug prediction.

The research addresses these limitations by propos-
ing an automated bug detection framework that com-
bines syntactic feature extraction using ASTs with a
dual-model comparison: Random Forest for ML and
Neural Network for DL. The approach systematically
captures structural code features, such as the number
of functions, classes, variables, conditionals, and ex-
ception blocks, which are often overlooked in existing
studies [13, 14, 18]. Additionally, the system is de-
signed to process multiple Python files simultaneously,
offering a scalable solution suitable for large-scale
software projects.

By leveraging both traditional and DL models, the
researchers aim to provide a balanced perspective
on performance trade-offs: speed and stability versus
adaptability and accuracy. The dataset used consists of
Python source code [19], allowing the researchers to
evaluate the effectiveness of the method in real-world
scenarios. The research contributes to the growing
field of ML-based bug prediction by introducing a
structured, scalable, and interpretable approach that
improves upon current state-of-the-art methodologies.

II. RESEARCH METHOD

A. Data Collection and Processing

The data collection in the research is conducted
manually by gathering Python code samples, which are
then categorized into two distinct groups: buggy code
and non-buggy code. The buggy code group consists
of 200 Python scripts intentionally embedded with
various types of errors, including syntax errors, logical
flaws, and runtime exceptions. The non-buggy code
group also contains 200 Python scripts that are verified
to be error-free and executed without issues.

All code samples are carefully reviewed and val-
idated to ensure accurate classification before being
used in the research. The dataset is organized into
two folders: “bugged” and “non bugged”. Each file
in these directories is processed systematically using
the extract features from code() function to extract
syntactic features such as the number of functions,
classes, variables, lines of code, conditionals, and ex-
ception blocks. Following feature extraction, labeling
is performed, where each sample is assigned a binary
label: 1 for buggy code and 0 for non-buggy code [19].
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This balanced dataset ensures equal representation
from both categories, providing a solid foundation for
training and evaluating the ML models used in the
research.

B. Feature Extraction Using Abstract Syntax Tree
(AST)

The AST module is utilized to analyze Python code.
It also extracts specific features. The features extracted
are as follows [17]:

1) The number of functions in the code
(num functions)

2) The number of classes in the code (num classes),
3) The number of variable declarations

(num variables),
4) The number of lines of code (num lines),
5) The number of conditional statements (if, while,

for) (num conditionals),
6) The number of try blocks used for exception

handling (num exceptions).
The formula used for this feature extraction is shown

in Eq. (1). It has N as total number of nodes in the
syntax tree, I as an indicator function that returns 1 if
a node belongs to a specific type (e.g., function, class,
variable) and 0 otherwise, and noden as the n-th node
in the AST.

Number of Features =
N∑

(n=1)

I(noden ϵSpecific Type).

(1)

C. Model Training

The development of the Random Forest model is
conducted using the sklearn library, which provides
implementations for various ML algorithms, including
Random Forest. The model is built using the Ran-
domForestClassifier from sklearn.ensemble. Random
Forest is an ensemble learning method that employs
multiple decision trees to make predictions. Each tree
in the forest predicts a label based on input features,
and the final decision is determined through major-
ity voting across all trees [19, 20]. In the research,
the model is trained using a dataset with extracted
and standardized features, which is achieved using
the StandardScaler. The model is then trained using
the fit() function with the training data (X train and
y train) [20]. This training process enables the model
to identify patterns within the data and learn to classify
Python code as buggy or non-buggy. Formula used is
Eq. (2). It has y as the final prediction of the model
(bug detected or no bug detected), n as the number of
trees in the forest, Ti as the prediction from the i-th

tree based on the input x, and Majority Vote as the
rule used to determine the final prediction by selecting
the majority decision from all decision trees.

y = Majority Vote(
n⋃

i=1

Ti(x)). (2)

The development of the Neural Network model is
carried out using the Keras library, which is part of
TensorFlow. The model is constructed with an artificial
Neural Network architecture comprising multiple lay-
ers [20]. The model is initialized as a Sequential model,
meaning that layers are added in a logical order. The
first layer consists of a Dense layer with 128 neurons
and a Rectified Linear Unit (ReLU) activation function.
It accepts input dimensions corresponding to the num-
ber of features in the data (X train scaled.shape) [1].
Following the first layer, a Dropout layer with a
50% dropout rate is added to prevent overfitting by
randomly deactivating some neurons during training.
The second layer is another Dense layer with 64
neurons and a ReLU activation function, followed by
another Dropout layer [21]. The final output layer is a
Dense layer with 1 neuron and a sigmoid activation
function, producing an output value between 0 and
1, representing the class probability (bugged or non-
bugged). The formula used is Eq. (3). It shows y as the
output of the network (probability), σ as the sigmoid
activation function, calculated in Eq. (4), wi as the
weight for the i-th feature, xi as the value of the i-th
feature, b as the bias term, and n as the number of
features in the input.

y = σ(

n∑
i=1

wixi + b), (3)

σ(z) =
1

1 + e−z
. (4)

D. Evaluation Metrics

The evaluation of the models in the research is
performed by calculating accuracy, the classification
report, and the confusion matrix for both models (Ran-
dom Forest and Neural Network) after training. Accu-
racy is determined by comparing the model’s predic-
tions with the test data and calculating the percentage
of correct predictions. For the Random Forest model,
the accuracy score function from the sklearn.metrics
library is used, while for the Neural Network model,
the accuracy is calculated by comparing the predicted
results (with a threshold of 0.5) against the actual
labels [12]. The formula used is Eq. (5). It shows TP
as true positives (correct predictions for the bugged
class), TN as true negatives (correct predictions for
the non-bugged class), FP as false positives (incorrect
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predictions for the bugged class), and FN as false
negatives (incorrect predictions for the non-bugged
class).

Accuracy =
Number of Correct Predictions

Total Number of Samples

=
TP + TN

TP + TN + FP + FN
. (5)

Additionally, the classification report provides other
metrics, such as precision, recall, and F1-score for each
class (bugged and non-bugged). Precision measures
the proportion of correct bugged class predictions out
of all bugged class predictions, while recall assesses
how many bugged instances were correctly detected
by the model. The F1-score is the harmonic mean of
precision and recall, offering a balanced view of the
model’s performance. The confusion matrix illustrates
the distribution of correct and incorrect predictions in
a 2×2 matrix format, which is used to evaluate the
model’s errors in greater detail. This matrix displays
the number of True Positives, True Negatives, False
Positives, and False Negatives. The Receiver Operating
Characteristic (ROC) and Area Under the Curve (AUC)
are also calculated to evaluate the model’s quality from
another perspective. The AUC reflects how well the
model distinguishes between the two classes (bugged
and non-bugged). A higher AUC indicates better model
performance in predicting the correct class [22].

III. RESULTS AND DISCUSSION

A. Bug Detection Implementation

The research is designed to detect whether a Python
source code file contains bugs and to identify the
specific lines where those bugs may occur. Two ML
models, namely Random Forest and Neural Network,
are employed for bug detection. The models are trained
using features extracted from the source code syntax,
such as the number of functions, classes, variables,
and control structures, allowing the algorithms to learn
patterns associated with bugs. The model performance
is evaluated using a confusion matrix on the testing
data. Only the testing data (30% of the dataset) is
used for evaluation, as it is not involved in the train-
ing process, ensuring an objective assessment of the
model’s generalization ability. Both Random Forest
and Neural Network demonstrate good classification
accuracy and performance, although some prediction
errors are observed in both models.

B. Model Performance

The bug detection results indicate that the Random
Forest model exhibits reliable performance in capturing

simple patterns based on extracted features. With high
accuracy on the testing data, this model proves its
effectiveness in more structured cases. On the other
hand, the Neural Network demonstrates strong capabil-
ity in recognizing more complex patterns. The use of
dropout and class weight adjustments helps the Neural
Network mitigate data imbalance issues between the
“bugged” and “non bugged” classes. However, due to
its increased complexity, the Neural Network requires
a longer training time compared to the Random Forest
model. Figure 1 presents an example of the model’s
bug detection results.

Figure 1 presents partial bug detection results across
various source code files. It shows both models’ predic-
tions and the ground truth of bug presence. Each row
displays the analyzed file, the model’s prediction (“bug
detected”), the actual bug status (“bugged”), and the
specific line containing the bug. These results indicate
that the model accurately detects bugs in all displayed
samples, demonstrating strong performance in bug
classification. However, the model’s effectiveness is not
solely determined by its ability to identify the existence
of bugs but also by its precision in detecting their exact
locations.

The performance of the Random Forest model in
detecting bugs in Python source code is evaluated using
a confusion matrix, as shown in Fig. 2. The matrix
reveals that the model achieves strong classification
accuracy with a balanced ability to distinguish between
bugged and non-bugged files. Out of 31 actual buggy
files, the model correctly identifies 28 as containing
bugs (true positives), reflecting a high detection accu-
racy and strong sensitivity to bug-related code patterns.
However, 3 buggy files are misclassified as non-buggy
(false negatives), suggesting a low miss rate, which
enhances the model’s reliability for practical bug de-
tection tasks. It suggests that the model rarely misses
actual bugs, making it reliable for practical use. Con-
versely, among 29 non-buggy files, the model correctly
classifies 24 as clean (true negatives), showcasing its
effectiveness in avoiding false alerts. Nevertheless, 5
non-buggy files are incorrectly labeled as buggy (false
positives), which may indicate challenges in distin-
guishing complex code patterns that resemble buggy
syntax but are actually valid. While this number is
relatively small, it highlights potential limitations in
distinguishing certain syntactic structures that resemble
buggy behavior but are not actually erroneous.

Overall, the Random Forest model achieves an ac-
curacy of 86.67%, reflecting its robustness in bug
detection tasks. The precision and recall values also
indicate a well-balanced performance: the model not
only identifies most true bugs effectively but also min-
imizes incorrect classifications. These findings suggest
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Figure 1 Sample output showing bug detection results for selected Python scripts, including predicted 

and actual bug status with corresponding line numbers. 

 

Figure 1 presents partial bug detection results across various source code files. It shows both models’ 

predictions and the ground truth of bug presence. Each row displays the analyzed file, the model’s 

prediction (“bug detected”), the actual bug status (“bugged”), and the specific line containing the bug. 

These results indicate that the model accurately detects bugs in all displayed samples, demonstrating 

strong performance in bug classification. However, the model’s effectiveness is not solely determined 

by its ability to identify the existence of bugs but also by its precision in detecting their exact locations. 

 

Fig. 1. Sample output showing bug detection results for selected Python scripts, including predicted and actual bug status with corresponding
line numbers.
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Figure 2 Confusion matrix for Random Forest. 

The performance of the Random Forest model in detecting bugs in Python source code is evaluated 

using a confusion matrix, as shown in Figure 2. The matrix reveals that the model achieves strong 

classification accuracy with a balanced ability to distinguish between bugged and non-bugged files. Out 

of 31 actual buggy files, the model correctly identifies 28 as containing bugs (true positives), reflecting 

a high detection accuracy and strong sensitivity to bug-related code patterns. However, 3 buggy files are 

misclassified as non-buggy (false negatives), suggesting a low miss rate, which enhances the model’s 

reliability for practical bug detection tasks. It suggests that the model rarely misses actual bugs, making 

it reliable for practical use. Conversely, among 29 non-buggy files, the model correctly classifies 24 as 

clean (true negatives), showcasing its effectiveness in avoiding false alerts. Nevertheless, 5 non-buggy 

files are incorrectly labeled as buggy (false positives), which may indicate challenges in distinguishing 

complex code patterns that resemble buggy syntax but are actually valid. While this number is relatively 

small, it highlights potential limitations in distinguishing certain syntactic structures that resemble buggy 

behavior but are not actually erroneous. 

 

Overall, the Random Forest model achieves an accuracy of 86.67%, reflecting its robustness in 

bug detection tasks. The precision and recall values also indicate a well-balanced performance: the 

model not only identifies most true bugs effectively but also minimizes incorrect classifications. These 

findings suggest that the proposed method, leveraging syntactic features extracted via ASTs and trained 

using Random Forest, is both effective and efficient for automated bug detection in Python programs. 

Furthermore, the confusion matrix supports the conclusion that the model can be confidently deployed 

in early-stage software testing environments to help developers to identify potentially problematic code 

segments before deployment. 

Fig. 2. Confusion matrix for Random Forest.

that the proposed method, leveraging syntactic features
extracted via ASTs and trained using Random Forest,
is both effective and efficient for automated bug detec-
tion in Python programs. Furthermore, the confusion
matrix supports the conclusion that the model can be
confidently deployed in early-stage software testing
environments to help developers to identify potentially
problematic code segments before deployment.

The Keras Neural Network model demonstrates
strong performance in distinguishing between bugged
and non-bugged Python files, as illustrated by the con-
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Figure 3 Confusion matrix for Neural Network. 

 

The Keras Neural Network model demonstrates strong performance in distinguishing between bugged 

and non-bugged Python files, as illustrated by the confusion matrix in Figure 3. Out of 31 actual bugged 

files, the model correctly classifies all of them as containing bugs (true positives), resulting in zero false 

negatives. This outcome reflects perfect recall, indicating that the model does not miss any actual bugs, 

an essential quality in systems where undetected bugs may lead to critical failures. In contrast, among 

29 non-bugged files, the model accurately identifies 20 files as non-bugged (true negatives) but 

misclassifies 9 files as bugged (false positives). Its relatively higher false positive rate suggests that the 

model adopts a conservative classification strategy, favoring bug detection at the expense of 

occasionally flagging clean code. While this cautious approach reduces the risk of undetected bugs, it 

may also result in unnecessary inspection of code that is actually correct. 

The Keras Neural Network achieves an accuracy of 85% at epoch 300, demonstrating its 

capacity to learn meaningful patterns from syntactic features extracted via Abstract Syntax Trees 

(ASTs). Although this performance matches that of the Random Forest model in terms of accuracy, the 

neural network particularly excels in bug detection completeness, as evidenced by the absence of false 

negatives. This indicates strong sensitivity, making it suitable for applications where missing bugs could 

lead to critical issues. 

However, compared to Random Forest, the Neural Network model produces a higher number 

of false positives, suggesting that further threshold tuning or post-processing may be necessary to 

enhance precision in real-world deployments. These results confirm the effectiveness of the proposed 

method, combining syntactic feature extraction and DL, for automated bug detection in Python 

programs. Despite requiring longer training times, the model’s progressive accuracy improvement with 

increasing epochs underscores its potential for further optimization, especially in managing complex 

and large-scale software systems. 

 

Fig. 3. Confusion matrix for Neural Network.

fusion matrix in Fig. 3. Out of 31 actual bugged files,
the model correctly classifies all of them as containing
bugs (true positives), resulting in zero false negatives.
This outcome reflects perfect recall, indicating that the
model does not miss any actual bugs, an essential
quality in systems where undetected bugs may lead
to critical failures. In contrast, among 29 non-bugged
files, the model accurately identifies 20 files as non-
bugged (true negatives) but misclassifies 9 files as
bugged (false positives). Its relatively higher false pos-
itive rate suggests that the model adopts a conservative
classification strategy, favoring bug detection at the
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C. Evaluation of Detection Results 

 
 

Figure 4 Evaluation of Neural Network results. 

 

Figure 4 illustrates the training and validation performance of the Neural Network model over 300 

epochs, using accuracy and loss metrics. The left plot shows a consistent upward trend in accuracy as 

training progresses, where both training and validation accuracy steadily improve and converge at 

approximately 85% by epoch 300. The validation accuracy closely follows the training accuracy with 

minor fluctuations, indicating good generalization capability and model stability across unseen data. 

In the right plot, both training and validation loss experience a sharp decline during the initial epochs, 

particularly in the first 50, followed by a gradual convergence to lower and stable values. By epoch 300, 

the training loss is near 0.4, while the validation loss stabilizes around 0.45, with only a slight gap 

between the two. This small difference reflects minimal overfitting, suggesting that the model does not 

rely excessively on the training data and retains the ability to perform well on new, unseen inputs. 

Overall, the learning curves indicate that the model reaches its optimal performance after prolonged 

training, achieving a balance between bias and variance. The stable improvement across both accuracy 

and loss validates the model's effectiveness and reliability, making it well-suited for similar 

classification tasks involving syntactic features extracted from source code. 

 

 

Fig. 4. Evaluation of Neural Network results.

expense of occasionally flagging clean code. While this
cautious approach reduces the risk of undetected bugs,
it may also result in unnecessary inspection of code
that is actually correct.

The Keras Neural Network achieves an accuracy of
85% at epoch 300, demonstrating its capacity to learn
meaningful patterns from syntactic features extracted
via ASTs. Although this performance matches that of
the Random Forest model in terms of accuracy, the
neural network particularly excels in bug detection
completeness, as evidenced by the absence of false
negatives. This indicates strong sensitivity, making it
suitable for applications where missing bugs could lead
to critical issues.

However, compared to Random Forest, the Neural
Network model produces a higher number of false
positives, suggesting that further threshold tuning or
post-processing may be necessary to enhance preci-
sion in real-world deployments. These results confirm
the effectiveness of the proposed method, combining
syntactic feature extraction and DL, for automated
bug detection in Python programs. Despite requiring
longer training times, the model’s progressive accuracy
improvement with increasing epochs underscores its
potential for further optimization, especially in man-
aging complex and large-scale software systems.

C. Evaluation of Detection Results

Figure 4 illustrates the training and validation per-
formance of the Neural Network model over 300
epochs, using accuracy and loss metrics. The left plot
shows a consistent upward trend in accuracy as training
progresses, where both training and validation accuracy
steadily improve and converge at approximately 85%
by epoch 300. The validation accuracy closely follows
the training accuracy with minor fluctuations, indicat-
ing good generalization capability and model stability
across unseen data.

In the right plot, both training and validation loss
experience a sharp decline during the initial epochs,
particularly in the first 50, followed by a gradual
convergence to lower and stable values. By epoch
300, the training loss is near 0.4, while the validation
loss stabilizes around 0.45, with only a slight gap
between the two. This small difference reflects minimal
overfitting, suggesting that the model does not rely
excessively on the training data and retains the ability
to perform well on new, unseen inputs. Overall, the
learning curves indicate that the model reaches its
optimal performance after prolonged training, achiev-
ing a balance between bias and variance. The stable
improvement across both accuracy and loss validates
the model’s effectiveness and reliability, making it
well-suited for similar classification tasks involving
syntactic features extracted from source code.

Figure 5 displays the ROC curve of the Random
Forest model at epoch 300, which evaluates the clas-
sification performance based on the relationship be-
tween the True Positive Rate (TPR) and the False
Positive Rate (FPR). The curve shows a steep rise
towards the top-left corner, indicating excellent model
performance. The Area Under the Curve (AUC) is
0.97, which reflects a very high ability of the model
to distinguish between bugged and non-bugged files.
This high AUC value suggests that the model achieves
a strong trade-off between sensitivity and specificity,
making it effective in correctly identifying buggy code
while minimizing false alarms. The shape and position
of the curve demonstrate that the Random Forest classi-
fier performs consistently and generalizes well across
the dataset. The near-perfect classification capability
seen in this ROC curve confirms the robustness and
reliability of the model when deployed in real-world
software defect detection tasks. These results further
support the findings from the confusion matrix and
accuracy evaluations, showing that Random Forest

146

IN
 PRESS



Cite this article as: B. Imran, E. Wahyudi, S. Riadi, Z. Muahidin, S. Erniwati, and W. A. Wahyuni, “A
Comparative Hybrid Approach for Python Bug Detection Using Syntactic Features, Random Forest, and
Neural Network”, CommIT Journal 19(2), 141–150, 2025.

10 

 
 

Figure 5 Evaluation of Random Forest results. 

 

Figure 5 displays the ROC curve of the Random Forest model at epoch 300, which evaluates the 

classification performance based on the relationship between the True Positive Rate (TPR) and the False 

Positive Rate (FPR). The curve shows a steep rise towards the top-left corner, indicating excellent model 

performance. The Area Under the Curve (AUC) is 0.97, which reflects a very high ability of the model to 

distinguish between bugged and non-bugged files. This high AUC value suggests that the model achieves 

a strong trade-off between sensitivity and specificity, making it effective in correctly identifying buggy 

code while minimizing false alarms. The shape and position of the curve demonstrate that the Random 

Forest classifier performs consistently and generalizes well across the dataset. The near-perfect 

classification capability seen in this ROC curve confirms the robustness and reliability of the model when 

deployed in real-world software defect detection tasks. These results further support the findings from the 

confusion matrix and accuracy evaluations, showing that Random Forest remains a competitive method 

for bug prediction based on syntactic code features. The overall results from the conducted experiments 

can be seen in Table 1. 

 

Fig. 5. Evaluation of Random Forest results.

TABLE I
RESULTS OF OVERALL EXPERIMENTS.

No Epoch Batch Size Accuracy

1 5 32 Random Forest = 85.00%
Neural Network = 68.33%

2 15 32 Random Forest = 85.00%
Neural Network = 73.33%

3 25 32 Random Forest = 85.00%
Neural Network = 75.00%

4 50 32 Random Forest = 85.00%
Neural Network = 80.00%

5 72 32 Random Forest = 85.00%
Neural Network = 81.67%

6 100 32 Random Forest = 85.00%
Neural Network = 83.33%

7 200 32 Random Forest = 85.00%
Neural Network = 83.33%

8 300 32 Random Forest = 86.67%
Neural Network = 85.00%

remains a competitive method for bug prediction based
on syntactic code features. The overall results from the
conducted experiments can be seen in Table I.

Table I compares the accuracy of the Random For-
est and Neural Network algorithms at various epoch
levels, using a fixed batch size of 32. The Random
Forest model consistently achieves an accuracy of
85.00% across most epochs, with a slight improve-
ment to 86.67% at epoch 300, indicating its stability
and robustness even without further training adjust-
ments. In contrast, the Neural Network demonstrates
a clear upward trend in accuracy as the number of
epochs increases. Starting from 68.33% at epoch 5,
the model gradually improves to 80.00% by epoch 50,
and continues to rise, reaching 83.33% at epochs 100
and 200, and finally achieving 85.00% at epoch 300.

This pattern reflects the Neural Network’s ability to
progressively learn and optimize its parameters through
iterative training. The comparison highlights key differ-
ences between the two models. While Random Forest
offers consistent and reliable performance with mini-
mal tuning, the Neural Network shows greater adapt-
ability and potential for improvement with extended
training. However, the performance gain of the Neural
Network starts to plateau after epoch 100, suggesting
a convergence point. Interestingly, at epoch 300, the
Neural Network catches up to match Random For-
est’s performance, indicating its competitive viability
given sufficient training time. Thus, the choice between
models depends on specific application needs: Random
Forest is suitable for quick and stable deployment,
whereas Neural Networks require more computational
time but can achieve competitive results through deeper
training.

D. Discussion

The research presents an analysis of experimental
results alongside a comparative evaluation of the Ran-
dom Forest and Neural Network models for bug detec-
tion in Python source code. The findings indicate that
the Random Forest model consistently maintains stable
accuracy across all testing scenarios, exhibiting mini-
mal fluctuations regardless of the number of training
epochs. In contrast, the Neural Network demonstrates
a more dynamic learning trajectory, characterized by a
gradual improvement in accuracy, ultimately reaching
85% at epoch 300. However, this enhanced perfor-
mance comes at the cost of increased computational
demands and longer training durations.

In terms of sensitivity, the Neural Network outper-
forms the Random Forest in detecting buggy code
segments, albeit with a higher FPR, which can mis-
classify non-buggy code as buggy. It suggests that
model selection should be based on specific project
requirements. Random Forest is preferable in cases that
prioritize speed and stability. At the same time, Neural
Networks are more appropriate for applications that
demand higher sensitivity and the ability to capture
complex data patterns.

As shown in Table I, the Random Forest achieves
an average accuracy of 85% consistently across dif-
ferent folds. Meanwhile, the Neural Network’s accu-
racy improves progressively with training epochs. This
trade-off performance emphasizes the balance between
model complexity and efficiency. Evaluation using
ROC curves confirms that both models possess strong
classification capabilities, with the Neural Network
achieving slightly higher AUC scores in most test
cases.
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Previous studies have explored a variety of ML and
DL methods for bug detection, reflecting a growing
interest in automated software quality assurance. Previ-
ous research has introduced BugLab, a self-supervised
approach combining a detector and a selector model,
achieving up to 30% improvement over baseline meth-
ods and discovering previously unreported bugs in
Python open-source projects [23]. The NerdBug frame-
work focuses on capturing neural network behaviors
to detect bugs in DL systems [24]. A hybrid model
based on Adaptive Artificial Jelly Optimization (A2JO)
and LSTM networks has also been proposed for soft-
ware bug prediction, demonstrating the versatility of
evolutionary algorithms in ML pipelines [18]. Addi-
tionally, Theia has integrated dataset characteristics
into bug localization tasks for Keras and PyTorch
projects, showing how data profiles influence detec-
tion performance [25]. Last, Sydr-Fuzz, a fuzz testing
pipeline, has been developed for robustness validation
in Python-based ML frameworks [26].

In comparison with these previous studies, the re-
search introduces a hybrid method that fuses rule-
based syntactic parsing through ASTs with ML and
DL classifiers. Unlike approaches that focus on single-
model pipelines or specific bug types, the method
enables multi-file analysis and balances the need for
interpretability, accuracy, and computational efficiency.
Future research may include statistical validation, such
as confidence intervals and significance testing, to
strengthen performance claims, as well as hyperpa-
rameter optimization and advanced DL architectures to
further improve bug detection accuracy and scalability.

IV. CONCLUSION

The research demonstrates that both the Random
Forest and Neural Network models possess valuable
capabilities in detecting bugs within Python source
code, each with distinct strengths. The Random For-
est model exhibits consistently stable performance
throughout training and achieves its highest accuracy
of 86.67% at epoch 300, despite showing minimal
variation across earlier epochs. This consistency makes
it a reliable and efficient choice for scenarios requiring
rapid deployment and dependable results. In contrast,
the Neural Network model displays a progressive
learning curve, gradually improving in accuracy and
ultimately reaching 85% at epoch 300. This trend
highlights its ability to capture more complex patterns
in the data over time. Evaluations using confusion ma-
trices and ROC curves further confirm that both models
generalize well from training data, with the Neural
Network demonstrating slightly higher sensitivity in
identifying buggy code segments, albeit at the cost of
a higher false positive rate.

The research findings hold meaningful implications
for the field of automated software quality assurance.
Integrating ML into static code analysis tools can serve
as an effective initial screening mechanism before more
resource-intensive dynamic testing is conducted. The
proposed method can be implemented as a lightweight
pre-screening tool during code reviews or within Con-
tinuous Integration (CI) and Continuous Delivery (CD)
pipelines to help developers to identify potentially
problematic code segments early in the development
cycle.

Despite these promising outcomes, several limita-
tions should be acknowledged. First, although the
dataset enables preliminary analysis, it remains limited
in scale and diversity, which may affect the generaliz-
ability of the findings. The performance of both models
may also vary significantly when applied to larger,
more diverse, or production-grade codebases due to
the current dataset’s synthetic nature and limited rep-
resentativeness. Second, the feature extraction process
is based on basic syntactic metrics such as the number
of functions, classes, conditionals, and lines of code.
While these features provide useful structural insights,
they may not fully capture the semantic or contextual
aspects that are critical for detecting more nuanced
logical errors. Third, the bug line detection mechanism
is rule-based and heuristic-driven, targeting a limited
set of common error types, such as division by zero,
missing else branches, and undeclared variable usage.
It restricts its applicability to broader categories of real-
world software defects.

Nevertheless, the research extends beyond binary
classification by incorporating AST-based syntactic
and semantic analysis to identify bug-prone lines
within the source code. This rule-based approach op-
erates independently of the training dataset, enhancing
the system’s interpretability and applicability in real-
world development environments. In future research,
the researchers aim to expand the dataset using real-
world open-source repositories and leverage automated
bug injection techniques to increase diversity and ro-
bustness.

Moreover, future researchers should aim to enhance
the system’s capabilities by incorporating context-
aware and semantic-level code representations. Poten-
tial approaches include leveraging AST embeddings,
code property graphs, or data flow analysis to cap-
ture program behavior better. Additionally, exploring
advanced DL architectures, such as Graph Neural
Networks (GNNs) or transformer-based models like
CodeBERT and GraphCodeBERT, can significantly
improve prediction accuracy and cross-project gener-
alization. By bridging syntactic analysis and ML, the
researchers provide a practical and scalable foundation
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for integrating intelligent bug detection into modern
software development workflows.
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