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Abstract—Brain tumor segmentation from Magnetic
Resonance Imaging (MRI) images is a crucial step in
medical diagnosis and treatment planning, which directly
impacts clinical decision-making and patient outcomes,
particularly in resource-constrained medical environ-
ments. However, achieving high segmentation accuracy
while maintaining computational efficiency remains a
challenge, particularly for complex tumor types. There=
fore, the research aims to use the brain tumor segmenta-
tion dataset and the brain tumor MRI dataset from/Kag-
gle to evaluate segmentation performance. Thefanalysis
also investigates the trade-off between modél accuracy
and efficiency by optimizing the Res-UNet architecture
with attention mechanisms, including thesAttention Gate
(AG), Squeeze-and-Excitation (SE) Block, and\the Convo-
lutional Block Attention Module (EBAM). As the result,
attention mechanisms improve feature representation and
segmentation precision. Then, these procedures also add
computational cost. To address this challenge, Dynamic
Range Quantization (DRQ), compresses théymodel from
127 MB to 32 MB (75% xeduction) and speeds up
inference by 37%_(0.3143 s“to, 0.1973 s). During the
process, the best' modéljmRes-UNet with AG, achieves
a mean Intepsection hover Union (IoU) of 0.845 and
drops only by less than 0.0004 after quantization. Unlike
previous studies that explored attention or quantization
in isolation, the researchers combine both to achieve accu-
rate, efficient, and deployable brain tumor segmentation
for resource-constrained settings.

Index Terms—Brain Tumor Segmentation, Res-UNet,
Attention Mechanisms, Quantization

I. INTRODUCTION

HE application of medical image segmentation
is paramount in disease detection and diagnosis,
particularly in the context of identifying brain tumors
through Magnetic Resonance Imaging (MRI). Precise
segmentation of brain tumors is crucial for various
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critical clinical tasks,including/accurate diagnosis, in-
dividualizéd treatment planning (e.g., radiotherapy and
surgicall navigatiom)y, as“well as effective monitoring
of disease,progression and treatment response. More-
over, inaccurate or dnefficient segmentation can lead
to misdiagnoSissgsuboptimal therapeutic interventions,
and ddverse patient outcomes. Deep learning methods,
specificallygConvolutional Neural Networks (CNNs),
have, shewn outstanding performance in this domain
due to the ability to extract complex features. Among
these methods, U-Net has become a widely used ar-
chitecture for medical image segmentation due to its
ability to preserve spatial details across resolutions [1].
It has been successfully applied to various tasks [2].
To improve the performance of the U-Net for tumor
detection, incorporating it with residual networks such
as ResNet offers improved stability when training
deeper models [3]. The resulting Res-UNet architec-
ture enables deeper feature representation, improving
segmentation accuracy for complex images, such as
brain tumors.

Attention mechanisms, including the Attention Gate
(AG), Squeeze and Excitation (SE) Block, and Con-
volutional Block Attention Module (CBAM), further
enhance segmentation performance by highlighting rel-
evant features while suppressing irrelevant ones. AG
has proven effective in segmenting small organs such
as the pancreas [4]. On the other hand, SE Block
and CBAM strengthen major features as well as im-
prove segmentation accuracy [5, 6]. Incorporating these
mechanisms into Res-UNet is expected to improve
segmentation metrics, such as Intersection over Union
(IoU), a critical indicator of accuracy [7, 8].

Recent analysis explores compression methods to
improve computational efficiency in this research.
Quantization reduces model size while maintaining
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performance [9-11], and hybrid methods combin-
ing pruning as well as low-bit quantization achieve
high accuracy with reduced computational cost [12,
13]. Adaptive quantization frameworks, such as Q-
Net Compressor, have shown significant memory and
power savings on constrained devices without compro-
mising performance [13], making the models suitable
for medical or mobile edge environments.

Many previous studies have investigated attention
mechanisms to improve accuracy [4-8], or quantiza-
tion to reduce complexity [9-13] in isolation, without
systematically analyzing how the combination affects
both segmentation accuracy and efficiency. This lack
of incorporated evaluation limits practical deployment,
specifically in resource-constrained clinical environ-
ments where both high accuracy and low computa-
tional cost are essential. To address this gap, the re-
searchers integrate multiple attention mechanisms into
a Res-UNet framework while simultaneously applying
quantization techniques to compress the model. The
proposed approach aims to balance segmentation accu-
racy with computational efficiency, providing a more
comprehensive evaluation than prior isolated methods.
Such integration is expected to yield a lightweight
yet accurate segmentation model that is feasible for
real-world medical applications, including mobile off
embedded systems.

The research directly addresses the gap by systcmat-
ically combining multiple attention mechanismspwithin
the Res-UNet framework and applying Dysiamic Range
Quantization (DRQ) to achieve both high segmentation
accuracy and computational efficiency. By, developing
a model that achieves an IoU of 0.845 whilereducing
model size by 75% and improving inference speed by
37%, the analysis provides a practicahsolution for brain
tumor segmentation deployable on ‘standard hospital
workstations or edge devices. The main contributions
are as follows: systematic “investigation of various
attention mechanisms (AG, SE Bloeck, and CBAM) in-
corporated into the Res-UNebarchitecture for improved
brain tumor segmentation accuracy; DRQ applications
to achieve significant model size reduction and in-
ference speed-up while preserving high segmentation
performance; and comprehensive evaluation showing
the optimal combination of attention mechanism (AG)
and quantization.

A. Trade-off Between Attention Mechanisms and
Quantization

Deep learning has revolutionized medical image
segmentation, particularly in tasks requiring high pre-
cision, such as brain tumor segmentation. Attention
mechanisms, including AG [4, 14], SE Block [5, 15],

and CBAM [6, 16, 17], have been shown to improve
segmentation accuracy by dynamically focusing on rel-
evant regions while suppressing irrelevant information.
This capability is particularly useful for segmenting
complex structures such as brain tumors, where ir-
regular shapes, subtle intensity variations, and unclear
boundaries often pose significant challenges. However,
as attention mechanisms generally improve feature
extraction and segmentation accuracy, the improvement
comes at a considerable cost. The incorporation can
lead to increased model complexity, substantial com-
putational demand, and higher memory usage [18-
20]. Concerning clinical settings, specifically those in
resource-limited regions or reliant on edge devices,
such computational overheadgrenders these advanced
models impractical due t6 excessive inference times,
energy consumption, and stringent hardware require-
ments, limiting the real-world applicability.

Quantizationfaddresses computational challenges by
reducing the precisionfof ' model parameters, including
weights and activations, from high-precision formats,
such as' FP32, to lower-précision formats, like INTS.
It significantly” reduces“memory usage and acceler-
ates “inference, enabling the deployment of models
on, resource-constrained hardware [21-23]. However,
a ‘critical “dsawback of quantization is its inherent
potential to degrade model accuracy, particularly when
applied to complex architectures or in scenarios de-
manding high precision, such as segmentation [24—
26]. Marginal accuracy degradation in brain tumor
segmentation can lead to severe clinical implications,
including misdiagnosis or suboptimal treatment plan-
ning. Moreover, complex architectures, including those
improved with attention mechanisms, are often highly
sensitive to this precision loss, as the effectiveness
relies on subtle and precise feature weighting that is
severely impacted by quantization-induced errors [27—
29].

The existing literature often explores attention mech-
anisms for accuracy improvement and quantization for
efficiency optimization largely in isolation or addresses
the combination without fully mitigating the inherent
compromises for highly sensitive medical applications.
Few studies [30, 31] have systematically investigated
how different attention mechanisms interact with var-
ious quantization strategies to achieve an optimal and
practical balance, specifically for brain tumor segmen-
tation, where both diagnostic precision as well as de-
ployability are non-negotiable requirements. This gap
shows a significant unresolved challenge in developing
robust, accurate, and truly deployable deep learning
models for clinical use. Therefore, a comprehensive
understanding of this complex trade-off is crucial to
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Fig. 1. Binary masks complementing Magnetic Resonance Imaging (MRI) tumor segmentation sets.

bridge the gap between theoretical advancements and
practical clinical implementation.

B. Tumor Localization and Segmentation Validation in
Brain MRI

In the research, further analysis aims to ensure that
tumor predictions follow medical theories concerning
the anatomical locations of specific tumor types, be-
sides evaluating the segmentation results quantitatively
using metrics such as IoU. For instance, gliomas
are typically intra-axial, located in brain tissue, and
frequently found in the frontal, temporal, orgpasi-
etal lobes [32]. These tumors often have pebrly de-
fined margins due to the invasive naturef and show
a bright ring-like pattern post-contrast administsation
as an indicator of central necrosis® [32]» Addition-
ally, surrounding brain tissue swelling (peritumotal
edema) is commonly observed omT2-weighted MRI
as darker areas [33]. Meningiomas ‘Qtiginate from the
meninges and are extrasaxial, often situated near the
brain surface, such as along the falx cerebri or in
the cranial fossae [34]. These tumors are characterized
by well-defined, ‘toundédyor, oval, shapes. They show
homogeneoughimprovement after-contrast administra-
tion. A distinguishing feature is the dural tail sign,
which appears as‘a, thickened edge adjacent to the
tumor on MRI [35]" Following the discussion, per-
itumoral edema is usually less prominent compared
to gliomas [33]. Pituitary tumors are located at the
base of the brain in the sella turcica, just beneath
the hypothalamus [36]. These tumors typically show
uniform brightness post-contrast and may alter the sella
turcica structure or exert pressure on the optic chiasm,
potentially affecting vision [33].

II. RESEARCH METHOD

A. Brain Tumor Dataset for Classification and Seg-
mentation

Medical image segmentation and classification heav-
ily rely on high-quality datasets to develop robust

and accurate deep learning models. Two widely used
datasets in brain tumogstudies are the brain tumor seg-
mentation [37] and the brain tumor MRI dataset [38],
both available on Kaggle! These datasets have been
instrumental in advaneing segmentation and classifica-
tion methedologies, proyidingsstudies with comprehen-
sive resources foigevaluation as well as innovation.

The braingtumor segmentation dataset [37] provides
high-resolution MRL/images with detailed annotations,
focusing on 4amot boundary detection and segmen-
tationl (see Fig. 1). It is a benchmark dataset that is
fréquently séferenced for developing and testing ad-
vaneed ségmentation architectures [39—42]. Moreover,
the comprehensive nature of the dataset enables the
exploration of complex tumor segmentation challenges,
significantly contributing to improved segmentation
accuracy in medical imaging.

Moreover, the brain tumor MRI dataset [38] is a key
resource for classification tasks, categorizing images
into glioma, meningioma, pituitary tumors, and no
tumor (see Fig. 2). Its structured method supports
the development of deep learning models for tumor
classification, with numerous studies using the model
to evaluate classification algorithms and propose novel
architectures [43—46]. In addition, the dataset provides
sufficient variability in tumor types and imaging con-
ditions, making it suitable for evaluating model gener-
alizability across diverse clinical scenarios. The avail-
ability of clearly defined classes facilitates comparative
analysis between different deep learning architectures,
driving continuous methodological improvements. Fur-
thermore, the dataset has become a de facto benchmark
for brain tumor classification research, ensuring repro-
ducibility and enabling fair performance comparisons
across studies. These characteristics establish the brain
tumor MRI dataset as an indispensable resource for ad-
vancing computer-aided diagnosis in neuro-oncology.

In the research, the brain tumor segmentation dataset
is the primary resource for training and evaluating the
segmentation model. Moreover, the brain tumor MRI
dataset is further used to assess the segmentation ability
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Fig. 2. Plane-wise Magnetic Resonance Imaging (MRI) images classified info four tumor types toiidentify the patient’s tumor type.

of the model to capture the distinct characteristics of
glioma, meningioma, and pituitary tumors for valida-
tion. During the process, gliomas are evaluated" fer
irregular shapes and peritumoral edema, meningiomas
for rounded shapes and clear boundaries, dnd pituitary
tumors for homogeneous shapes withifi the sella tur-
cica. To enrich the dataset, “no tumor” imagés from
the brain tumor MRI dataset are incorporated with
empty segmentation masks. This augmentation ensures
a balanced dataset, enabling the model to distinguish
between healthy and tumfioreus brains ‘during training
effectively. This combinedhdataset“meéthod ensures a
comprehensive evaluation of the performance of the
model, showing the asseciation‘with clinical expecta-
tions and the robustness 1n $egmenting various tumor

types.

B. U-Net and Its Development for Medical Segmenta-
tion

U-Net is a deep learning architecture widely used in
medical image segmentation due to its ability to pre-
serve critical spatial details through encoder-decoder
structure and skip connections [1, 8, 47, 48]. The
U-Net architecture, illustrated in the Fig. 3, repre-
sents one of the most influential fully convolutional
networks in biomedical image segmentation. Its de-
sign follows a symmetric encoder—decoder structure,
where the encoder progressively reduces spatial resolu-

tion, through convolution and max-pooling operations,
while simultaneously increasing the depth of feature
represefitations. Each convolutional block consists of
convolutional layers with batch normalization and Rec-
tified Linear Unit (ReLU) activation, enabling efficient
feature extraction and non-linear transformation of the
input data.

The decoder mirrors this process by gradually re-
constructing the segmentation map through a sequence
of up-convolutions that restore spatial resolution. At
each stage, the decoder integrates information from the
encoder through skip connections, which concatenate
high-resolution features from the contracting path with
the upsampled features. These skip connections are
critical for preserving fine-grained spatial information
that might otherwise be lost during downsampling,
thereby ensuring accurate boundary reconstruction of
the segmented regions. The final output is generated by
a 1x1 convolution, which maps the feature represen-
tation to the desired segmentation classes. Despite its
success, U-Net faces limitations in capturing complex
features in challenging cases, such as irregular brain tu-
mors. To address these challenges, Res-UNet combines
spatial feature learning of U-Net with residual blocks
of ResNet. It improves training stability and enables
deeper learning without gradient degradation [3, 14].

Res-UNet has shown superior performance in med-
ical segmentation tasks, including brain tumor seg-
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mentation, by effectively capturing contextual informa-
tion and handling ambiguous tumor boundaries [49].
Advanced implementations, such as nnU-Net, further
optimize Res-UNet for medical data without extensive
manual adjustments [2]. The research uses Res-UNet
as the foundation to achieve more accurate and robust
brain tumor segmentation, surpassing the capabilities
of the standard U-Net.

C. Attention Mechanisms in Deep dearning forSeg-
mentation

Attention mechanisms have appeared as major in-
novations in deep learning for tasksirequiring preci-
sion, including brain tuhog, segmentation,'By enabling
models to focus on criticalifegions while suppressing
irrelevant informatien, attentiomymechanisms improve
segmentation , accuracy, particularly for challenging
features such'as tumor boundaries [14, 50]. In the
research, the Res-bNet ‘architecture is enhanced with
three attention mechanisms: AG, SE, and CBAM.
These mechanisms improve the ability of the model
to prioritize key features, each contributing uniquely
to segmentation performance.

The AG-augmented U-Net architecture improves
upon the standard U-Net by embedding AG modules
within the skip connections, designed to direct the
focus of the model on essential regions, such as tumors,
by filtering out irrelevant information (Fig. 4). These
modules operate as feature selectors, ensuring that only
task-relevant encoder representations are propagated to
the decoder, thereby enhancing focus on diagnostically
salient regions such as tumor boundaries in MRI. Each
AG is driven by two inputs: a gating signal g;, derived
from the decoder to provide contextual guidance, and

‘ up-conv

conv

Example of U-Net architecture. Note: Concatenate (concat), BatchNormalization (BN), Recfified Linear Unit (ReLU), and

the encgder featuremmap z. Both inputs undergo linear
transformations via convolutional operations, yielding
EQ. (1). The W, ahd W, denote learnable kernels.
The 6,4is thétransformed encoder feature map after
conyolution, containing spatially reduced but seman-
tically richdinformation. Then, ¢, is the transformed
gating signal, which carries the semantic context from
the decoder in a lower-dimensional form.

@g ::LV¢>kgv
0, = Wo x z. D

The intermediate representation is then computed
as Eq. (2). The f denotes the element-wise addition
of both transformed features, combining spatial and
contextual information before attention weighting. The
combined features f are processed through a Leaky
ReLU activation, introducing non-linearity while re-
taining negative responses with a small slope (0.1 f
for f < 0). Subsequently, the features are refined via
an additional convolution and passed through a sigmoid
activation to generate the attention coefficients, as seen
in Eq. (3). The « (or f after the sigmoid) represents the
attention coefficients indicating the relative importance
of each spatial location in the encoder feature map.
Then, Wy is the convolution kernel used to process
the activated signal f and generate the raw attention
coefficients.

f:9z+90g7 (2)
a=0c(Wsxf), ae(0,1). 3)

These coefficients function as soft masks that scale
the encoder activations through element-wise multi-
plication in Eq. (4). Through this mechanism, AG
modules are particularly useful for complex image
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segmentation tasks, such as brain tumor MRI, where
object boundaries are often blurred or the tumor is
small. The AG dynamically calculates attention coef-
ficients based on encoder and decoder features, deter-
mining which areas should be stressed or suppressed. It
enables more accurate identification of critical regions,
such as tumor boundaries, in MRI images [4, 14].

The filtering mechanism of AG allows models to
focus dynamically on high-probability target regions,
improving segmentation accuracy for ambiguous areas.

AGout = ¢ . . 4

The architecture (Fig. 5) illustrated integrates the SE
Block into the U-Net framework, enabling channel-
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wise feature recalibration during the encoding and
decoding processes [5, 15]. Within the U-Net back-
bone, the conventional operations—convolution with
batch normalization and ReLLU activation (Conv., BN,
ReLU), max pooling for downsampling, and trans-
posed convolution (UpConv) for upsampling—are pre-
served. The SE Block modules are embedded after se-
lected convolutional layers, augmenting the representa-
tional power by explicitly modeling interdependencies
among feature channels.

The SE Block functions in two key stages: squeeze
and excitation. In the squeeze stage, global spatial in-
formation is aggregated through Global Average Pool-
ing across each channel, yielding a channel descriptor
in Eq. (5). The z;;. denotes the feature response at
spatial location (¢, j) in channel ¢, and H and W are
the feature map dimensions. This descriptor z. captures
the global context of each channel. In the excitation
stage, the aggregated vector z is passed through two
fully connected (FC) layers with a bottleneck ratio r.
The first layer performs a dimensionality reduction,
followed by a ReLU non-linearity in Eq. (6). It has
z = |z1,22,...,2c] as a C-dimensional vector, one
value per channel, describing how much information
each channel carries globally.

H W

1
Ze = H < W szi]’m (5)
=1

i=1j

y =ReLU(W; .z (6)

The second FC layer restorés jthe dimensionality,
followed by a sigmoid activation to_produce channel-
wise weights in Eq. (7). The s is sigmoidyfor activation
function, mapping values to the range [Q) 1], where
each value s. indicates thejyrelative importance of
channel ¢, and y 18 ptévious,RelLl described in Eq. (6).
The se(0,1)%, actsas attention. coefficients. These
coefficients are jthen ‘applied to the original feature
maps via element<wise multiplication in Eq. (8) where
each channel X, is adaptively reweighed according to
its importance. Then, "X . represents the recalibrated
output feature map, obtained by multiplying each chan-
nel X, of the input feature map by its corresponding
attention weight s..

s=o(Wy.y), @)
),(Vc = S¢.. Xe. ®

This mechanism allows the network to emphasize
more informative channels while suppressing less rel-
evant ones, thereby refining feature representation with
minimal computational overhead. By integrating SE
Blocks into U-Net, the model enhances its sensitivity to
subtle but diagnostically significant features in medical

images. It leads to improved segmentation accuracy
while maintaining efficiency.

The CBAM enhances feature representation by
sequentially applying two complementary attention
mechanisms: channel attention and spatial attention
(Fig. 6). These modules are lightweight and can be
seamlessly integrated into convolutional neural net-
works, including U-Net variants, without significant
computational overhead. By refining features along
both channel and spatial dimensions, CBAM allows
the network to learn what and where to emphasize,
thereby improving interpretability and performance
in tasks such as medical image segmentation [6,
15, 16]. The Channel Attention Module (CAM) fo-
cuses on identifyinggtheprelative importance of each
feature channel. Given an intermediate feature map
FeRHXWXC CBAM ceoffiputes, both average-pooling
and max-pooling across spatial/dimensions, producing
two chanuiel descriptors,in Eg(9). The F' is the input
feature imap withgdimensions H x W x C, where H
and, W ‘aregsSpatial dimensions, and C' is the number
of channels. Global Average Pooling and Global Max
Pooling)yare applied independently across the spatial
dimensions of F.

E° =fAvgPool(F), Fy,

avg max

= MaxPool(F). (9)

These descriptors are forwarded through a shared
Multi-Layer Perceptron (MLP) with one hidden layer
to capture non-linear channel dependencies. The two
outputs are then combined element-wise, as seen in
Eq. (10). The o is the sigmoid activation. The resulting
channel attention map M.(F') is multiplied with the
original feature map to yield channel-refined features
in Eq. (11).

Mc(F) = o(MLP(Fg,,) + MLP(Fy,,,)), (10)
F' = M(F)Q)F. (11

The Spatial Attention Module (SAM) further em-
phasizes where informative features are located. Using
the channel-refined feature map F’, average-pooling
and max-pooling are applied along the channel axis,
generating two 2D maps that highlight complemen-
tary spatial cues. These maps are concatenated and
convolved with a 7x7 kernel, as seen in Eq. (12).
The f7*7 denotes convolution. The resulting spatial
attention map M (F") is element-wise multiplied with
F’ to generate the final refined output (see Eq. (13)).

My (F") = o(f™7([AvgPool (F');
MazPool(F")))),

F' = MJ(F)Q)F'.
By sequentially combining CAM and SAM, CBAM

12)
13)
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Fig. 6. Convolutional Block Attention Module (CBAM) implementation ifi U-Net architecture. Note: Squeeze-and-Excitation (SE) Block,

Channel Attention Module (Mc), and Channel Attention Spatial (Ms).

adaptively recalibrates features both across chanhels
and within spatial regions. This dual refinement ‘en-
ables the model to focus on diagnostically’ relevant
patterns while suppressing background néise. In med-
ical image segmentation tasks, such asjbrain gumor
analysis, this approach provides a more ‘comprehen-
sive feature enhancement compared to channel-only or
spatial-only mechanisms, making it highly effective for
capturing subtle lesion characteristics,

D. Dynamic Range‘Quantization

The DRQ is an optimization imethod that reduces
the numerical precision of \deep ‘learning model pa-
rameters, mapping full-precision floating-point (FP32)
values into lower-precision integer (INT8) represen-
tations while preserving the relative dynamic range.
This method significantly reduces model size and im-
proves inference efficiency without substantially de-
grading performance. DRQ is particularly beneficial
for resource-constrained medical environments, where
deep learning models need to run efficiently on edge
devices.

The conversion from FP32 to INTS8 is performed by
scaling and rounding the weight values according to
the dynamic range of the original data. The quantized
weight w, is obtained using Eq. (14). Then, rearrang-
ing the equation to solve for weight w is shown in

Eq. (15). The wy,;, and w4, are the minimum and
maximum Values of the original FP32 weights. Then,
Wymin = —127 and Wgma, = 127 represent the fixed

dynamic range for INT8 quantization.
W — Wy Wq — Wymi
min _ q gmin 7 (14)

Wegmaz — Wgmin

Wmaz — Wmin

(w - wmin)(wqmam - wqmin)

Wmazx — Wmin

wq = round( + Wymin)-

15)

Unlike static quantization, where scale factors are
predetermined, DRQ dynamically determines scale fac-
tors per layer based on observed activation ranges,
ensuring better adaptability to various data distribu-
tions. Quantization can achieve significant memory
reduction (e.g., 8-fold) with minimal performance loss,
often under 2% in metrics such as dice score [27].
It shows the practicality of quantization for deploying
deep learning models in resource-constrained medical
environments.

E. U-Net and Its Development for Medical Segmenta-
tion
The performance evaluation of models in medical

image segmentation, such as brain tumor segmenta-
tion, typically includes several metrics to assess the
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accuracy and efficiency of predictions. In the context
of deep learning, these metrics measure how well the
model predicts tumor regions compared to ground truth
labels [51, 52]. The research uses IoU as the primary
metric to evaluate segmentation performance. IoU, also
known as the Jaccard Index, quantifies the similarity
between the predicted area and the ground truth by
calculating the ratio of the intersection to the union.
IoU is widely used in segmentation tasks because it
provides a conservative assessment compared to other
metrics, such as the Dice coefficient, and shows the
sensitivity of the model to small overlaps between
predictions and ground truth [53]. Equation (16) shows
the formula of IoU. The A represents the set of pixels
(or voxels, in the case of 3D MRI) predicted by
the model as belonging to the tumor region, and B
represents the set of pixels corresponding to the ground
truth tumor annotation provided by expert radiologists.
The numerator | AN B| measures the correctly predicted
tumor pixels (true positives), while the denominator
|A U B] accounts for all pixels labeled as tumor in
either prediction or ground truth, thereby penalizing
both false positives and false negatives.

|[ANB

IoU = .
Y T lAuB|

(16)

FE. Proposed Method

The research introduces a novelframework for
brain tumor segmentation, combinifilg Res-UNet with
advanced attention mechanisms¢and DRQ to achicve
both high accuracy and computational €fficiency. The
innovation is in the dual focus of impreving segmen-
tation precision through‘ttention mechanisms, namely
AG, SE Block, and CBAM,, while ensuring practi-
cal deployability dmgtesource-constrained environments
through quantization., The“workflow of the proposed
methodology ‘ishshown’in Fig. 7.

The research“leveragesiytwo distinct datasets, both
sourced from Kaggledand containing MRI-based brain
images. The classification dataset is designed for cate-
gorizing various brain conditions and comprises a total
of 7,023 images. These are distributed among 1,621
glioma, 1,645 meningioma, 2,000 no-tumor, and 1,757
pituitary tumor samples. Consequently, the segmenta-
tion dataset focuses specifically on marked-out tumor
regions. It features 3064 tumor images with associated
segmentation masks, alongside 2,000 no-tumor images
with empty masks. Moreover, the masks are crucial
for training the model to differentiate healthy from
tumorous areas effectively.

Before model training, all images from both datasets
have passed through essential preprocessing steps to
standardize the size and format. It includes resizing

all input images and the corresponding masks to a
uniform dimension of 224x224 pixels, as the stan-
dard input size for the models. During the process,
pixel intensity values for both images and masks are
normalized, divided by 255, and scaled to a range of
0.0 to 1.0 to ensure consistent input for the neural
network. Masks are specifically loaded in grayscale
mode to represent the binary segmentation targets.
Concerning “no tumor” samples in the segmentation
dataset, empty masks are specifically generated to
provide corresponding target labels during training. For
robust evaluation, the combined dataset is then rigor-
ously divided into training (60%), validation (20%),
and testing (20%) subsets. Moreover, data batches for
training and validationgase efficiently handled using a
custom image_mask  generator function, which loads
images as well as{the masks from specified directories
in PNG format and'produces /batches of normalized
image-mask pairs.

The ({foundation of the methodology is built
upon Res-UNet architecture, which seamlessly
incorporates the spdtial feature extraction capabilities
of U-Net with“the powerful residual learning of
ResNet. The, base Res-UNet model, serving as
the, foundational architecture, adopts a symmetric
encoder‘decoder structure. Its encoder path is derived
from “a pre-trained ResNet50V2 backbone (fine-
tuned on ImageNet), which extracts hierarchical
features. Moreover, Key feature maps from
intermediate layers of the backbone (convl_conv,
conv2_block3 1 conv, conv3_block4 1 conv,
conv4_block5_out, and post_bn for the deepest
features) are used as skip connections. The decoder
path progressively upsamples these features to
reconstruct the segmentation mask, mirroring the
downsampling stages of the encoder. Major building
blocks include a conv_block (a 3x3 Conv2D
layer with BatchNormalization (BN) and Leaky
Rectified Linear Unit (LeakyReL.U) activation) and a
res_block (applying two conv_blocks with a residual
shortcut connection, optionally followed by BN and
LeakyReLU. Regarding the process, the decoder
reconstructs the segmentation map through a series
of Conv2DTranspose layers for upsampling, followed
by concatenation with the corresponding encoder
skip connections, and subsequent processing by
the res_block. During the process, dropout layers
are strategically placed to mitigate overfitting. The
final output layer is a Conv2D with a 1x1 kernel
and sigmoid activation, producing a single-channel
probability map. The complete architecture is shown
in Fig. Al in Appendix.

The three distinct attention mechanisms are sys-
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Fig. 7. Proposed methodology. Note: Squeeze-and-Excitation (SE) Block, Conyolutional Block Attentiofi Module (CBAM), Val: Validation,

and Intersection over Union (IoU).

tematically incorporated to improve segmentation pers
formance. First, AG is incorporated into each gkip
connection between the encoder and decoder paths.
The attention_gate module receives a featlitéymap.
from the encoder (z) and a gating sigmal from the
decoder (g). It applies 1x 1 convolutional layers t@ both
inputs to associate the channels, sums, passeddthrough
"LeakyReLLU’ activation, and another 1x 1% €onv2D
layer with sigmoid activation imhjgenerating a Spatial
attention map. Subsequently, the map. is element-wise
multiplied with the originalyencoder feature map. This
process adaptively filters ‘out irrelevant features from
the low-level feature maps ofythe encoder, ensuring
that only diagnostically relevanty features contribute
optimally to the decoder path, AG is selected because
it is computationally lightweight and highly effective
in showing diagnostically relevant regions, making the
process suitable for resource-constrained deployment
scenarios [54, 55].

Second, SE Block is incorporated at two major loca-
tions, on the skip connections (layer5, layer4, etc., from
the backbone) and in the res_blocks. The se_block
operated by first using GlobalAveragePooling2D to
compress spatial information for each channel (squeeze
operation). It is followed by an excitation operation
using two Dense layers (with ReLU and Sigmoid
activations, and a reduction ratio of 16) to generate
channel-wise attention weights. Subsequently, these

weights are, elément-wise multiplied with the input
feature map, allowing the model to learn the interde-
pendencebetween channels and accentuate more infor-
mative ones. SE Block is selected because the features
provide an efficient channel refinement mechanism
with minimal parameter overhead, offering a good
trade-off between improved feature representation and
computational cost [56].

Third, CBAM is incorporated similarly to SE Block,
both in the skip connections and in the residual blocks.
The cbam_block sequentially applies attention across
two dimensions, namely channel and spatial. During
the process, the CAM uses both GlobalAveragePool-
ing2D and GlobalMaxPooling2D to aggregate spatial
information, which is then passed through a shared
MLP (with a reduction ratio of 8) to generate chan-
nel attention weights. The SAM takes the output of
the CAM, performs average-pooling and max-pooling
along the channel axis, and concatenates and con-
volves the features with a single 7x7 Conv2D layer
to produce a spatial attention map. Both attention
maps are later applied sequentially to refine the feature
maps, enabling the model to learn “what” is important
(channel-wise) and “where” it is important (spatial-
wise) in the feature maps. Additionally, CBAM is
included because it combines both spatial and chan-
nel attention, providing a more comprehensive feature
improvement. Despite being slightly heavier computa-
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tionally, it makes the model valuable for systematic
comparison with AG and SE. The impact of these
mechanisms on segmentation accuracy is rigorously
evaluated using IoU [57].

The novelty is extended further with the application
of DRQ, which optimizes the trained models for de-
ployment by reducing the precision of weights and ac-
tivations. DRQ is a Post-Training Quantization (PTQ)
method applied to the trained 32-bit floating-point
(FP32) models. Its primary objective is to convert all
quantizable model parameters (weights) and intermedi-
ate activations to lower-precision formats, specifically
8-bit integers (INTS), significantly reducing memory
footprint (typically achieving up to 75% reduction)
and accelerating computational demand. The process
includes observing the dynamic range (minimum and
maximum values) of tensors during a small calibration
step. Following the discussion, a representative subset
of the input data (e.g., 100-500 images from the
validation set) is fed through the trained FP32 model to
collect these range statistics. Based on these observed
min/max values, scaling factors and zero-points are
computed for each tensor, which are then used to
map the original FP32 values to the fixed-point INTS
range. This method allows the quantized model, to
operate with reduced precision without requising spe-
cific hardware accelerators, making the meodel highly
suitable for deployment on resource-constrained hard-
ware, such as mobile devices, embeddedysystems, or
standard hospital workstations. DRQ'1s selected foriits
simplicity and the ability to apply, optimization without
requiring model retraining, which isherfucial for rapid
deployment scenarios. In.contrast, Quantization-Aware
Training (QAT) potentially, produces higher accuracy
by incorporating quantizatiomyeffects during the train-
ing phase. The quantization process is typically im-
plemented using fumetionalities“provided by standard
machine learning, frameworks such as TensorFlow Lite
converter.

Concerning the training of all Res-UNet variants
(base, AG, SE, CBAM), the researchers compile mod-
els using the Adam optimizer. A learning rate of
0.001 is initially set, and training is performed for 50
epochs with a batch size of 16. During the process,
the binary cross-entropy loss function is used, given
the binary nature of the segmentation task (tumor vs.
non-tumor). Model performance is monitored using the
‘val_binary_io_u’ metric on the validation set, with
mode=‘max’ to track improvements. Training incorpo-
rates two major callbacks to ensure optimal and stable
learning as follows:

1) EarlyStopping is configured with a patience
of 7 epochs, monitoring ‘val_binary_io_u’ in

mode=‘max’, and set to restore the weights of the
best-performing model,

2) ReduceLROnPlateau is used to dynamically ad-
just the learning rate, reducing it by a factor of
0.2 after 4 epochs without improvement, with a
minimum learning rate of le-6 to prevent exces-
sive decay.

All models are trained and evaluated on a single
NVIDIA Tesla M10 GPU to maintain a consistent
computational environment. Inference latency is mea-
sured as the average per image over 500 forward passes
using the same GPU to ensure reproducibility and to
avoid warm-up effects. This setup ensures that the re-
ported latency comparisons among Res-UNet variants
(base, AG, SE, CBAM) and the quantized versions are
hardware-consistefit and diteetly comparable.

The methodologyeoficludes with an extensive eval-
uation of thestrade-offs between segmentation accuracy
and computational efficiéney. The experimental results
demonstrate _that the) proposed approach is able to
ideftify an“optimal balance between these two objec-
fives, ensuring that{the model remains both accurate
and efficient. This balance is particularly important
in the context of medical image segmentation, where
diagnostief precision cannot be compromised while
computational resources are often limited. By integrat-
ing state-of-the-art attention mechanisms with quanti-
zation strategies, the proposed framework establishes
a strong benchmark for practical deployment. These
findings can highlight the potential of the method to
advance the field of medical imaging and support real-
world clinical applications under resource-constrained
environments.

III. RESULTS AND DISCUSSION

The research investigates brain tumor segmentation
using Res-UNet variants improved with AG, SE Block,
and CBAM. The evaluation comprises training loss,
validation loss, IoU, and test performance metrics,
such as Mean IoU, model size, and inference time.
These metrics provide a comprehensive assessment of
both predictive accuracy and computational efficiency,
enabling a fair comparison between different model
variants. In particular, the inclusion of model size and
inference time is critical to demonstrate the practi-
cality of the approach for real-world clinical envi-
ronments, where hardware resources may be limited.
Furthermore, by monitoring training and validation
loss trends, the study ensures that the models achieve
generalization without overfitting, thus strengthening
the reliability of the results.
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A. Evaluation of Training andalidation

The training and validation curves, provide valuable
insights into how each attention mechanism influences
model convergence, generalization, and stability during
learning. As shown imFig. 8)Res-UNet + SE Block
achieves the lowest traming lossjfollowed closely by
CBAM, while the baseline Res-UNet converges to a
higher loss. This trend reflects that both SE Block
and CBAM facilitate more efficient feature learning
by adaptively reweighting informative channels and
spatial features in the case of CBAM, thereby al-
lowing the model to focus on diagnostically relevant
regions while suppressing redundant activations. The
SE Block, in particular, performs a channel-wise recali-
bration that enhances inter-channel dependencies, lead-
ing to improved representational capacity and faster
convergence. The result is consistent with previous
findings [5, 56] that channel attention mechanisms
accelerate training by stabilizing gradient propagation
across layers.

The CBAM variant shows comparably low training

loss but slightly slower convergence than SE Block.
This behavior can be attributed to CBAM’s two-stage
attention refinement, which involves both channel and
spatial attention, introducing additional computations
and dependencies that delay convergence in early
epochs but yield stronger spatial awareness later in
training [6, 57]. The baseline Res-UNet, lacking any
attention mechanism, relies purely on residual learn-
ing, which still improves gradient flow but cannot
selectively suppress irrelevant background noise. As
a result, it learns more slowly and retains a higher
steady-state loss.

The AG variant demonstrates an interesting trade-
off. Its training loss decreases more gradually, and
its final IoU stabilizes around 0.90, which is slightly
below that of SE Block and CBAM. This slower
convergence is expected because AG selectively filters
encoder features based on decoder context—effectively
gating gradient flow to emphasize semantically rel-
evant regions only [14, 54]. While this controlled
feature selection may reduce the volume of information
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TABLE 1
COMPARISON OF RES-UNET AND THE VARIANTS IN TERMS OF
FINAL MEAN INTERSECTION OVER UNION (IoU), MODEL SIZE,
AND INFERENCE TIME.

Model Final Mean  Model Size  Interface

TIoU (MB) Time (s)
Res-UNet 0.8322 126.4877 0.3143
Res-UNet (DRQ) 0.8317 32.1887 0.1973
Res-UNet + AG 0.8455 127.2101 0.3131
Res-UNet + AG (DRQ) 0.8451 32.3863 0.2055
Res-UNet + SE 0.8406 127.0890 0.3171
Res-UNet + SE (DRQ) 0.8384 32.3802 0.1996
Res-UNet + CBAM 0.8359 128.8157 0.3245
Res-UNet + CBAM (DRQ) 0.8286 32.8767 0.2045

Note: Squeeze-and-Excitation (SE) Block, Convolutional Block Atten-
tion Module (CBAM), Attention Gate (AG), and Dynamic Range
Quantization (DRQ).

passed through the network, it also mitigates overfitting
by preventing the model from memorizing irrelevant
spatial patterns. Consequently, AG sacrifices a small
amount of training speed for more robust generaliza-
tion, which is confirmed by its lowest validation loss
among all variants.

Validation performance further clarifies these dy-
namics. Res-UNet + AG maintains the smallest valida
tion loss and exhibits the most stable curve, signifying
excellent generalization and minimal overfitting«This
result aligns with prior evidence that attentiofi” gating
improves localization accuracy in medicalf Segmenta-
tion tasks by suppressing irrelevant activations [S4455].
SE Block and CBAM both achievesStrong, validation
IoU (= 0.85), but their slightly higher validation losses
suggest mild over-adaptation to“tsainingddata due to
increased model complexity. The baseline Res-UNet,
with the highest validation loss (= 0.84 IeU), confirms
that residual connections jalone are insufficient for
precise tumor boundary disctimination, especially in
cases with subtle{contrastyvariations.

Overall, the comparative analysis indicates that
integrating attemtion mechanisms not only enhances
learning efficiency but alsoycontributes to better bias-
variance balance, a ‘hallmark of models that general-
ize well to unseen data [52]. AG’s adaptive feature
gating yields the most stable validation performance,
SE Block offers the fastest convergence, and CBAM
provides a richer spatial context, albeit with a slightly
higher computational cost. These complementary be-
haviors underscore that attention mechanisms mean-
ingfully improve both the learning dynamics and the
clinical reliability of Res-UNet in brain-tumor segmen-
tation.

B. Testing Evaluation for Res-UNet Models

Table I compares the quantitative performance of
all Res-UNet variants in terms of segmentation ac-

curacy (Mean IoU), model size, and inference time.
The results highlight a consistent trade-off between
representational richness and computational efficiency
across architectures. The DRQ demonstrates remark-
able effectiveness by significantly reducing the mem-
ory footprint while preserving segmentation quality.
The quantized models show up to 75% reduction in
model size (Res-UNet + AG decreases from 127.21
MB to 32.39 MB), and inference speed improves by
approximately 37% (0.314 s to 0.197 s per image).
Importantly, the drop in mean IoU is minimal (less
than 0.0004), confirming that post-training quantization
introduces negligible accuracy degradation for seg-
mentation tasks. This observation aligns with previ-
ous findings [27, 29]4that DRQ can retain over 98%
of baseline performiance when the network maintains
stable activation distributions“and batch normalization
layers are properly-calibrated.

Amonggall“models, Res-UNet + AG achieves the
most fayorable balance of‘accuracy, compactness, and
inferenceyspeed (IoU \= 0.845, 32.39 MB, 0.205 s).
This advantage can be attributed to the computa-
tional design€ofsAG modules. AG operates primarily
through lightweight 1x1 convolutions and element-
wise multiplications applied to skip connections, ef-
fectivelydfiltering irrelevant encoder features before
they “are merged into the decoder path. This focused
processing minimizes unnecessary computations while
improving sensitivity to diagnostically relevant regions.
The efficiency and interpretability of AGs have been
previously emphasized in medical imaging research,
such as [54], where attention gating is shown to reduce
computational load and improve lesion localization by
focusing only on salient features.

The SE Block variant also performs competitively,
achieving a mean IoU of 0.841 and an inference time
of 0.317 s. Its slightly higher computational demand
stems from the use of global pooling and two fully con-
nected layers in each block, which increases channel
dependency modeling at the expense of latency [56].
Nevertheless, SE enhances channel sensitivity and gra-
dient stability, contributing to smoother convergence
and high-quality feature abstraction. This result aligns
with previous research [56] that SE recalibration sig-
nificantly boosts discriminative power, particularly in
networks dealing with subtle intensity variations as
found in MRI scans.

CBAM, which combines both channel and spatial
attention, produces rich feature representations but
exhibits the slowest inference (0.3245 s) and the largest
model size (128.8 MB). This result is expected, as
the CBAM processes both average- and max-pooled
features, followed by a 7x7 convolution to generate
spatial attention maps. While such dual refinement im-
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proves lesion boundary detection and contextual under-
standing, it adds measurable computational overhead.
Prior studies have also reported that CBAM enhances
segmentation fidelity but introduces additional latency
due to its two-stage attention process [16, 57]. There-
fore, CBAM represents a trade-off favoring segmenta-
tion precision and interpretability over pure efficiency.

Quantization consistently preserves the accuracy
ranking across all variants, suggesting that attention
mechanisms increase the network’s resilience to re-
duced numerical precision. The attention modules ap-
pear to regularize the feature distribution, reducing
sensitivity to quantization noise, an effect similarly

reported previously [24] that structured attention layers
stabilize activation variance during low-bit quantiza-
tion. Consequently, Res-UNet + AG (DRQ) remains
the top-performing model even after quantization, val-
idating its suitability for deployment of edge devices
and standard hospital hardware where inference speed
and memory efficiency are critical.

Representative segmentation outputs, showing the
qualitative performance of the models, are shown in
Fig. 9. These results signify the practical viability
of attention-improved Res-UNet models with quanti-
zation for deployment in resource-constrained envi-
ronments. The visualizations clearly demonstrate that
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the model predictions align closely with the ground
truth annotations, highlighting the ability of the models
to capture tumor boundaries with high fidelity. Even
in challenging cases with irregular tumor shapes or
low-contrast regions, the models exhibit robustness
by preserving critical structural details. Furthermore,
the qualitative comparison underscores how attention-
enhanced architectures reduce false positives and im-
prove delineation in ambiguous regions, validating the
consistency of the quantitative improvements observed
in IoU.

C. Analysis of Segmentation Appropriateness

The research evaluates MRI segmentation results us-
ing the Res-UNet model with quantization. In addition
to metrics such as IoU, the outcomes are evaluated for
their association with medical theories regarding the
anatomical positions and characteristics of tumor types.
The segmentation appropriately captures expected pat-
terns for glioma, meningioma, and pituitary tumors.
For glioma, the model appropriately identifies ring im-
provement around the main lesion, a hallmark in MRI,
and detects peritumoral edema, often appearing as dark
areas due to the invasive nature of the tumor. Despite
unclear boundaries caused by the spread of thegglioma
into brain tissues, the segmentation follows theoretical
expectations, effectively capturing its complex invasive
patterns and edema effects. Figure A2yin Appendix
includes a sample showing the capability of the models
during the process of the analysiS.

In glioma segmentation, the “medel successfully
identifies the characteristic ring enhancement pattern
surrounding the necroti€ tumor core. This pattern is
a hallmark of disrupted bloed—brain barrier integrity
and proliferativegtumor angiogenesis, typically seen
in high-grade, gliomas [58])."The model also captures
peritumoral edema, which manifests as hyperintense
regions in T2-weighted “of Fluid-Attenuated Inversion
Recovery (FLAIR)YMRI scans. This observation is
clinically relevant becatise the presence and extent of
edema correlate with the invasive potential of gliomas
and often extend beyond visible contrast enhance-
ment [59]. The Res-UNet + AG and SE variants
exhibit higher fidelity in delineating these subtle edema
regions compared to the baseline, which tends to under-
segment infiltrative boundaries. This behavior reflects
the ability of attention modules to selectively amplify
weak but informative contextual features, a property
that aligns with radiological expectations described in
previous studies [16, 58]. Although gliomas present
blurred and irregular margins, especially in infiltrative
cases, the proposed models approximate their theoret-
ical structure by reconstructing both the tumor core

and surrounding edema, which is crucial for treatment
planning and volume estimation.

For meningioma, the segmentation outputs main-
tain the tumor’s well-circumscribed, rounded morphol-
ogy and clear boundary contrast relative to adjacent
brain parenchyma. Meningiomas typically arise from
the meninges and remain extra-axial, producing high-
contrast interfaces on MRI due to their encapsulated
nature. The model’s ability to delineate these edges
sharply, as evident in Fig. A2 in Appendix, confirms
that it has effectively learned the shape in priors
characteristic of benign, non-infiltrative tumors. The
findings correspond with previous imaging studies that
meningiomas display homogeneous enhancement and
well-defined borders_[60]. From a computational per-
spective, attentionsenhanced Res-UNet models likely
capture these features mete effectively because atten-
tion mechanisms prioritize dominant geometric cues
over background textures, ensuring precise localization
with mifitmal falsespositive’segmentation in surround-
ing_ tissue..Fhe quantitative stability of meningioma
ségmentation further suggests that quantization does
not distert featuredocalization in high-contrast regions,
whigch are often less sensitive to bit-depth reduction.

In pituitafy’ tumor segmentation, the models accu-
rately loeate lesions within the sella turcica, preserving
the anatomical geometry of the pituitary gland. These
tumeors typically exhibit homogeneous enhancement
and symmetrical shape, and deviations in segmenta-
tion contours can signify mass effects on adjacent
structures such as the optic chiasm. The Res-UNet
+ AG variant demonstrates clear delineation of pi-
tuitary borders, maintaining consistency with clinical
MRI descriptions where macroadenomas enlarge the
sella without infiltrating adjacent tissue [61]. The seg-
mentation effectively identifies structural deformation
and compression effects, validating that the model
captures not only local intensity differences but also
spatial relationships within the confined sella region.
Similar findings are reported in recent deep learning
frameworks designed for pituitary segmentation, which
emphasize the benefit of anatomical priors and context-
aware mechanisms [61]. These results reinforce that the
model’s contextual awareness, facilitated by attention
gating, translates to meaningful structural recognition
in practice.

Overall, the segmentation outputs, as shown in
Fig. A2 in Appendix, confirm that the proposed
attention-quantized Res-UNet not only performs well
numerically but also demonstrates anatomical plau-
sibility and clinical coherence. Across tumor types,
the model captures relevant radiological markers, ring
enhancement in glioma, sharply defined boundaries
in meningioma, and localized structural deformation
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in pituitary tumors. Such consistency indicates that
the model internalizes spatial hierarchies, which is
reflective of true pathological morphology rather than
relying solely on pixel intensity contrasts. Further-
more, the results imply that quantization does not
compromise clinical interpretability, a critical factor for
deploying Al-assisted segmentation tools in hospitals
where computational resources are limited. Collec-
tively, these findings underscore that the proposed
method achieves a meaningful intersection between
computational efficiency and medical validity. Hence,
it supports the potential for integration into Computer-
Aided Diagnosis (CADx) systems and preoperative
assessment pipelines.

IV. CONCLUSION

In conclusion, the research successfully presents
an enhanced Res-UNet-based brain tumor segmenta-
tion model that integrates multiple attention mech-
anisms, AG, SE Block, and CBAM, and is further
optimized using DRQ. The proposed framework effec-
tively bridges the gap between segmentation accuracy
and computational efficiency, offering a practical and
deployable solution for medical imaging applications.
Among the evaluated variants, Res-UNet + AG demon-
strates the most balanced performance, achieving a
mean IoU of 0.845, with a negligible reductiondof
0.0004 IoU after quantization, confirming that “effi-
ciency optimization does not significantly compromise
segmentation accuracy. Additionally, quantization\re-
duces the model size by approximately 75% (from
127.21 MB to 32.39 MB) and enhances) inference
speed by 37% (from 0.3143 s to 0.1973 s perimage).
These improvements make the moedel particularlyssuit-
able for real-time inference on resoutee-constrained de-
vices such as medical werkstations, portable diagnostic
systems, and embedded edge computing platforms.

Beyond quantitative, metri¢s, the proposed model
also demonstrates stronghalignment with clinical and
anatomical characteristics ofarious brain tumor types.
The segmentation results accurately delineate distinct
pathological patterns: the ring enhancement and peri-
tumoral edema of gliomas, the well-defined encapsu-
lated structure of meningiomas, and the localized sella
turcica region in pituitary tumors. Such anatomical
coherence indicates that the model not only learns
discriminative features but also internalizes medical
imaging priors that are meaningful for clinical interpre-
tation. This dual strength (computational efficiency and
clinical relevance) reinforces the model’s potential as
an assistive diagnostic tool capable of enhancing radi-
ologist workflow efficiency, supporting early detection,
and improving consistency in manual segmentation
tasks.

The research highlights that attention mechanisms
play complementary roles: AG provides selective fea-
ture filtering for interpretability and generalization,
SE Block improves gradient flow and channel-level
discrimination, and CBAM enhances contextual under-
standing through dual-stage refinement. When com-
bined with quantization, these mechanisms maintain
high representational power even under reduced nu-
merical precision, proving that lightweight models can
still achieve robust medical segmentation outcomes.
Collectively, these design strategies position the model
as a strong candidate for integration into Al-driven
clinical decision support systems, where accuracy, re-
liability, and inference speed are all critical factors.

Nevertheless, several research directions remain
open. Future work should explore QAT to further
minimize accuracy loss{ and pofentially surpass the
performance of post-training quantization. Expanding
evaluations acros§ multi-institutionalfand multi-modal
datasets will improve genesalizability and validate the
robustness, of thenodel in|diverse imaging environ-
ments. Jiicorporating federated learning can also be
valuable for maintaifiingfdata privacy while enabling
large-scale glinical collaboration. Additionally, deploy-
ing and tésting thednodel within actual hospital infras-
tructures“integrated into Picture Archiving and Com-
munication ‘Systems (PACS) or real-time diagnostic
pipelinéspwill provide essential insights into usability,
interpretability, and workflow compatibility.

Finally, while the research confirms the quantitative
and qualitative validity of the proposed method through
alignment with medical theories, prospective clinical
validation involving expert radiologists remains a cru-
cial next step. Such validation will ensure that segmen-
tation decisions made by the model are trustworthy in
high-stakes diagnostic contexts. Overall, the proposed
Res-UNet with AG and quantization stands as a prac-
tical and scientifically grounded contribution to the
development of efficient, interpretable, and clinically
applicable Al systems for brain tumor segmentation. It
can mark a meaningful stride toward the realization of
real-world intelligent medical imaging solutions.
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Fig. Al. Proposed architecture. Note: BatchNormalization (BN), Rectified Linear Unit (ReLU), and Convolution (conv.).
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