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Abstract—Brain tumor diagnosis is challenging due
to complex brain anatomy and tumor variability across
imaging views. Traditional methods are manual and
error-prone, making deep learning, particularly ResNet-
based Convolutional Neural Network (CNN), essential
for improving accuracy. The research investigates the
enhancement of brain tumor classification using Magnetic
Resonance Imaging (MRI) images through a novel mod-
ification of the ResNet50 model. It specifically addresses
data imbalance challenges in medical image analysis.
By proposing a targeted approach to partial data aug-
mentation, the researchers aim to overcome limitations
in traditional deep-learning classification methodologies,
particularly the performance bottlenecks encountered
in differentiating complex brain tumor subtypes. The
research uses MRI dataset containing 5,249 labeled im-
ages (glioma, meningioma, pituitary, no tumor) across
axial, coronal, and sagittal planes, highlighting class
and view-based imbalances addressed through targeted
augmentation. The research employs transfer learning
to analyze three scenarios: non-augmented, partially
augmented, and rounding-down data. Results reveal that
the partially augmented scenario achieves the highest
classification accuracy at 85%, significantly surpassing
the non-augmented scenario, which peaks at 79%. In
contrast, the rounding-down scenario yields only 60.16%
accuracy during validation, highlighting the negative
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impact of drastically reducing data quantities. The unique
contribution lies in demonstrating how strategic partial
augmentation can enhance pattern recognition and mit-
igate overfitting risks, particularly in medical imaging
where precise differentiation is crucial. The findings
highlight the critical role of nuanced data distribution in
enhancing model robustness, as evidenced by improved
pattern recognition and reduced overfitting risks in the
augmented scenario.

Index Terms—Magnetic Resonance Imaging (MRI),
Brain Tumor, ResNet-50

I. INTRODUCTION

BRAIN tumors occur when cells or tissues grow
abnormally in the brain area. In Indonesia, brain

tumor cases are considered rare compared to other
types of tumors, such as breast cancer. According to
GCO data from 2022, there were four brain tumor
cases per 100,000 inhabitants, a relatively low figure
compared to breast cancer cases, which stood at 41.8
per 100,000 inhabitants [1]. However, the location of
these abnormal cells makes brain tumors particularly
dangerous. The brain functions as the control center
of the human body, so abnormality in this area can
lead to severe and extensive complications, such as
swelling and pressure on blood vessels. Given the life-
threatening nature of brain tumors, if not addressed

mailto:igsusrama.if@upnjatim.ac.id
mailto:21081010145@student.upnjatim.ac.id
mailto:evapuspaningrum.if@upnjatim.ac.id
mailto:vaiz.asyari@gmail.com
mailto:zamri@umpsa.edu.my


Cite this article as: I. G. S. M. Diyasa, V. I. Sunarko, E. Y. Puspaningrum, V. Asy’ari, and M. Z. Ibrahim,
“Optimization of Multi-Section and Partially Augmented Magnetic Resonance Imaging (MRI) Images for
Brain Tumor Classification Using ResNet-50”, CommIT Journal 19(1), 115–128, 2025.
promptly, it is crucial for medical experts to make swift
and accurate decisions.

The diagnosis of brain tumors typically relies on
images from Magnetic Resonance Imaging (MRI)
equipment. It is due to MRI’s ability to provide detailed
images that highlight brain structures more effectively
than CT scans or ultrasounds [2]. MRI imaging creates
contrast in brain fibers, making it easier to distinguish
between solid structures and tumors. Additionally, MRI
scans of brain tumors can be viewed in three different
planes: axial, coronal, and sagittal. The axial plane
divides the brain into top and bottom sections [3].
Then, the coronal plane separates it from front to back,
and the sagittal plane divides it parallel to the body’s
midline, from left to right. This variety of perspectives
enhances the visualization of important features in both
normal and tumorous brain structures.

The brain’s complex structure and the variety of
potential brain conditions make accurate diagnosis a
time-consuming task for medical teams [4]. As tech-
nology advances, improving the speed and accuracy of
diagnoses becomes increasingly important, especially
since traditional methods for diagnosing brain tumors
are predominantly manual. One promising approach to
enhance both the speed and accuracy of diagnosis is
the use of Artificial Intelligence (AI) [5].

AI has become an integral part of daily life, particu-
larly in healthcare. In the medical field, it is commonly
used to support decision-making and image analysis.
AI helps to provide valuable information, including
treatment recommendations, options, and additional
insights [6]. Recent studies indicate that AI systems
and AI-based applications are increasingly applied
to enhance the professional medical environment [7].
It is crucial to apply AI techniques, particularly in
the field of computer vision, to improve the speed
and accuracy of brain tumor diagnosis [8]. Computer
vision plays a vital role in assisting with brain tumor
diagnosis by identifying objects and even individuals
within images [9]. Computers can interpret contextual
information from image data based on specific patterns
extracted directly from the images, utilizing methods
from computer vision.

One of the most commonly used methods in im-
age recognition is the Convolutional Neural Network
(CNN) [10, 11], which is a popular architecture for
image classification. The convolutional layers effec-
tively highlight essential features, such as the edges
and textures of an object, allowing machines to rec-
ognize the object’s unique identity more accurately.
However, a primary limitation of the CNN architecture
is its complexity. When developers try to increase the
model’s complexity, they may encounter the vanishing
gradient problem, where key image features can be lost

due to the pooling layers in the CNN structure.
The research is based on previous studies that pro-

vide references and guidelines. The review highlights
numerous studies focused on utilizing CNN for brain
tumor classification, often employing similar data class
divisions. First, CNN is used as the foundation for
the multi-class classification of brain tumors. The
previous research has optimized CNN architecture by
integrating three classification processes within a single
AI model. It utilizes data from four datasets, totaling
approximately 11,500 brain MRI images, and achieves
exceptional performance: 99.33% accuracy for the first
layer classification, 92.66% for the second layer, and
98.14% for the third layer. It demonstrates the potential
of CNN to handle high complexity with substantial
training data. However, it is limited to axial brain MRI
images, which result in uniformity in the extracted
tumor features [12].

Second, CNN architecture is utilized to classify
brain tumors, demonstrating its effectiveness in di-
agnosing brain tumors through MRI analysis. The
previous research has achieved a classification accu-
racy of 98.677% in identifying tumor types such as
ependymoma, meningioma, and medulloblastoma. It
emphasizes the importance of optimizing the number
of training epochs, as increasing the epochs from 1
to 15 significantly improves the system’s accuracy and
sensitivity. However, challenges such as overfitting and
dependence on dataset quality persist, highlighting the
need for a careful approach to developing classification
models [13].

Third, previous research also demonstrates the
potential of ResNet50 in brain tumor classifica-
tion, particularly emphasizing the challenges of low-
resolution MRI images. It explores super-resolution
techniques using Discrete Cosine Transform (DCT)
and CNN, achieving 98.14% accuracy in tumor classi-
fication [14]. However, it does not extensively address
data augmentation strategies or the impact of partial
image augmentation, which becomes the primary mo-
tivation for the current research in optimizing multi-
section MRI image classification using ResNet-50. The
research aims to build upon these foundational ap-
proaches to improve classification accuracy and model
robustness in brain tumor detection by focusing on
strategic data augmentation and transfer learning.

Fourth, previous research [15] has employed the
ResNet-152 architecture for classifying brain tumors.
The model achieves an impressive 99% training ac-
curacy, but its validation accuracy is only 81%. This
significant discrepancy between training and validation
accuracy hints at a potential overfitting issue, likely due
to the failure to differentiate between sectional brain
planes during the training process.
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Fig. 1. Block diagram.

Fifth, previous research [16] has utilized ResNet-
152 with the Chimp Optimizer to classify brain tumors,
focusing specifically on axial plane images. This ap-
proach achieves a training accuracy of 98.85% and a
validation accuracy of 97.64%. It effectively reduces
the training and validation accuracy gap by concen-
trating on a specific brain plane for data selection.

The previous studies collectively indicate that rely-
ing solely on CNN architecture may not yield signifi-
cant results in brain tumor classification [17]. Residual
Networks (ResNet) provide a potential solution for
improving accuracy [18, 19]. However, they demand
substantial amounts of data. As MRI data undergoes
various preprocessing techniques, such as separating
sectional planes, the research focusing on this segmen-
tation shows robust and high accuracy [2].

The ResNet is designed to tackle the vanishing gra-
dient problem by utilizing a residual block architecture
that preserves important image features. It includes
connections that allow neurons with intact gradients to
bypass certain processing layers, later combining with
neurons that have undergone deeper processing [20].
The residual blocks within the ResNet architecture help
to maintain the integrity of the image data throughout
the processing stages.

Data separation based on sectional planes is crucial
for improving the performance of the proposed ResNet
model [12]. By keeping the sectional planes distinct,
the model preserves specific information and unique
patterns associated with each plane, preventing them
from merging. This separation enables the model to
more accurately identify brain tumors by recognizing
distinct and unmixed patterns.

ResNet-50 is selected as a foundational experimental
architecture to explore brain tumor classification due to
its simplicity and proven effectiveness in deep learning
image recognition tasks [13, 19, 21, 22]. As the most
basic variant in the ResNet family, it provides a stan-
dard baseline model with 50 layers that demonstrate
the core principles of residual learning, skip connec-

tions, and feature hierarchy optimization. This choice
allows researchers to establish a fundamental under-
standing of how deep convolutional neural networks
can be adapted for medical image analysis, serving
as a critical starting point for more complex model
developments in brain tumor classification. However,
challenges persist in handling limited or imbalanced
medical imaging datasets. Hence, the research proposes
a novel partial augmentation approach to address data
distribution challenges in brain tumor classification.

II. RESEARCH METHOD

As research progresses, a block diagram is devel-
oped to keep the research focused on its primary
objective. This diagram provides a functional overview
of the research workflow, illustrating how each element
is interconnected. This structured approach helps to
maintain clarity and alignment with the research goals.

The block diagram in Fig. 1 illustrates the initial
step of data acquisition, specifically focusing on MRI
images of brain tumors. After acquiring the data, it
is categorized according to the perspective of each
MRI image. Once processed, the data are input into
a classification model under various scenarios, and its
accuracy and robustness are evaluated.

A. Data Acquisition

The data collection process starts with a review of
previous studies to identify the appropriate type of
data for analysis. The researchers select brain tumor
classification data that utilize MRI images. The data
are from Kaggle, specifically from the dataset titled
“MRI for Brain Tumor with Bounding Boxes”.

The collected data consists of secondary data, com-
prising 5,249 training images in “.jpg” format, cat-
egorized as shown in Table I. This dataset includes
MRI brain scan images classified into four categories:
Glioma, Meningioma, Pituitary, and No Tumor. Each
category contains a different number of training and
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each MRI image. Once processed, the data are input into a classification model under various scenarios, 

and its accuracy and robustness are evaluated. 

 

A.  Data Acquisition 

The data collection process starts with a review of previous studies to identify the appropriate type 

of data for analysis. The researchers select brain tumor classification data that utilize MRI images. The 

data are from Kaggle, specifically from the dataset titled ``MRI for Brain Tumor with Bounding Boxes”.  

 
Table 1 Brain Tumor Data. 

No Category Training Data Validation Data 

1. Glioma 1,153 136 

2. Meningioma 1,449 140 

3. Pituitary 1,424 136 

4. No Tumor 711 100 

Total  4,737 512 

 

The collected data consists of secondary data, comprising 5,249 training images in ".jpg" format, 

categorized as shown in Table 1. This dataset includes MRI brain scan images classified into four 

categories: Glioma, Meningioma, Pituitary, and No Tumor. Each category contains a different number 

of training and validation images, with a total of 4,737 training and 512 validation samples. The data 

distribution reflects class imbalance, which may influence model performance and should be addressed 

during preprocessing or training. These images serve as the input for developing and evaluating machine 

learning models for brain tumor classification. 

 

    
 

Figure 2 Brain tumor sample data. 

 

Figure 2 shows a sample of the data used. The images are labeled as glioma, meningioma, pituitary, 

and no tumor from left to right. The data are preprocessed for the subsequent stages. The primary 

research limitation stems from its reliance on the Kaggle brain tumor dataset, which, while 

comprehensive, may not fully represent the entire spectrum of brain tumor imaging variations 

encountered in clinical settings. The dataset's potential biases include limited demographic diversity, 

potential selection bias in image acquisition, and a restricted range of tumor types and stages. While 

Kaggle datasets provide a standardized platform for research, they often lack the complex heterogeneity 

found in real-world medical imaging. The dataset's controlled nature means that the model's 

performance may not directly translate to more diverse and challenging clinical scenarios, where 

imaging conditions, equipment variations, and patient-specific factors can significantly impact image 

quality and tumor characteristics. 

 

B. Data Cleaning 

The acquired data undergo a manual cleaning process. Images with considerable noise or artifacts 

may interfere with feature extraction in the model [19] [20], so they are removed to ensure optimal 

performance in later stages. In Fig. 3, MRI images of brain tumors often show distinct shadow lines 

surrounding the brain. These elements, aside from the actual brain, can greatly influence the pattern 

recognition process. As a result, it is essential to include a data removal step to eliminate any non-brain 

components. 

Fig. 2. Brain tumor sample data.
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Figure 3 Data with Noise 

C. Data Classification 

The cleaned data also undergo a manual classification process. This process involves sorting the data 

from axial, coronal, and sagittal perspectives. Each perspective has its unique identifying features [21]. 

The axial view excels in providing a complete view of the brain hemispheres. Then, the coronal view 

displays the entire head from top to bottom in a single image from a perpendicular angle. In contrast, 

the sagittal view presents the entire head from top to bottom in a single image parallel to the body's 

midline. 
Table 2 Classified Brain Tumor Data 

No Category Plane Training Data Validation Data 

1. Glioma Axial 362 61 

  Coronal 426 39 

  Sagittal 365 36 

2. Meningioma Axial 389 62 

  Coronal 508 48 

  Sagittal 550 30 

3. Pituitary Axial 431 53 

  Coronal 475 37 

  Sagittal 518 46 

4. No Tumor Axial 617 80 

  Coronal 38 11 

  Sagittal 56 9 

Total   4,735 512 

 

The results of the manual classification can be seen in Table 2. It presents a classification of the brain 

tumor dataset according to the imaging planes of axial, coronal, and sagittal across each tumor category. 

The distribution highlights a substantial imbalance, both inter-class and intra-class, particularly evident 

in the no tumor category and within specific imaging planes such as coronal and sagittal. Such 

heterogeneity in data distribution may adversely affect the model’s learning process, potentially leading 

to biased predictions. Consequently, it is imperative to implement data augmentation or balancing 

strategies to ensure equitable representation and enhance the model’s generalization capabilities. 

 

D. Data Augmentation 

Data augmentation in the field of imaging involves manipulating the pixel values of an image. By 

applying augmentation techniques to the limited dataset, it is possible to enrich the variety of the 

available data [22] [23]. Machines interpret image data by analyzing the values of each pixel, meaning 

that even a single pixel difference can categorize the data as distinct from others [24]. Thus, data 

augmentation can serve as a solution to address issues related to data scarcity or overfitting during model 

training [25] [26]. The data augmentation methods utilized include brightness adjustment, darkening, 

horizontal flipping, rotation, and the addition of salt-and-pepper noise. As shown in Eq. (1), brightness 

adjustment involves manipulating pixel values by increasing or decreasing each pixel's scalar value. 

Increasing the value of each pixel in the image enhances its brightness. Conversely, decreasing the value 

of each pixel reduces the image's brightness.  

Fig. 3. Data with noise.

TABLE I
BRAIN TUMOR DATA.

No Category Training Data Validation Data

1 Glioma 1,153 136
2 Meningioma 1,449 140
3 Pituitary 1,424 136
4 No Tumor 711 100

Total 4,737 512

validation images, with a total of 4,737 training and
512 validation samples. The data distribution reflects
class imbalance, which may influence model perfor-
mance and should be addressed during preprocessing
or training. These images serve as the input for de-
veloping and evaluating machine learning models for
brain tumor classification.

Figure 2 shows a sample of the data used. The
images are labeled as glioma, meningioma, pituitary,
and no tumor from left to right. The data are prepro-
cessed for the subsequent stages. The primary research
limitation stems from its reliance on the Kaggle brain
tumor dataset, which, while comprehensive, may not
fully represent the entire spectrum of brain tumor
imaging variations encountered in clinical settings. The
dataset’s potential biases include limited demographic
diversity, potential selection bias in image acquisition,
and a restricted range of tumor types and stages. While
Kaggle datasets provide a standardized platform for
research, they often lack the complex heterogeneity

found in real-world medical imaging. The dataset’s
controlled nature means that the model’s performance
may not directly translate to more diverse and chal-
lenging clinical scenarios, where imaging conditions,
equipment variations, and patient-specific factors can
significantly impact image quality and tumor charac-
teristics.

B. Data Cleaning

The acquired data undergo a manual cleaning pro-
cess. Images with considerable noise or artifacts may
interfere with feature extraction in the model [21, 22],
so they are removed to ensure optimal performance
in later stages. In Fig. 3, MRI images of brain tumors
often show distinct shadow lines surrounding the brain.
These elements, aside from the actual brain, can greatly
influence the pattern recognition process. As a result, it
is essential to include a data removal step to eliminate
any non-brain components.

C. Data Classification

The cleaned data also undergo a manual classifica-
tion process. This process involves sorting the data
from axial, coronal, and sagittal perspectives. Each
perspective has its unique identifying features [23]. The
axial view excels in providing a complete view of the
brain hemispheres. Then, the coronal view displays the
entire head from top to bottom in a single image from
a perpendicular angle. In contrast, the sagittal view
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𝑓(𝑥, 𝑦)′ = 𝑓(𝑥, 𝑦) ± 𝑏     (1) 

 

Equation (1) defines a basic brightness adjustment operation, where 𝑓(𝑥, 𝑦)′ represents the new pixel 

value at position (𝑥, 𝑦), and 𝑓(𝑥, 𝑦) denotes the original pixel value. The term ±𝑏 corresponds to a 

constant scalar value added to or subtracted from each pixel. A positive value of 𝑏 increases the pixel 

intensity, resulting in a brighter image, while a negative value of 𝑏 decreases the pixel intensity, 

producing a darker image. This operation is applied uniformly across all pixels in the image 

 

   
 

Figure 4 Brightness manipulation result. 

 

Figure 4 demonstrates how brightness adjustment affects image visibility and contrast. Darkening 

reduces the visibility of fine details, which may be useful in simulating low-light conditions or testing 

model robustness. In contrast, brightness enhancement can highlight subtle structures, aiding in feature 

extraction and visual interpretation. Such transformations are essential in data augmentation strategies 

to improve model generalization across varying lighting conditions. 

As shown in Eq. (2), horizontal flipping involves manipulating pixel values by mirroring the 

original image horizontally. Pixels that are originally on the left side of the image are translated to the 

right side, and vice versa. Equation (2) represents the horizontal flipping operation, where 𝑓(𝑥, 𝑦)′ is 

the transformed pixel value at position (𝑥, 𝑦), and 𝑓(𝑁 − 𝑥, 𝑦) denotes the corresponding pixel value 

from the original image. Here, 𝑁 represents the image width minus one, effectively reversing the 

horizontal position of each pixel. This transformation mirrors the image along the vertical axis, swapping 

pixel positions from left to right. Horizontal flipping is commonly used in data augmentation to 

introduce spatial variation and improve the robustness of machine learning models. 

 

 

𝑓(𝑥, 𝑦)′ = 𝑓(𝑁 − 𝑥, 𝑦)      (2) 

 

 

  
 

Figure 5 Horizontal flip result. 

 

In Fig. 5, the image on the left is the normal image. Meanwhile, the image on the right is the result 

of the horizontal flip. The horizontal flip alters the pixel arrangement, resulting in a different sequence 

Fig. 4. Brightness manipulation result.

TABLE II
CLASSIFIED BRAIN TUMOR DATA.

No Category Plane Training Data Validation Data

1 Glioma Axial 362 61
Coronal 426 39
Sagittal 365 36

2 Meningioma Axial 389 62
Coronal 508 48
Sagittal 550 30

3 Pituitary Axial 431 53
Coronal 475 37
Sagittal 518 46

4 No Tumor Axial 617 80
Coronal 38 11
Sagittal 56 9

Total 4,735 512

presents the entire head from top to bottom in a single
image parallel to the body’s midline.

The results of the manual classification can be seen
in Table II. It presents a classification of the brain
tumor dataset according to the imaging planes of axial,
coronal, and sagittal across each tumor category. The
distribution highlights a substantial imbalance, both
inter-class and intra-class, particularly evident in the
no tumor category and within specific imaging planes
such as coronal and sagittal. Such heterogeneity in data
distribution may adversely affect the model’s learn-
ing process, potentially leading to biased predictions.
Consequently, it is imperative to implement data aug-
mentation or balancing strategies to ensure equitable
representation and enhance the model’s generalization
capabilities.

D. Data Augmentation

Data augmentation in the field of imaging involves
manipulating the pixel values of an image. By applying
augmentation techniques to the limited dataset, it is
possible to enrich the variety of the available data [24,
25]. Machines interpret image data by analyzing the
values of each pixel, meaning that even a single pixel
difference can categorize the data as distinct from
others [26]. Thus, data augmentation can serve as a
solution to address issues related to data scarcity or

overfitting during model training [27, 28]. The data
augmentation methods utilized include brightness ad-
justment, darkening, horizontal flipping, rotation, and
the addition of salt-and-pepper noise. As shown in
Eq. (1), brightness adjustment involves manipulating
pixel values by increasing or decreasing each pixel’s
scalar value. Increasing the value of each pixel in the
image enhances its brightness. Conversely, decreasing
the value of each pixel reduces the image’s brightness.

f(x, y)
′
= f(x, y)± b. (1)

Equation (1) defines a basic brightness adjustment
operation, where f(x, y)

′
represents the new pixel

value at position (x, y), and f(x, y) denotes the origi-
nal pixel value. The term ±b corresponds to a constant
scalar value added to or subtracted from each pixel.
A positive value of b increases the pixel intensity,
resulting in a brighter image, while a negative value
of b decreases the pixel intensity, producing a darker
image. This operation is applied uniformly across all
pixels in the image.

Figure 4 demonstrates how brightness adjustment
affects image visibility and contrast. Darkening reduces
the visibility of fine details, which may be useful
in simulating low-light conditions or testing model
robustness. In contrast, brightness enhancement can
highlight subtle structures, aiding in feature extraction
and visual interpretation. Such transformations are
essential in data augmentation strategies to improve
model generalization across varying lighting condi-
tions.

As shown in Eq. (2), horizontal flipping involves
manipulating pixel values by mirroring the original
image horizontally. Pixels that are originally on the
left side of the image are translated to the right side,
and vice versa. Equation (2) represents the horizontal
flipping operation, where f(x, y)

′
is the transformed

pixel value at position (x, y), and f(N −x, y) denotes
the corresponding pixel value from the original im-
age. Here, N represents the image width minus one,
effectively reversing the horizontal position of each
pixel. This transformation mirrors the image along
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Increasing the value of each pixel in the image enhances its brightness. Conversely, decreasing the value 

of each pixel reduces the image's brightness.  
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value at position (𝑥, 𝑦), and 𝑓(𝑥, 𝑦) denotes the original pixel value. The term ±𝑏 corresponds to a 

constant scalar value added to or subtracted from each pixel. A positive value of 𝑏 increases the pixel 

intensity, resulting in a brighter image, while a negative value of 𝑏 decreases the pixel intensity, 

producing a darker image. This operation is applied uniformly across all pixels in the image 

 

   
 

Figure 4 Brightness manipulation result. 

 

Figure 4 demonstrates how brightness adjustment affects image visibility and contrast. Darkening 

reduces the visibility of fine details, which may be useful in simulating low-light conditions or testing 

model robustness. In contrast, brightness enhancement can highlight subtle structures, aiding in feature 

extraction and visual interpretation. Such transformations are essential in data augmentation strategies 

to improve model generalization across varying lighting conditions. 

As shown in Eq. (2), horizontal flipping involves manipulating pixel values by mirroring the 

original image horizontally. Pixels that are originally on the left side of the image are translated to the 

right side, and vice versa. Equation (2) represents the horizontal flipping operation, where 𝑓(𝑥, 𝑦)′ is 

the transformed pixel value at position (𝑥, 𝑦), and 𝑓(𝑁 − 𝑥, 𝑦) denotes the corresponding pixel value 

from the original image. Here, 𝑁 represents the image width minus one, effectively reversing the 

horizontal position of each pixel. This transformation mirrors the image along the vertical axis, swapping 

pixel positions from left to right. Horizontal flipping is commonly used in data augmentation to 

introduce spatial variation and improve the robustness of machine learning models. 

 

 

𝑓(𝑥, 𝑦)′ = 𝑓(𝑁 − 𝑥, 𝑦)      (2) 

 

 

  
 

Figure 5 Horizontal flip result. 

 
Fig. 5. Horizontal flip result.
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of pixels across the image. This transformation is particularly useful in data augmentation, as it 

introduces spatial diversity without altering the semantic content of the image. By reversing the 

horizontal orientation, models can be trained to recognize features regardless of their left-right 

positioning, enhancing their generalization capabilities. Such augmentation is especially beneficial in 

medical imaging, where anatomical structures may appear in varying orientations. 

 

As shown in Eq. (3), rotation is a process of manipulating image data by changing its orientation 

around the center point of the image. This transformation can be accomplished by applying 

trigonometric formulas to each pixel. This results in new pixel positions being calculated based on the 

specified rotation angle. 

 

𝑓(𝑥, 𝑦)′ = 𝑓(𝑥 cos𝜃 − 𝑦 sin𝜃, 𝑥 sin𝜃 + 𝑦 cos𝜃)     (3) 

 

 

  
 

Figure 6 Rotation Result 

 

In Fig. 6, the image on the left is the normal image. Meanwhile, the image on the right shows the 

result of the rotation. The image maintains the same dimensions, but the position of each pixel is 

translated relative to the center point of the image by an angle of 45 degrees in a clockwise direction. 
This rotation technique is widely applied in data augmentation to enhance model invariance to 

orientation changes. By rotating the image around its center, spatial relationships between anatomical 

structures are preserved while introducing geometric diversity. Such transformations help to improve 

the robustness and generalization of deep learning models in medical image analysis.  

 

Lastly, salt and pepper is a process of manipulating pixel values by adding noise to the image data. 

Salt and pepper noise is a type of noise that appears as sharp disturbances in the image, manifested as 

randomly scattered black and/or white spots throughout the image [27]. In Fig. 7, the image on the left 

is the normal image, while the image on the right illustrates the result of the salt and pepper noise. The 

image affected by this noise will display dark pixels in bright areas and bright pixels in dark areas. This 

noise can be caused by several factors, such as dead pixels, errors in the analog-to-digital conversion 

process, or bit errors during transmission. 

 

  
 

Figure 7 Salt and Paper result. 

 

Fig. 6. Rotation result.
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the vertical axis, swapping pixel positions from left
to right. Horizontal flipping is commonly used in
data augmentation to introduce spatial variation and
improve the robustness of machine learning models.

f(x, y)
′
= f(N − x, y). (2)

In Fig. 5, the image on the left is the normal image.
Meanwhile, the image on the right is the result of
the horizontal flip. The horizontal flip alters the pixel
arrangement, resulting in a different sequence of pixels
across the image. This transformation is particularly
useful in data augmentation, as it introduces spatial
diversity without altering the semantic content of the
image. By reversing the horizontal orientation, models
can be trained to recognize features regardless of their
left-right positioning, enhancing their generalization
capabilities. Such augmentation is especially beneficial
in medical imaging, where anatomical structures may
appear in varying orientations.

As shown in Eq. (3), rotation is a process of manip-

ulating image data by changing its orientation around
the center point of the image. This transformation can
be accomplished by applying trigonometric formulas
to each pixel. This results in new pixel positions being
calculated based on the specified rotation angle.

f(x, y)
′
= f(x cosΘ− y sinΘ, x sinΘ+ y cosΘ).

(3)

In Fig. 6, the image on the left is the normal
image. Meanwhile, the image on the right shows the
result of the rotation. The image maintains the same
dimensions, but the position of each pixel is translated
relative to the center point of the image by an angle
of 45 degrees in a clockwise direction. This rotation
technique is widely applied in data augmentation to en-
hance model invariance to orientation changes. By ro-
tating the image around its center, spatial relationships
between anatomical structures are preserved while
introducing geometric diversity. Such transformations
help to improve the robustness and generalization of
deep learning models in medical image analysis.

Lastly, salt and pepper is a process of manipulating
pixel values by adding noise to the image data. Salt
and pepper noise is a type of noise that appears as
sharp disturbances in the image, manifested as ran-
domly scattered black and/or white spots throughout
the image [29]. In Fig. 7, the image on the left is the
normal image, while the image on the right illustrates
the result of the salt and pepper noise. The image
affected by this noise will display dark pixels in bright
areas and bright pixels in dark areas. This noise can be
caused by several factors, such as dead pixels, errors in
the analog-to-digital conversion process, or bit errors
during transmission.

E. Proposed Model

The model used is a result of transfer learning from
ResNet50, sourced from the TensorFlow library. The
ResNet architecture consists of several residual blocks.
In general, this approach employs a technique known
as skip connection [30]. The skip connection links
the activations of one layer to subsequent layers by
bypassing some layers in between. This arrangement
creates a residual block. ResNets are constructed by
stacking these residual blocks together. As seen in
Eq. (4), the residual block allows a neuron to be
processed through convolutional layers while maintain-
ing its gradient before processing. It enables neurons
that have previously experienced vanishing gradients to
regain the gradients that are characteristic of the data
being processed.

F (x) := H(x)− x, givesH(x) := F (x) + x. (4)
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TABLE III
COMPILATIONS OF MODEL PARAMETERS.

No Parameter Value

1 Optimizer Adam
2 Loss Categorical Crossentropy
3 Evaluation Accuracy
4 Epochs 25
5 Batch Size 16

TABLE IV
PARTIALLY AUGMENTED DATA.

No Category Plane Training Data Validation Data

1 Glioma Axial 362 61
Coronal 426 39
Sagittal 365 36

2 Meningioma Axial 389 62
Coronal 508 48
Sagittal 550 30

3 Pituitary Axial 431 53
Coronal 475 37
Sagittal 518 46

4 No Tumor Axial 617 80
Coronal 204 11
Sagittal 546 9

Total 5,391 512

As shown in Eq. (4), the residual block is designed
to reformulate the learning process by allowing the
network to approximate the residual function F (x) :=
H(x) − x, rather than learning the direct mapping
H(x). In this context, x represents the input to the
residual block, H(x) is the target underlying mapping
to be learned, and F (x) denotes the residual func-
tion that captures the difference between the desired
output and the input. By rearranging the equation as
H(x) := F (x) + x, the network effectively adds
the learned residual back to the original input. This
structure maintains the flow of gradients during back-
propagation, thus addressing the vanishing gradient
problem and enabling the successful training of deeper
neural networks.

Given its advantages, ResNet has proven quite ef-
fective in image recognition or classification based
on the properties of its residual blocks [30]. The
residual blocks in the ResNet architecture enable image
data to retain previously extracted features, allowing
for deeper processing of the image data without the
concern of losing those features during convolution or
other processes. This capability supports the learning
of more complex patterns, as the network can leverage
both newly learned and previously preserved features
simultaneously. Moreover, it enhances training effi-
ciency and accuracy by enabling the construction of
substantially deeper networks without degradation in
performance.

Additionally, modifications are made by changing

the softmax layer in the fully connected layer to ac-
commodate 12 classes in accordance with the previous
data distribution [31, 32]. The transfer learning model
is configured with its trainable parameters set to false
to avoid potential overfitting. Table III highlights the
essential parameters used in constructing the ResNet50
model. A callback for early stopping is applied during
training. The training halts if the training accuracy
reaches 92% and validation accuracy reaches 90% or
there is no improvement in validation accuracy within
a patience of 5 epochs.

The proposed model is tested under multiple sce-
narios to assess its effectiveness using the research
methodology gathered. Each scenario is evaluated by
monitoring the training and validation accuracy and
loss. The Adam optimizer is selected for its adaptive
learning rate capabilities, which help to accelerate
convergence during training. Categorical crossentropy
is employed as the loss function due to the multi-class
classification nature of the problem, while accuracy
is used to evaluate model performance. The model
is trained over 25 epochs with a batch size of 16,
providing a balanced trade-off between computational
efficiency and model generalization. The data details
for the non-augmented testing scenario can be seen in
Table III.

In Table IV, particularly in the coronal and sagittal
rows, a significant increase in data can be observed.
Data augmentation is performed partially, targeting
the classes with the smallest percentage of samples
to enhance their quantity, thereby reducing the gap
between their amounts and those of the other classes.
This approach ensures a more balanced dataset, fa-
cilitating improved model training and classification
performance.

In Table V, a significant portion of the data is
trimmed to match the quantity with that of the class
with the smallest number of samples. This normaliza-
tion process ensures a balanced training dataset and
helps prevent the model from becoming biased toward
classes with larger sample sizes. Although validation
data remains unchanged to preserve evaluation in-
tegrity, the training data are equalized to enhance fair-
ness during model learning. This method is particularly
beneficial in scenarios involving class imbalance in
medical imaging datasets. Moreover, it provides a con-
trolled environment to evaluate the model’s capacity
to learn from uniformly distributed data, highlighting
its core classification ability without bias from data
volume.

These three scenarios are trained using the ResNet50
model with the compilation settings detailed in Ta-
ble III. Each model presents unique characteristics
throughout the training process due to variations in data
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Positive (FP), where instances are mistakenly classified as positive; and False Negative (FN), where 

instances are incorrectly classified as negative. Together, these elements offer a detailed view of the 

model's strengths and weaknesses, allowing for an analysis that goes beyond simple accuracy and 

reveals patterns in prediction errors. It helps to identify any tendencies the model may have toward 

overpredicting or underpredicting specific classes. 

 
𝑇𝑃+𝑇𝑁

(𝑇𝐹+𝑇𝑁 +𝐹𝑃+𝐹𝑁)
       (5) 

 

The specific metric extracted from the confusion matrix for evaluation is overall accuracy, calculated 

as shown in Eq. (5). It involves summing the total number of correct predictions—both TP and TN—

and dividing this by the total number of predictions made. This ratio provides a straightforward measure 

of the model's general classification accuracy, offering insight into how effectively the model is 

distinguishing between classes across the dataset. 

 

III. RESULTS AND DISCUSSION 
 

The research results are derived from training each model under various scenarios. Each training 

session uses a single data source: secondary data collected from the Kaggle website. This standardized 

data source ensures consistent input quality across all model scenarios, facilitating a clear comparison 

of each model's performance in different experimental settings.  
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Figure 8 The accuracy of models.  

 

Figure 8 illustrates the different outcomes for each training scenario. Figure 8(a) shows the training 

histories for models using non-augmented data. Then, Fig. 8(b) shows the training histories using data 

with partial augmentation. Figure 8(c) presents the training histories using data that has been balanced 

through down-sampling to match the smallest class size. These variations in training histories 

demonstrate how each data-handling approach affects model performance across the different scenarios. 

The model trained with non-augmented data achieves a lower maximum accuracy compared to the 

model trained with augmented data. According to the accuracy history graph, the augmented data model 

reaches a peak accuracy of 85%, whereas the non-augmented model only achieves a peak accuracy of 

79%. This result suggests that augmenting data significantly improves the model's performance, likely 

due to the enhanced variability and robustness provided by the additional augmented samples.  

Table 2 highlights the noticeable data imbalance in this study, particularly in the ``no tumor” class 

within coronal and sagittal views. This imbalance is likely to hinder the model's ability to perform 

optimally in classifying all twelve classes, thus necessitating data augmentation. The training history in 

Figure 8 shows that even when augmentation is applied, it only partially addresses data gaps. It does not 

negatively impact model training. On the contrary, adding augmented data enhances the model's 

performance, yielding a higher accuracy history compared to the non-augmented data scenario. 

Fig. 8. The accuracy of models.

TABLE V
ROUNDING-DOWN DATA.

No Category Plane Training Data Validation Data

1 Glioma Axial 38 61
Coronal 38 39
Sagittal 38 36

2 Meningioma Axial 38 62
Coronal 38 48
Sagittal 38 30

3 Pituitary Axial 38 53
Coronal 38 37
Sagittal 38 46

4 No Tumor Axial 38 80
Coronal 38 11
Sagittal 38 9

Total 456 512

handling. It may influence performance metrics like
accuracy and robustness across different test scenarios.

F. Evaluation Metrics

The trained model’s performance is evaluated us-
ing accuracy derived from the confusion matrix, a
table that provides a comprehensive assessment by
comparing model predictions to actual labels. This
matrix includes four main components: True Positive
(TP), which represents instances correctly identified
as positive; True Negative (TN), indicating instances
accurately classified as negative; False Positive (FP),
where instances are mistakenly classified as positive;
and False Negative (FN), where instances are incor-
rectly classified as negative. Together, these elements
offer a detailed view of the model’s strengths and
weaknesses, allowing for an analysis that goes beyond
simple accuracy and reveals patterns in prediction
errors. It helps to identify any tendencies the model
may have toward overpredicting or underpredicting
specific classes.

The specific metric extracted from the confusion
matrix for evaluation is overall accuracy, calculated as
shown in Eq. (5). It involves summing the total number

of correct predictions–both TP and TN–and dividing
this by the total number of predictions made. This
ratio provides a straightforward measure of the model’s
general classification accuracy, offering insight into
how effectively the model is distinguishing between
classes across the dataset.

TP + TN

(TF + TN + FP + FN)
. (5)

III. RESULTS AND DISCUSSION

The research results are derived from training each
model under various scenarios. Each training session
uses a single data source: secondary data collected
from the Kaggle website. This standardized data source
ensures consistent input quality across all model sce-
narios, facilitating a clear comparison of each model’s
performance in different experimental settings.

Figure 8 illustrates the different outcomes for each
training scenario. Figure 8(a) shows the training his-
tories for models using non-augmented data. Then,
Fig. 8(b) shows the training histories using data with
partial augmentation. Figure 8(c) presents the training
histories using data that has been balanced through
down-sampling to match the smallest class size. These
variations in training histories demonstrate how each
data-handling approach affects model performance
across the different scenarios.

The model trained with non-augmented data
achieves a lower maximum accuracy compared to
the model trained with augmented data. According
to the accuracy history graph, the augmented data
model reaches a peak accuracy of 85%, whereas the
non-augmented model only achieves a peak accuracy
of 79%. This result suggests that augmenting data
significantly improves the model’s performance, likely
due to the enhanced variability and robustness provided
by the additional augmented samples.

Table II highlights the noticeable data imbalance in
this study, particularly in the “no tumor” class within
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In terms of model robustness, the first and second training scenarios exhibit only a slight difference 

between training and validation accuracy, suggesting that the model generalizes well when recognizing 

unseen data. It also demonstrates the positive impact of data augmentation in replicating image data. 

Even with basic image processing techniques, the augmented data retains significant features 

comparable to those of diverse, original data, contributing to model stability and reliable performance.  

In contrast, the model trained with down-sampled data exhibits severe underfitting. While the 

accuracy history indicates some growth, there is a significant gap between training and validation 

accuracy. This model achieves a final accuracy of 87.67% on the training set but only 60.16% on the 

validation set. The over 25% difference suggests that the model lacks generalizability for new data. 

Although it performs well in terms of training accuracy, it fails to deliver similar results during 

validation, highlighting its limitations in recognizing unfamiliar patterns. 
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superior overall accuracy compared to the other scenarios. Specifically, the partially augmented data 
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the model using the rounding-down scenario excels in its training process. This scenario achieves the 

highest training accuracy compared to other scenarios. This finding also demonstrates that balanced data 

distribution plays a critical role in the training process, even if the total quantity of data is limited. 

However, despite the model’s impressive training performance, the reduced data quantity in this 

scenario leads to underfitting, as it struggles to generalize to new data effectively.
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Fig. 9. Final accuracy of the models.

coronal and sagittal views. This imbalance is likely
to hinder the model’s ability to perform optimally in
classifying all twelve classes, thus necessitating data
augmentation. The training history in Fig. 8 shows that
even when augmentation is applied, it only partially ad-
dresses data gaps. It does not negatively impact model
training. On the contrary, adding augmented data en-
hances the model’s performance, yielding a higher
accuracy history compared to the non-augmented data
scenario.

In terms of model robustness, the first and second
training scenarios exhibit only a slight difference be-
tween training and validation accuracy, suggesting that
the model generalizes well when recognizing unseen
data. It also demonstrates the positive impact of data
augmentation in replicating image data. Even with
basic image processing techniques, the augmented data
retains significant features comparable to those of
diverse, original data, contributing to model stability
and reliable performance.

In contrast, the model trained with down-sampled
data exhibits severe underfitting. While the accuracy
history indicates some growth, there is a significant gap
between training and validation accuracy. This model
achieves a final accuracy of 87.67% on the training
set but only 60.16% on the validation set. The over
25% difference suggests that the model lacks gener-
alizability for new data. Although it performs well in
terms of training accuracy, it fails to deliver similar
results during validation, highlighting its limitations in
recognizing unfamiliar patterns.

From the final results in Fig. 9, the model trained
with partially augmented data demonstrates supe-
rior overall accuracy compared to the other scenar-
ios. Specifically, the partially augmented data model

achieves higher accuracy than the non-augmented data
model, despite the significant data imbalance. This out-
come substantiates that even partial data augmentation
effectively reduces the impact of data imbalance and
significantly enhances the model’s classification accu-
racy. Interestingly, the model using the rounding-down
scenario excels in its training process. This scenario
achieves the highest training accuracy compared to
other scenarios. This finding also demonstrates that
balanced data distribution plays a critical role in the
training process, even if the total quantity of data
is limited. However, despite the model’s impressive
training performance, the reduced data quantity in
this scenario leads to underfitting, as it struggles to
generalize to new data effectively.

As shown in Fig. 10, the loss history for each
scenario reveals some fluctuation. Figure 10(a) displays
loss history for non-augmented data. Figure 10(b)
shows partially augmented data. Figure 10(c) presents
rounding-down data. The visible fluctuations suggest
that the model may still be prone to overfitting. This
observation presents an opportunity for further research
to explore techniques to enhance the model’s stability
and robustness, potentially improving its generalization
capabilities on unseen data.

Table VI is the corresponding label used in the
confusion matrix evaluation. Each confusion matrix
provides insights into the model’s classification perfor-
mance, highlighting areas of strength and weakness in
accurately predicting the various classes. The patterns
observed in these matrices are crucial for understand-
ing the effectiveness of data augmentation and its im-
pact on classification accuracy across different training
scenarios.

In Fig. 11, lower accuracy rates and a higher in-
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Fig. 10. Models’ loss.

TABLE VI
CONFUSION MATRIX LABEL.

Label Class

0 clear-axial
1 clear-coronal
2 clear-sagittal
3 glioma-axial
4 glioma-coronal
5 glioma-sagittal
6 meningioma-axial
7 meningioma-coronal
8 meningioma-sagittal
9 pituitary-axial
10 pituitary-coronal
11 pituitary-sagittal
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Figure 11 Confusion matrix of normal data. 

 

In Fig. 12, misclassification rates for the clear classes show a slight decline in the partial augmentation 

scenario. However, significant misclassification between views for tumor classes persists. While 

augmentation aids in enhancing the representation of clear classes, its impact remains limited when it 

comes to distinguishing clear classes from certain tumor classes. The persistent confusion between 

tumor types, particularly in sagittal views (e.g., meningioma-sagittal (8) and glioma-sagittal (5)), 

indicates that augmentation alone cannot fully address the challenges of view-dependent classification. 

This result suggests that the similarity in tumor appearance from certain angles presents a fundamental 

challenge that requires more sophisticated approaches beyond basic data augmentation techniques. The 

findings highlight the need for augmentation strategies that specifically target view-dependent features 

while preserving the distinct characteristics of different tumor types. 
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cidence of misclassification are evident in scenarios
where significant data imbalance exists, such as in
the clear-sagittal (2) and clear-coronal (1) classes.
These classes are frequently misclassified as other
tumor classes, such as glioma and meningioma, par-

ticularly when viewed from the same perspective. This
is a fundamental issue in medical image classification
when dealing with imbalanced datasets. The frequent
misclassification suggests that the model struggles to
identify distinctive features in these perspectives (clear-
sagittal (2) and clear-coronal (1) classes). This limita-
tion stems not only from the data scarcity but also from
the inherent complexity of brain tumor morphology
when viewed from different angles. The model’s diffi-
culty in establishing reliable patterns for clear classes
demonstrates how critical data quantity and quality are
in developing robust classification systems for medical
imaging applications.

In Fig. 12, misclassification rates for the clear
classes show a slight decline in the partial augmen-
tation scenario. However, significant misclassification
between views for tumor classes persists. While aug-
mentation aids in enhancing the representation of clear
classes, its impact remains limited when it comes to
distinguishing clear classes from certain tumor classes.
The persistent confusion between tumor types, partic-
ularly in sagittal views (e.g., meningioma-sagittal (8)
and glioma-sagittal (5)), indicates that augmentation
alone cannot fully address the challenges of view-
dependent classification. This result suggests that the
similarity in tumor appearance from certain angles
presents a fundamental challenge that requires more
sophisticated approaches beyond basic data augmen-
tation techniques. The findings highlight the need for
augmentation strategies that specifically target view-
dependent features while preserving the distinct char-
acteristics of different tumor types.

Lastly, in the rounding-down data scenario, the
model exhibits lower accuracy and a more widespread
misclassification, particularly within the clear and tu-
mor classes sharing the same view. Based on Fig. 13,
the reduction in data alleviates some of the imbal-
ance issues. However, it also diminishes the model’s
ability to recognize the unique features of each class,
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Fig. 13. Confusion matrix of rounding-down data.

especially in challenging views that are difficult to
differentiate. The increase in misclassification among
identical views (axial, coronal, and sagittal) highlights
that the drastic reduction of data has detrimental effects
on the model’s performance, leading to confusion
among different tumor types in the sagittal view. The
findings emphasize that while addressing data imbal-
ance is important, methods that drastically reduce data
availability can undermine the model’s capacity to
develop robust classification capabilities.

Through a comprehensive evaluation of all three
scenarios, the research reveals critical insights into
the optimization of ResNet-50 for brain tumor clas-
sification using multi-section MRI images. The par-

tial augmentation approach, achieving 85% accuracy,
demonstrates the most promising balance between data
enhancement and model performance. However, the
persistent challenges in distinguishing between certain
views and tumor types highlight the need for more
sophisticated approaches.

Comparative analysis across scenarios emphasizes
that while data quantity is crucial, the quality and
distribution of training data play equally vital roles
in model performance. These findings suggest that fu-
ture developments should focus on targeted augmenta-
tion strategies that specifically address view-dependent
features while maintaining the distinct characteristics
necessary for accurate tumor classification. The results
also underscore the importance of preserving sufficient
data quantity while addressing class imbalance, as
evidenced by the significant performance degradation
in the rounding-down scenario. This comprehensive
understanding provides valuable guidance for devel-
oping more effective approaches to medical image
classification, particularly in scenarios where multiple
viewing angles and tumor types must be accurately
distinguished.

The overall accuracy calculation from the confusion
matrix results can be detailed in Fig. 14. It illustrates
the performance of the model across various scenar-
ios, highlighting the differences in accuracy among
the training methods employed. The analysis provides
insights into how each scenario affects the model’s
ability to accurately classify the MRI brain tumor im-
ages, informing future improvements and adjustments
to the methodology. Through Fig. 14, it is evident
that the model excels in the partially augmented test-
ing scenario. It aligns with the model’s performance
recorded in the history of accuracy and loss, which also
demonstrates superior results compared to the other
testing scenarios. The partial augmentation effectively
enhances the model’s ability to learn from the training
data, resulting in improved classification outcomes and
reduced misclassification rates.

IV. CONCLUSION

The researchers demonstrate that brain tumor clas-
sification using the multi-section concept has a lower
potential for overfitting compared to models without
sectioning. The models developed based on various
scenarios, including partial augmentation, exhibit vary-
ing performance levels, highlighting that partial aug-
mentation significantly enhances the model’s perfor-
mance. This approach not only helps in mitigating
overfitting but also contributes to more accurate and
reliable classifications, showcasing the effectiveness of
incorporating multi-sectional analysis in brain tumor
classification tasks.
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Fig. 14. Model’s final accuracy.

Data distribution plays a crucial role in producing
an effective model, as evidenced by the significant
results observed in the rounding-down testing scenario
during the training process. This finding underscores
the importance of ensuring a balanced distribution of
data quantities, which greatly influences the model’s
success in achieving high accuracy. A well-distributed
dataset allows the model to learn more effectively from
diverse examples, improving its ability to generalize
and accurately classify different classes, ultimately
leading to enhanced performance in real-world appli-
cations.

From the three scenarios conducted, partial data
augmentation demonstrates limited improvement in
addressing class imbalance but is insufficient to re-
solve the misclassification issues between clear and
tumor classes within the same view. Meanwhile, the
rounding-down scenario results in an overall decrease
in accuracy. A more comprehensive augmentation
strategy or the implementation of alternative balancing
techniques may prove more effective in enhancing
model accuracy, particularly for the clear class, and
in distinguishing between challenging views, such as
sagittal.

Overall, data plays a crucial role in the training
process for classification using machine learning, par-
ticularly in the case of brain tumor classification using
MRI images. Data with classes extended based on their
viewpoints has proven to narrow the gap between train-
ing and validation accuracy, indicating that the model
effectively recognizes the underlying patterns within
the data. This scenario has successfully constructed a
robust model.

One of the shortcomings identified in the research
is the suboptimal accuracy across all testing scenarios,

as the model fails to reach a significant accuracy level
comparable to previous studies, which achieved over
90%. This limitation may stem from several factors,
including imbalanced and insufficient additional data,
particularly in the classes with severe discrepancies,
such as coronal and sagittal views in the no-tumor
category. Addressing these issues by enhancing data
diversity and quantity can potentially improve the
model’s performance in future iterations.

Future research should focus on expanding the gen-
eralizability and robustness of the proposed ResNet-50
modification by integrating multi-institutional datasets
that capture broader demographic and clinical varia-
tions. It will involve collaborating with diverse med-
ical centers to create a more comprehensive dataset
representing different imaging technologies, patient
populations, and tumor subtypes. Researchers should
explore advanced augmentation techniques such as
Generative Adversarial Networks (GANs) for syn-
thetic image generation, investigate transfer learning
approaches across different imaging modalities, and
develop more sophisticated techniques for handling
class imbalance. Additionally, the research should aim
to develop interpretable AI models that can provide
clinically meaningful insights, enabling physicians to
understand the decision-making process behind tumor
classification and potentially uncovering subtle diag-
nostic patterns that may escape human perception.
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