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Abstract—Parkinson’s Disease (PD) is a progressive
neurological disorder marked by both motor and non-
motor symptoms. Accurate prediction of disease pro-
gression is critical for effective patient management.
The research presents a Hybrid Stacked Ensemble Re-
gression (HSER) model for predicting PD progression
using protein and peptide data measurements, leveraging
the Movement Disorder Society-Sponsored Revision of
the Unified Parkinson’s Disease Rating Scale (MDS-
UPDRS) scores. The researchers integrate three datasets:
clinical data, protein data, and peptide data into a
comprehensive feature-engineered dataset. The dataset is
split into training and testing sets in four configurations
for predicting the four UPDRS scores, namely updrs 1,
updrs 2, updrs 3, updrs 4. The hybrid approach com-
bines stacking and blending techniques. The researchers
select ridge regression, gradient boosting, and extra
trees as base models. A meta-model is trained using
the algorithms’ out-of-fold estimates (ridge regression).
The final predictions are obtained by averaging the
predictions of the base models on the test data. The
proposed HSER model exhibits enhanced performance
compared to baseline models. These results underscore
the promise of the hybrid model to enhance the predic-
tion of PD progression, providing valuable insights for
personalized treatment strategies. Future research can
focus on refining model weights and exploring additional
biomarkers to improve predictive accuracy.

Index Terms—Parkinson’s Disease, Hybrid Stacked
Ensemble Regression, Movement Disorder Society-
Sponsored Revision of the Unified Parkinson’s Disease
Rating Scale (MDS-UPDRS) Scores, Protein and Peptide
Data, Predictive Modeling

I. INTRODUCTION

PARKINSON’S Disease (PD) is a progressive neu-
rological disorder affecting millions worldwide,

characterized by motor symptoms (such as tremors,
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rigidity, bradykinesia, and postural instability) and non-
motor symptoms (including cognitive decline, mood
disorders, sleep disturbances, and autonomic dysfunc-
tion) [1]. The complexity and variability of PD symp-
toms make it challenging to manage and treat effec-
tively. Accurate prediction of disease progression is
crucial for tailoring personalized treatment strategies,
optimizing patient outcomes, and improving quality of
life [2]. The Movement Disorder Society-Sponsored
Revision of the Unified Parkinson’s Disease Rating
Scale (MDS-UPDRS) is a comprehensive tool widely
used to assess the severity and progression of PD.
It encompasses four parts: non-motor experiences of
daily living (updrs 1), motor experiences of daily
living (updrs 2), motor examination (updrs 3), and
motor complications (updrs 4) [3]. Despite its clinical
utility, predicting PD progression using MDS-UPDRS
scores remains challenging due to the complex inter-
play of various biological, environmental, and genetic
factors [4].

Recent advancements in biomedical research have
highlighted the promise of protein and peptide mea-
surements as biomarkers for several illnesses, compris-
ing of PD. Proteins and peptides can reflect underlying
pathological processes and offer valuable insights into
disease mechanisms [5]. However, current predictive
models often fail to leverage the full spectrum of
available biological data, particularly protein and pep-
tide measurements, which hold significant potential
for enhancing the accuracy of progression predictions
in PD [6]. Previous exploration have surveyed var-
ious Machine Learning (ML) models for predicting
PD progression, including Linear Regression, Random
Forest (RF), and Gradient Boosting [7]. Whilst these
simulations exhibit promise, they regularly face chal-
lenges such as overfitting, inability to handle high-
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dimensional data, and lack of integration of hetero-
geneous data sources [8]. Ensemble learning methods,
that integrate multiple models to improve prediction
accuracy and robustness, have shown potential in other
domains but are underutilized in progression prediction
of PD [9].

The research introduces a novel Hybrid Stacked
Ensemble Regression (HSER) model that uniquely
combines stacking and blending techniques to integrate
clinical, protein, and peptide data for predicting PD
progression. In contrast to earlier works which fre-
quently rely on single data sources or simpler models,
this approach leverages the strengths of multiple mod-
els and data types to enhance predictive accuracy. This
effective approach not only improves prediction per-
formance but also offers a comprehensive framework
for incorporating diverse biological measurements in
disease progression modeling.

The research aim to build a HSER model to predict
the MDS-UPDRS scores (updrs 1, updrs 2, updrs 3,
updrs 4) using integrated clinical, protein, and peptide
data. By combining stacking and blending techniques,
the research aims to enhance predictive accuracy and
provide deeper insights into PD progression. The re-
searchers hypothesize that the HSER model will out-
perform traditional single-model approaches in pre-
dicting MDS-UPDRS scores. The points steering the
research are: Can the integration of clinical, protein,
and peptide data improve the accuracy of PD progres-
sion predictions? How does the hybrid stacked ensem-
ble model compare to baseline models in terms of
predictive performance? The research has substantial
consequences for the domain of PD management. By
developing a more accurate predictive model, clinicians
can better anticipate disease progression and tailor
treatment plans accordingly. Additionally, the research
addresses existing knowledge gaps by demonstrating
the value of integrating heterogeneous biological data
using advanced ensemble learning techniques.

The contributions of the research are as follows:

• Preparation of a comprehensive and cleaned med-
ical dataset appropriate for training regression
models to predict UPDRS scores based on protein
and peptide data measurements.

• Development of a sophisticated ML-based frame-
work for UPDRS score prediction using protein
and peptide data measurements.

• Design of a novel HSER model for UPDRS
score prediction using protein and peptide data
measurements.

• Comparison of the designed HSER model with
baseline models: Linear Regression, Ridge Re-
gression, Lasso Regression, Elastic Net, RF, Gra-

dient Boosting, AdaBoost, Bagging, and Extra
Trees with respect to Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE).

A. Related Work

In this section, the researchers discuss the relevant
research carried out in the domain of PD detection
using ML/Deep Learning (DL), and ensemble methods.
The researchers observe that less research is done
on PD detection using protein and peptide data. The
previous research addresses the challenge of accurately
diagnosing PD, which shares symptoms with several
other neurodegenerative diseases. Traditional diagnosis
relies on patient history and symptoms, but these
can overlap with conditions like Progressive Supranu-
clear Palsy (PSP), Multiple System Atrophy (MSA),
essential tremor, and Parkinson’s tremor. It utilizes
neuroimaging biomarkers to assess dopamine levels in
the brain, which is indicative of disease severity and
progression, to improve diagnostic accuracy. It em-
ploys ML algorithms to classify patients based on this
neuroimaging data. Specifically, it develops a stacked
ML model that combines predictions from several
algorithms, including K-Nearest Neighbor (KNN), RF,
and Gaussian Naive Bayes (GANB). This approach
achieves a 92.5% accuracy rate, surpassing traditional
diagnostic methods [10].

Another previous research explores the potential of
high throughput sequencing technologies, specifically
RNA-Sequencing (RNA-Seq) data, to predict the pro-
gression of PD. Despite existing analytical represen-
tations which use medical data for this purpose, no
models have previously been based on RNA-Seq data
from PD patients. It aims to predict the progression
of PD for a patient’s subsequent medical visit by
analyzing temporal patterns in RNA-Seq data. Using
data from the Parkinson Progression Marker Initiative
(PPMI) involving 423 PD patients over a span of
4 years and 34,682 predictor variables, the previous
researchers develop a predictive model. This model
employs a deep Recurrent Neural Network (RNN)
enhanced with dense connections and batch normal-
ization. The proposed model demonstrates the ability
to predict PD progression with a RMSE of 6.0 and a
significant rank-order correlation (r = 0.83, p < 0.0001)
between predicted and actual disease status, indicating
strong predictive performance [11].

Previous researchers have investigated main compo-
nents which may forecast depression in patients with
PD using a stacking ensemble approach. The goal
is to provide foundational data for creating a nomo-
gram prognostic index to identify high-risk groups
for depression among these patients. They classify

16



Cite this article as: K. S. Aditya, M. Mohan, and K. Deepthi, “Hybrid Stacked Ensemble Regression Model
for Predicting Parkinson’s Progression on Protein Data”, CommIT Journal 19(1), 15–27, 2025.

depression into “with depression” and “without depres-
sion” categories using the Geriatric Depression Scale-
30 (GDS-30). The team develops and tests nine ML
models, including combinations of Artificial Neural
Networks (ANN), RF, NB, and Decision Trees (DT)
with Logistic Regression (LR). The models’ analyt-
ical performance is assessed utilizing 10-fold cross-
validation, and the RF combined with LR emerged as
the best-performing model with an RMSE of 0.16, an
Index of Agreement (IA) of 0.73, and an Explained
Variance (EV) of 0.48. The analysis highlights ten
significant predictors of depression in PD patients,
including cognitive and motor assessments, daily living
activity scales, and sleep-related disorders. It under-
scores the need for developing interpretable ML mod-
els that can be practically applied in the medical field
to predict depression in PD patients [12].

Next, previous research has focused on predicting
the severity of PD using protein and peptide biomark-
ers. PD, a debilitating neurological disorder affect-
ing movement, cognition, and mood, impacts millions
worldwide, with cases expected to rise significantly
by 2030. It employs information from 1,019 patients
to discover the relationship between biomarker levels
and the UPDRS scores, which measure PD severity.
The previous researchers employ Exploratory Data
Analysis (EDA) and ML to identify biomarkers that
can predict UPDRS scores, aiding in early PD detec-
tion and management. Their assessment demonstrates
that numerous proteins and peptides are extensively
correlated with PD risk and that these biomarkers are
more prevalent in people with PD compared to healthy
controls. Utilizing Symmetric Mean Absolute Percent-
age Error (SMAPE) to assess the predictive accuracy
of various ML algorithms, the previous researchers
find that the RF algorithm executes best, attaining
a SMAPE score of 0.37. The findings suggest that
biomarker analysis through ML holds promise for early
PD detection, potentially leading to more effective in-
tervention and management strategies, thereby offering
promise for better results for PD patients [13].

Another previous research aims to enhance the early
diagnosis and prediction of PD progression through an
innovative ML approach. It develops a stack ensemble
model that combines several ML algorithms, including
DT, KNN, NB, and RF, to create a more accurate and
robust predictive tool. It meticulously processes and
combines diverse datasets, including clinical records,
genetic information, and neuroimaging data, to extract
valuable features for the model. Through extensive ex-
periment and validation using a comprehensive dataset,
the stack ensemble model exihibits effective analytical
performance in comparison to individual algorithms.

This model not only achieves higher accuracy but
also improves interpretability by highlighting the key
features contributing to the prediction of PD [14].

Next, previous research also leverages the extensive
and heterogeneous dataset from the PPMI to enhance
the prediction and diagnosis of PD using advanced
ML techniques. By integrating and processing diverse
data sources—including clinical records, genetic in-
formation, and neuroimaging data—it develops robust
protocols for data handling and analysis. The ML
methods, particularly Adaptive Boosting and Support
Vector Machines, significantly outperform traditional
model-based approaches, achieving high accuracy, sen-
sitivity, and specificity. It underscores the importance
of UPDRS scores in predicting PD and demonstrates
that effective rebalancing of data cohorts can enhance
predictive analytics [15].

II. RESEARCH METHOD

The researchers perform EDA to comprehend the
description of the datasets. Subsequent tasks are per-
formed in the EDA phase. First, the researchers plot
clinical data. For example, in a random patient id
1517, Fig. 1 plots the target label values (updrs 1,
updrs 2, updrs 3, updrs 4) of the patient in each
month (visit month). Second, the researchers plot pro-
tein data. For example, a random patient id 1517 in
Fig. 2 shows the first 40 Protein entries (UniProt) of the
patient and their Normalized Protein eXpression (NPX)
value against patient’s visit month (visit month).

Then, Fig. 3 shows the proposed framework for
prediction of MDS-UPDRS scores using protein and
peptide measurements. Three datasets [16] are used for
experimentation in the proposed framework. They are
clinical data containing 8 columns and 2,615 records,
proteins data containing 5 columns and 232,741 en-
tries, and peptides data containing 6 columns and
981,834 entries.

There are three datasets used. First, the clinical
data columns are visit id, patient id, visit month,
pd23b clinical state on medication, updrs 1,
updrs 2, updrs 3, updrs 4. In the data, updrs 1,
updrs 2, updrs 3, updrs 4 are the target variables
that need to be predicted. Second, the columns in
proteins dataset are visit id, visit month, patient id,
UniProt, and NPX. NPX is the protein concentration
in shells. Third, the columns in peptides dataset are
visit id, visit month, patient id, UniProt, Peptide, and
PeptideAbundance, showing the peptide concentration
of each patient. These datasets are subjected to
feature engineering. In the feature engineering phase,
polynomial features up to the 2nd degree are created
out of the primary features. Polynomial features
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Fig. 1. Plot of Unified Parkinson’s Disease Rating Scale (UPDRS) scores for a random patient id: 1517.

 

Fig.2 Plot of first 40 entries of protein data for a random patient id: 1517 

 
Fig. 2. Plot of first 40 entries of protein data for a random patient id: 1517.

are generated to let the model to capture non-linear
relationships and interactions between features.
It often delivers enhanced model performance by
providing a richer set of features that can help in
better approximating the essential patterns in the
data. Subsequently, scaling is performed on these
attributes. The proposed HSER model performs
stacking by training multiple base models (Ridge
Regression, Gradient Boosting Regressor, and Extra

Trees Regressor) on clinical, protein, and peptide
data, using their out-of-fold predictions to train a
meta-model. In the blending phase, it averages the
predictions from the base models for final robust and
accurate UPDRS score predictions.

A. Dataset Preparation

The summary of the raw dataset used in the research
is as follows:
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Fig. 3. Proposed framework for Unified Parkinson’s Disease Rating Scale (UPDRS) score prediction using protein and peptide measurements.

• Train clinical data: The train clinical data com-
pose of eight attributes (visit id, patient id,
visit month, updrs 1, updrs 2, updrs 3, up-
drs 4, and upd23b clinical state on medication)
and 2,615 records. UPDRS is a rating instrument
used to measure the the severity and progression
of PD in patients. When a patient visits the clinic,
the clinic will record how the patient scored on 4
parts of UPDRS test. These records are available
in train clinical. The ratings for the the first four
segments of UPDRS are available as updrs 1,
updrs 2, updrs 3 and updrs 4 in this dataset. The
goal is to train a model to predict these UPDRS
ratings.

• Train proteins data: The train proteins data have

five attributes (visit id, visit month, patient id,
UniProt, and NPX) and 232,741 records. The
clinic will also record the patient’s NPX value
for all the proteins relevant to PD during each
visit. NPX is nothing but the value representing
the protein concentration in shells.

• Train peptides data: Proteins are long molecules
made up of multiple peptides. The clinic will
record the peptide abundance of each peptide
in proteins relevant to PD. It shows the pep-
tide concentration, similar to NPX for proteins.
The train peptides data compose of six attributes
(visit id, visit month, patient id, UniProt, Pep-
tide, and PeptideAbundance) and 981,834 records.

These three datasets (protein, peptide, and clinical
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TABLE I
SAMPLE OF FEATURE ENGINEERED DATASET.

Visit Id 391 533 584 14498 14773 14791 15240

0 10053 0 9104.27 402321 NaN NaN 7150.57 2497.84 83002.9
1 10053 12 10464.2 435586 NaN NaN NaN NaN 197117.0
2 10053 18 13235.7 507386 7126.96 24525.7 NaN 2372.71 126506.0
3 10138 12 12600.2 494581 9165.06 27193.5 22506.10 6015.90 156313.0
4 10138 24 12003.2 522138 4498.51 17189.8 29112.40 2665.15 151169.0

datasets) are combined into a single comprehensive
dataset for predicting UPDRS scores. The researchers
have to predict the ratings for the the first four
segments of UPDRS (updrs 1, updrs 2, updrs 3 and
updrs 4) that are likely to be recorded by the clinic
during a patient visit. Hence, these are the labels.
Next, the researchers prepare the dataset for training
models to forecast the four labels. To forecast the
target labels (updrs 1, updrs 2, updrs 3, updrs 4) for a
given visit, the researchers use the recorded protein and
peptide data of the patient during that visit. The rows
in train proteins data are grouped by visit ids (visit id)
and protein ids (UniProt). Then, the researchers replace
the NPX values of each row in a group with the mean
of the its values of all rows in that group.

Similarly, the researchers group the rows in
train peptides data by their visit ids (visit id) and
peptide ids (Peptide). Then, the researchers replace
the PeptideAbundance values of each row in a group
with the mean of the its values of all rows in that
group. Subsequently, the researchers spread the rows
of the grouped datasets into columns. For this, the
researchers use the Pandas pivot function. The protein
dataset is pivoted that unique values of visit id become
the indices, and the values of UniProt1 in the dataset
become columns.

For each visit (row), the NPX values corresponding
to the different UniProt1 values recorded that the visit
is captured in the columns. Then, peptipe dataset is
pivoted that unique values of visit id become the
indices, and the values of peptide in the dataset become
columns. For each visit (row), the PeptideAbundance
values corresponding to the different peptide values
recorded for the visit captured in the columns. The
researchers then merged the pivoted peptide dataset
with the pivoted protein dataset on visit id. The Yg-
gdrasil DF handles the missing values in the numerical
columns. The feature engineered dataset is composed
of 1,196 columns and 1,113 entries. Its first five entries
are shown in Table I.

For grouping the protein data, the researchers calcu-
late the average NPX for each combination of visit id
and UniProt as shown in Eq. (1). It has v as visit id,
u as UniProt, and i as indexes of the individual

TABLE II
PARTITIONED PROTEIN AND PEPTIDE DATASETS.

Datasets Number of
Training
Records

Number of
Test Records

Target Variable

Dataset-1 852 216 updrs 1
Dataset-2 838 230 updrs 2
Dataset-3 843 215 updrs 3
Dataset-4 464 105 updrs 4

measurements. For grouping the peptide data, the re-
searchers calculate the average PeptideAbundance for
each combination of visit id and peptide as shown in
Eq. (2), which p is peptide. For pivoting the protein
data, the researchers reshape the protein data so that
each UniProt is a separate column, and visit id is the
index using Eq. (3). The peptide data are pivoted by
reshaping it so that each peptide is a separate column,
and visit id is the index. It is shown in Eq. (4).

NPXmean(v, u) =
1

n

n∑
i=1

NPX(v, u, i), (1)

PeptideAbundancemean(v, p) =
1

n

n∑
i=1

PeptideAbundance(v, p, i), (2)
df protein(v, u) = NPXmean(v, u), (3)

df peptide(v, p) = PeptideAbundancemean(v, p). (4)

The protein and peptide data are then combined
based on visit id. The combined protein-peptide data
are merged with the clinical data based on ‘visit id’.
The rows with missing UPDRS scores are dropped.
The categorical values are then converted into binary
form using one-hot encoding technique. Then, missing
values are then filled by using the mean imputation
method. Here, the missing values are replaced by the
attribute mean as shown in Eq. (5) that X̄ij is the new
dataset value, Xij is the i-th value of the j-th attribute,
and µj is the average of feature j. Finally, the dataset
is separated into training and testing datasets as shown
in Table II.
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Algorithm 1 Feature Engineering:
feature_engineering(Xtrain, Xvalid)
1: Initialize PolynomialFeatures with degree = 2, include bias = False
2: Generate Polynomial Features for Training Data:
3: for each sample xi = {xi1, xi2, . . . , xim} in Xtrain do
4: Generate original features: xi1, xi2, . . . , xim

5: Generate squares of features: x2
i1, x

2
i2, . . . , x

2
im

6: Generate pairwise interactions: xi1xi2, xi1xi3, . . . , xi(m−1)xim

7: end for
8: Resulting in Xtrain poly with m(m+1)

2 features
9: Generate Polynomial Features for Validation Data:

10: for each sample xi = {xi1, xi2, . . . , xim} in Xvalid do
11: Generate original features: xi1, xi2, . . . , xim

12: Generate squares of features: x2
i1, x

2
i2, . . . , x

2
im

13: Generate pairwise interactions: xi1xi2, xi1xi3, . . . , xi(m−1)xim

14: end for
15: Resulting in Xvalid poly with m(m+1)

2 features
16: Feature Scaling:
17: for each feature j in Xtrain poly do
18: Compute mean µj and standard deviation σj

19: for each element Xij do
20: Transform: X̄ij =

Xij−µj
σj

21: end for
22: end for
23: for each feature j in Xvalid poly do
24: Compute mean µj and standard deviation σj

25: for each element Xij do
26: Transform: X̄ij =

Xij−µj
σj

27: end for
28: end for
29: Return Xtrain scaled, Xvalid scaled

X̄ij =

{
Xij if Xij ̸= NaN
µj if Xij = NaN.

(5)

B. Feature Engineering

In this phase, the prepared dataset is subjected to
polynomial conversion and scaling. The step by step
process is shown in Algorithm 1. It processes the com-
bined protein and peptide dataset by first generating
polynomial features (up to the second degree) and
scaling these features to have zero mean and unit vari-
ance. This approach captures non-linear relationships
and interactions between the features, potentially im-
proving the model’s performance. Initially, polynomial
features up to the second degree are generated from
the input training and validation datasets. It involves
creating new features that include original features,
their squares, and pairwise interactions, enabling the
model to capture non-linear relationships.

Subsequently, the generated polynomial features are
standardized using StandardScaler, ensuring each fea-
ture has zero mean and unit variance based on statistics
computed from the training information. This scaling
step prepares the information for ML algorithms that
perform better with standardized inputs. Ultimately, the
algorithm returns the scaled polynomial features for
both the training and validation datasets, facilitating
robust model training and evaluation.

Algorithm 2 HSER Algorithm
Require: Training dataset (Xtrain, ytrain), Test dataset Xtest

Ensure: Predictions for the test dataset
1: Initialize base models:
2: base models← [RidgeRegression(),
3: GradientBoostingRegressor(),
4: ExtraTreesRegressor()]
5: Initialize variables:
6: num models← length(base models)
7: K ← number of folds for cross-validation
8: predictions out of fold← array of shape (num models, len(Xtrain))
9: Perform Stacking using K-fold cross-validation:

10: for each base model in base models do
11: for each fold in K-fold cross-validation do
12: Split Xtrain into training and validation sets
13: Train base model on training set
14: Predict validation set with base model
15: Store predictions in predictions out of fold
16: end for
17: end for
18: Train Meta Model:
19: meta model← RidgeRegression()
20: Train meta model using predictions out of fold as input and ytrain as

target
21: Perform Blending (generate predictions for test set):
22: predictions test← array of shape (num models, len(Xtest))
23: for each base model in base models do
24: Train base model on entire Xtrain and ytrain

25: Predict Xtest with base model
26: Store predictions in predictions test
27: end for
28: Calculate final predictions for Xtest:
29: final predictions← mean(predictions test, axis = 0)
30: Output final predictions as the predicted values for the test dataset

III. RESULTS AND DISCUSSION

A. Design of the Hybrid Stacked Ensemble Regression
(HSER) Model

In the proposed work, the researchers develop a
hybrid approach by combining stacking and blending
for predicting the UPDRS scores (updrs 1, updrs 2,
updrs 3, updrs 4). Algorithm 2 shows the proposed
HSER model. The initial stage in Algorithm 2 in-
volves the selection of models for stacking. In the
research, the three best performing diverse models Viz.
Ridge Regression, Gradient Boost, and Extra Trees
are chosen for the stacking process. The second step
involves the implementation of the stacking models.
The researchers initialize the base models. Let M1

denote the ridge regression model, M2 represent the
Gradient Boosting model, and M3 signify the Extra-
Trees model. Subsequently, the out of fold predictions
are performed.

For each base model of Mi, the researchers split
the training data into k folds. For each fold, the
researchers train the base model on k − 1 folds and
predict the fold that is left out. The researchers then
store these out-of-fold predictions. After ‘k’ iterations,
the researchers obtain the out-of-fold predictions for
each data point from each base model. Let ŷ

(k)
Mi

(x)
denote the prediction of base model of Mi on the
kth fold. Now, the researchers use these out-of-fold
predictions to train a meta-model (Ridge Regression).
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The researchers construct a new training set for the
meta-model using the out-of-fold predictions from all
the base models. The researchers denote the out of
fold predictions as Ŷ

(k)
Mi

, where Ŷ
(k)
Mi

is a vector of
predictions for base model Mi on fold ‘k’.

Then, The researchers train the meta-model (Ridge
Regression) to predict the actual target UPRDS scores
y using these out-of-fold predictions. The ridge re-
gression minimizes the following objective function
in Eq. (6). It has β1 , β2, and β3 as the coefficients
for combining predictions and α as a regularization
parameter.

min
β

K∑
k=1

∥∥∥∥∥y −
3∑

i=1

βiŶ
(k)
Mi

∥∥∥∥∥
2

2

+ α∥β∥22. (6)

The third step, the blending phase, aims to combine
predictions from multiple base models to produce final
predictions for the UPDRS scores (updrs 1, updrs 2,
updrs 3, and updrs 4) using the clinical, protein, and
peptide datasets. In the blending phase, the researchers
initialize an array to store predictions from each
base model for the test dataset shown in Eq. (7).
It consists of n as the quantity of samples in the
test set and m as the number of base models. Each
entry ŷij represents the prediction for the ith test
sample by the jth as base model. Then, each base
model Mj is trained on the entire training dataset
(Xtrain,ytrain). For instance, if Xtrain includes fea-
tures such as pd23b clinical state on medication, ag-
gregated NPX, and PeptideAbundance, the model
training can be represented as depicted in Eq. (8).
After training, each base model predicts the test dataset
Xtest (Eq. (9)).These predictions are stored in the
‘predictions test’ array.

predictions test =


ŷ11 ŷ12 . . . ŷ1m
ŷ21 ŷ22 . . . ŷ2m

...
...

. . .
...

ŷn1 ŷn2 . . . ŷnm

 , (7)

Mj ← train(Xtrain, ytrain), (8)
ŷij = Mj(Xtest)i. (9)

To obtain the final predictions, the researchers calcu-
late the mean of the predictions from all base models
for every test sample (Eq. (10)). It has ŷupdrsk,i

as the
final predicted value for the ith test sample, kth as
UPDRS score, m as the number of base models, and
ŷ
(j)
updrsk,i

as the prediction for the ith test sample by
the jth base model for the kth UPDRS score. The
final prediction vector for the whole test dataset for
each UPDRS score is shown in Eq. (11). The final
predictions for all UPDRS scores are the output as the
predicted values for the test dataset. It can be repre-

sented in Eqs. (12) to (15). This blending phase ensures
that the final predictions for the UPDRS scores are
robust and accurate by combining the diverse strengths
of multiple base models trained on comprehensive
feature sets derived from clinical, protein, and peptide
information.

ŷupdrsk,i
=

1

m

m∑
j=1

ŷ
(j)
updrsk,i

, (10)

ŷupdrsk =
[
ŷupdrsk,1

, ŷupdrsk,2
, . . . , ŷupdrsk,n

]
, (11)

Final Predictions UPDRS1 =
1

m

m∑
j=1

Predictions Test,

(12)

Final Predictions UPDRS2 =
1

m

m∑
j=1

Predictions Test,

(13)

Final Predictions UPDRS3 =
1

m

m∑
j=1

Predictions Test,

(14)

Final Predictions UPDRS4 =
1

m

m∑
j=1

Predictions Test.

(15)

B. Experiment Results

The experiments are conducted on Windows 10
operating system using Python as the programming
language. The researchers discuss the prediction results
of the proposed HSER model. Figures A1 to A4 as
seen in Appendix demonstrate the model results for up-
drs 1, updrs 2, updrs 3, and updrs 4 prediction with
respect to the performance metrics of RMSE and MAE
respectively. Then, Table III shows the comparison of
the models for UPDRS prediction.

Here are the inferences which can be done from
Figs. A1 to A4 (in Appendix) and Table III. First, re-
garding the prediction results of updrs 1, the proposed
HSER model exihibits RMSE improvements ranging
from 0.13% to 13.46% and MAE improvements from
0.13% to 9.83%. Second, in updrs 2 prediction, RMSE
improves from 0.22% to 8.46%, and MAE has im-
provements of 0.24% to 6.51% in the proposed HSER
model. Third, in updrs 3 prediction, the proposed
HSER model has RMSE improvements from 1.03%
to 23.18% and MAE improvements from 1.15% to
17.57%. Last, for the updrs 4 prediction, the designed
HSER model is performed with RMSE improvements
from 0.03% to 4.48% and MAE improvements from
0.04% to 3.89%.
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TABLE III
PERFORMANCE METRICS (ROOT MEAN SQUARED ERROR (RMSE) AND MEAN ABSOLUTE ERROR (MAE)) FOR VARIOUS MODELS

ACROSS UNIFIED PARKINSON’S DISEASE RATING SCALE (UPDRS) METRICS.

Models UPDRS 1 UPDRS 2 UPDRS 3 UPDRS 4

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

Linear Regression 17.930 13.360 13.410 10.380 35.050 26.720 6.690 5.290
Bagging 5.380 4.280 5.800 4.690 14.800 11.940 2.470 2.090
AdaBoost 5.220 4.180 5.670 4.790 14.520 11.670 2.470 1.530
Lasso Regression 4.980 3.880 5.360 4.250 13.910 11.100 2.450 1.510
Random Forest 4.940 3.860 5.340 4.290 13.840 11.050 2.370 1.510
ElasticNet 4.875 3.863 5.310 4.230 13.380 10.990 2.310 1.490
Ridge Regression 4.690 3.650 5.230 4.170 12.990 10.440 2.260 1.450
Extra Trees 4.630 3.640 5.190 4.130 12.940 10.380 2.250 1.450
Gradient Boost 4.600 3.620 5.170 4.110 12.900 10.300 2.240 1.440
Proposed HSER 4.470 3.490 4.950 3.870 11.870 9.150 2.210 1.400

C. Results Discussion

The proposed HSER model for predicting PD pro-
gression outperforms several baseline models for sev-
eral key reasons. First, it leverages multiple data
sources. The HSER model integrates clinical, pro-
tein, and peptide data into a comprehensive feature-
engineered dataset. This holistic approach allows the
model to capture complex interactions and patterns that
single-source models may miss, providing a richer and
more nuanced dataset for training. Second, there are
advanced ensemble techniques. The HSER model com-
bines both stacking and blending techniques. Stacking
involves training multiple base models (Ridge Regres-
sion, Gradient Boosting, and Extra Trees). It uses
out-of-fold predictions to train a meta-model (Ridge
Regression). This approach helps to capture diverse
aspects of the data. Blending involves averaging the
predictions of the base models on the test data, which
reduce overfitting and improve generalization. Third,
it has diverse base models. The use of three distinct
base models (Ridge Regression, Gradient Boosting,
and Extra Trees) provides complementary strengths.
Ridge Regression offers a linear perspective with regu-
larization to prevent overfitting. Gradient Boosting pro-
vides the capability to handle non-linear relationships
and interactions within the data. Meanwhile, Extra
Trees adds robustness and reduces variance through
ensemble techniques. Fourth, there is meta-model re-
finement. Using a ridge regression as the meta-model
allows the system to combine the strengths of the base
models effectively. Ridge Regression’s regularization
properties manage potential overfitting from the base
models’ predictions.

A detailed explanation of how the proposed HSER
model outperforms each of the baseline models in-
dividually is explained. First, Linear Regression as-
sumes a simple linear relationship between the input
features and the target variable. While it is easy to
interpret, it struggles with complex, non-linear rela-

tionships [17]. The HSER model, with its combination
of Ridge Regression, Gradient Boosting, and Extra
Trees, captures both linear and non-linear patterns in
the data, leading to more accurate predictions. Second,
Ridge Regression introduces regularization to Linear
Regression, which reduces overfitting. However, it
still operates under the assumption of linear relation-
ships [18]. The HSER model benefits from ridge re-
gression’s regularization while also leveraging the non-
linear modeling capabilities of Gradient Boosting and
Extra Trees, providing a more robust prediction. Third,
Lasso Regression implements both attribute choice and
regularization, which can improve the model’s perfor-
mance by excluding irrelevant features. However, like
Ridge Regression, it assumes linear relationships [19].
The HSER model combines the strengths of Ridge
Regression’s regularization and the feature selection
of Lasso with the non-linear capabilities of tree-
based methods, leading to improved predictive power.
Fourth, Elastic Net is a compromise between Ridge
and Lasso Regressions, combining their regularization
techniques. While it can handle some non-linearity, it
still primarily assumes a linear relationship [20]. The
HSER model outperforms Elastic Net by incorporating
Gradient Boosting and Extra Trees, that are well suited
for capturing complex and non-linear interactions in
the data.

Fifth, RF is an ensemble of DT, which can cap-
ture non-linear relationships and interactions between
features. However, it can suffer from excessive vari-
ance [21]. The HSER model mitigates this by com-
bining predictions from Ridge Regression and Gradi-
ent Boosting, which reduces variance and improves
generalization. Sixth, Gradient Boosting is effective
at handling non-linear relationships and can model
complex interactions. However, it can be prone to
overfitting, especially with noisy data [22]. The HSER
model benefits from the regularization properties of
Ridge Regression and the robustness of Extra Trees,

23



Cite this article as: K. S. Aditya, M. Mohan, and K. Deepthi, “Hybrid Stacked Ensemble Regression Model
for Predicting Parkinson’s Progression on Protein Data”, CommIT Journal 19(1), 15–27, 2025.

which together help to control overfitting and en-
hance predictive accuracy. Seventh, AdaBoost is an-
other boosting method that focuses on improving the
performance of weak learners. While powerful, it can
be sensitive to noisy data and outliers [23]. The HSER
model combines the robustness of Ridge Regression,
Gradient Boosting, and Extra Trees, which helps to
manage noise and outliers more effectively, leading to
better overall performance. Eighth, Bagging (Bootstrap
Aggregating) reduces variance by averaging the predic-
tions of multiple DT. However, it can still be limited
by the individual performance of its base learners [24].
The HSER model enhances this by using a diverse set
of base models (Ridge Regression, Gradient Boosting,
and Extra Trees) and employing a meta-model for
further refinement, which provides a more accurate and
stable prediction. Last, Extra Trees are similar to ran-
dom forests but with more randomness introduced in
the splitting process, which can lead to lower variance
but also potential underfitting [25]. The HSER model
balances this by combining the strengths of Extra Trees
with the more deterministic gradient boosting and the
regularization provided by Ridge Regression, resulting
in superior performance.

The HSER model outperforms each of these baseline
models by effectively combining their strengths and
mitigating their weaknesses through a hybrid ensem-
ble approach. By integrating Ridge Regression (for
regularization), Gradient Boosting (for capturing non-
linear relationships), and Extra Trees (for robustness)
and refining these predictions with a meta-model, the
HSER model achieves better predictive accuracy for
PD progression. This comprehensive approach allows
it to handle complex interactions, reduce overfitting,
and improve generalization compared to the individual
baseline models. Overall, the proposed HSER model
provides a more integrated, accurate, and clinically
relevant approach to predicting PD progression, lever-
aging diverse datasets and advanced ML techniques
to deliver noteworthy enhancements over prevailing
approaches.

D. Research Benefit

In comparison to the existing research, the re-
searchers observe several research benefits as follows:

• Integration of Diverse Data Sources: the research
combines clinical, protein, and peptide data into a
single comprehensive feature-engineered dataset.
This multi-dimensional approach offers a more
holistic view of PD progression compared to
previous studies [10, 11] which focus on neu-
roimaging and RNA-Seq data respectively.

• HSER Model: by designing a HSER model that
combines Ridge Regression, Gradient Boosting,
and Extra Trees, the researchers enhance pre-
dictive accuracy. This method outperforms the
individual ML models used in previous stud-
ies [12, 14, 15], offering superior performance and
robustness.

• Predictive Performance: the model’s superior per-
formance, as indicated by consistently high ac-
curacy in predicting UPDRS scores, surpasses
the results of previous studies [14, 15], which
use RF and Adaptive Boosting, respectively. The
hybrid approach ensures better generalization and
reliability of predictions.

• Feature Engineering and Data Handling: the ex-
tensive feature engineering and meticulous data
processing in the approach address the complex-
ities and heterogeneity of the datasets more ef-
fectively than the protocols outlined in previous
research [15].

• Clinical Relevance: by focusing on MDS-UPDRS
scores, the research aligns thoroughly with clini-
cal standards for evaluating PD progression. This
relevance to clinical practice is more direct com-
pared to the broader biomarker analysis [13] and
the neuroimaging focus [10].

• Interpretability and Practical Application: the
model not only achieves superior predictive accu-
racy but also offers enhanced interpretability by
identifying significant features contributing to PD
progression. This aspect of the research is partic-
ularly effective for designing tailored therapy, an
area less emphasized in previous studies [11, 12].

• Versatility and Reproducibility: the comprehen-
sive protocol developed for data characterization,
manipulation, and analysis is adaptable and may
be adapted for other neurodegenerative diseases,
similar to the scope suggested in previous stud-
ies [14, 15]. Nonetheless, the approach provides
more detailed steps for reproducibility and prac-
tical application.

IV. CONCLUSION

The researchers propose a HSER model for predict-
ing the progression of PD using protein and peptide
data measurements. By leveraging the MDS-UPDRS
scores, the researchers integrate clinical, protein, and
peptide data into a comprehensive feature-engineered
dataset. The hybrid approach, which combines Stack-
ing and Blending techniques with Ridge Regression,
Gradient Boosting, and Extra Trees as base mod-
els, demonstrates superior performance compared to
baseline models, comprising Linear Regression, Ridge
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Regression, Lasso Regression, Elastic Net, RF, Gra-
dient Boosting, AdaBoost, Bagging, and Extra Trees.
The HSER model’s capability to precisely estimate
the four UPDRS scores (updrs 1, updrs 2, updrs 3,
and updrs 4) underscores its potential to enhance PD
progression prediction, providing valuable insights for
personalized treatment strategies.

The findings have significant implications for both
clinical practice and future research. By demonstrating
the effectiveness of the HSER model, the researchers
pave the way for its application in clinical settings,
where accurate prediction of PD progression can in-
form personalized treatment strategies and improve
patient outcomes. Moreover, the integration of diverse
data types illustrates the importance of a multimodal
approach in understanding complex diseases like PD,
encouraging further exploration of such methodologies
in other neurodegenerative disorders.

However, there are several research limitations. First,
the reliance on a specific dataset may limit the general-
izability of the HSER model across diverse populations
and settings. Second, the complexity of the model,
while advantageous in terms of performance, may pose
challenges in interpretability, potentially hindering its
clinical adoption. Additionally, the research primarily
focuses on protein and peptide data, which, although
valuable, may not encompass the full spectrum of
biomarkers relevant to PD progression. Future research
will focus on refining the model weights to further
increase the performance of the HSER model. Addi-
tionally, the researchers aim to explore the inclusion
of more biomarkers, such as genetic and imaging
data, to provide a more comprehensive understanding
of PD progression. By encompassing these surplus
information resources, the researchers hope to improve
the analytical precision of the model. Further, the
researchers will investigate the application of more
sophisticated ML methods, such as DL and Transfer
Learning, to capture even more complex patterns in
the data. Finally, longitudinal studies will also be con-
ducted to validate the model’s predictive capabilities
over time, ensuring its robustness and applicability in
clinical settings.
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W. González-Manteiga, “A critical review of
Lasso and its derivatives for variable selection un-
der dependence among covariates,” International
Statistical Review, vol. 90, no. 1, pp. 118–145,
2022.

[20] C. De Mol, E. De Vito, and L. Rosasco, “Elastic-
net regularization in learning theory,” Journal of
Complexity, vol. 25, no. 2, pp. 201–230, 2009.

[21] A.-L. Boulesteix, S. Janitza, J. Kruppa, and I. R.
König, “Overview of random forest methodol-
ogy and practical guidance with emphasis on
computational biology and bioinformatics,” Wi-
ley Interdisciplinary Reviews: Data Mining and
Knowledge Discovery, vol. 2, no. 6, pp. 493–507,
2012.

[22] Y. Park and J. C. Ho, “Tackling overfitting in
boosting for noisy healthcare data,” IEEE Trans-
actions on Knowledge and Data Engineering,
vol. 33, no. 7, pp. 2995–3006, 2019.

[23] J. Hatwell, M. M. Gaber, and R. M. Atif Azad,
“Ada-WHIPS: Explaining AdaBoost classifica-
tion with applications in the health sciences,”
BMC Medical Informatics and Decision Making,
vol. 20, pp. 1–25, 2020.

[24] P. Mahajan, S. Uddin, F. Hajati, M. A. Moni,
and E. Gide, “A comparative evaluation of ma-
chine learning ensemble approaches for disease
prediction using multiple datasets,” Health and
Technology, vol. 14, no. 3, pp. 597–613, 2024.

[25] M. Arya, H. Sastry G, A. Motwani, S. Kumar,
and A. Zaguia, “A novel Extra Tree Ensemble
Optimized DL Framework (ETEODL) for early
detection of diabetes,” Frontiers in Public Health,
vol. 9, pp. 1–13, 2022.

APPENDIX

The Appendix can be seen in the next page.

26

https://fnih.org/our-programs/accelerating-medicines-partnership-amp/amp-parkinsons-disease/
https://fnih.org/our-programs/accelerating-medicines-partnership-amp/amp-parkinsons-disease/
https://fnih.org/our-programs/accelerating-medicines-partnership-amp/amp-parkinsons-disease/


Cite this article as: K. S. Aditya, M. Mohan, and K. Deepthi, “Hybrid Stacked Ensemble Regression Model
for Predicting Parkinson’s Progression on Protein Data”, CommIT Journal 19(1), 15–27, 2025.

0 5 10 15 20

Linear Regression

Bagging

AdaBoost

Lasso Regression

Random Forest

ElasticNet

Ridge Regression

Extra Trees

Gradient Boost

HSER

METRICS

M
O
D
E
L
S

MAE RMSE

Fig. A1. Unified Parkinson’s Disease Rating Scale (UPDRS)-1
prediction results.
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Fig. A2. Unified Parkinson’s Disease Rating Scale (UPDRS)-2
prediction results.
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Fig. A3. Unified Parkinson’s Disease Rating Scale (UPDRS)-3
prediction results.
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Fig. A4. Unified Parkinson’s Disease Rating Scale (UPDRS)-4
prediction results.
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