
CommIT Journal 19(1), 71–88, 2025

Improved Classification of Arsenic-Affected
Skin Diseases through Image Processing and

Transfer Learning
Rudi Kurniawan1, Samsuryadi2∗, and Fatma Susilawati Mohamad3

1Department of Computer System Engineering, Faculty of Engineering Science,
Universitas Bina Insan

Lubuklinggau, Indonesia 31629
2Department of Informatics Engineering, Faculty of Computer Science, Universitas Sriwijaya

Palembang, Indonesia 30129
3Department of Information Technology, Faculty of Informatics and Computing,

Universiti Sultan Zainal Abidin
Kuala Terengganu, Malaysia 22200

Email: 1rudi.kurniawan@univbinainsan.ac.id, 2samsuryadi@unsri.ac.id, 3fatma@unisza.edu.my

Abstract—Arsenic contamination of groundwater is a
global health concern, leading to adverse health effects,
including skin diseases. Early detection is crucial for
prevention and treatment, although manual methods
are often time-consuming and error-prone. To address
this issue, deep learning methods, specifically transfer
learning, offer a promising solution for accurate and
efficient skin disease detection. Therefore, the research
aims to propose a comprehensive framework that uses
ResNet152V2 architecture along with Gaussian smooth-
ing methods to improve the classification accuracy of
skin images exposed to arsenic. ResNet152V2 model
is pre-trained on large-scale image datasets, providing
powerful feature extraction fine-tuned on the Arsen-
icSkinBD dataset. The images are preprocessed using
Gaussian smoothing to reduce noise and enhance feature
clarity. Specifically, the research introduces the innovative
application of Gaussian smoothing along with transfer
learning for skin disease classification, which has not been
extensively explored in previous studies. The results show
a significant increase in classification accuracy, achieving
approximately 0.9904 on the testing set compared to
0.9881 without enhancements. This improvement shows
the effectiveness of the method in detecting skin diseases
caused by arsenic exposure. The use of Gaussian smooth-
ing also reduces loss values on the testing set, indicating
that the model becomes more efficient in optimizing its
predictions. The proposed framework not only enhances
detection accuracy but also supports more efficient di-
agnostic processes, contributing to better prevention and
treatment efforts.
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I. INTRODUCTION

ARSENIC is currently a global health concern,
particularly in the public health community. High

levels of arsenic in the soil can contaminate groundwa-
ter, which is an important source of drinking water in
many areas [1, 2]. The impacts of long-term exposure
to groundwater are considered a public health threat.
It is because of the potential to increase the risk
of skin cancer, diabetes, cardiovascular disease, bad
pregnancy events, and reduced intellectual functioning
in children [3].

Arsenic affects community through the skin in
the form of skin lesions, patches, or unusual discol-
oration [4]. Using advanced medical imaging technol-
ogy, healthcare professionals can identify the character-
istic signs of skin disease, which is often an indicator
of harmful arsenic exposure to human health. Hence,
early detection through visual observations is important
to initiate appropriate treatment and prevent further
complications that are caused by arsenic exposure.

For the identification of skin diseases caused by
arsenic, deep learning has been proven effective. Using
deep learning to analyze medical images, such as
processing and pattern recognition, the researchers can
use the trained system to recognize typical patterns of
skin diseases [5–8]. Since the use of deep learning in
skin disease detection has shown great promise [9],
adversarial and progressive transfer learning methods
are used to improve the performance of cross-domain
skin disease detection. These methods have high per-
formance in the detection of melanoma and cancer
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on various skin disease datasets. Skin cancer detection
from digital medical images is still an active study area
for more precise results, although many efforts have
been made over the years. As reported in a previous
study [10], a single and fairly lightweight deep learning
model has achieved the best results in skin cancer
detection. It is implemented in a mobile application
after training and validation with HAM10000 dataset.

Arsenic exposure has been related to an increased
risk of skin cancers, including squamous cell carci-
noma, Bowen’s disease, and basal cell carcinoma [11].
Understanding the detrimental effects of arsenic on
skin health is essential for developing effective de-
tection and treatment strategies. Chronic arsenic ex-
posure often leads to characteristic skin changes such
as hyperpigmentation and keratosis, which can serve
as early warning signs before malignancy develops.
Moreover, arsenic’s interference with cellular repair
mechanisms and immune response contributes to the
carcinogenic process, making it crucial to monitor at-
risk populations closely.

Several studies have explored advanced methods for
skin lesion detection using deep learning methods.
For instance, DermoExpert, a computerized dermo-
scopic framework, integrates preprocessing methods
and hybrid Convolutional Neural Network (CNN) to
enhance skin lesion detection accuracy, achieving an
Area Under the Curve (AUC) of 0.97 [12]. Another
previous research presents a transfer learning model
for automatic classification of melanoma and nevus
lesions, yielding accuracies of 0.9591, 0.9686, and
0.9770 across three datasets [13].

Several previous studies using AlexNet have shown
high precision in classifying multi-class skin lesions,
achieving accuracy rates of 0.9870 and above when
validated against the International Skin Imaging Col-
laboration (ISIC) 2018 dataset [14]. Additionally, a
framework combining deep learning with Internet of
Health Things (IoHT) has shown promise in classifying
skin lesions with an impressive accuracy of 0.99 [15].

The impact of image preprocessing methods on clas-
sification performance has been investigated. Previous
research has showed that cropping images outperforms
resizing in classification tasks, with a modified CNN
fusion method achieving accuracy [16], Furthermore, a
GoogleNet pre-trained model based on transfer learn-
ing successfully identified eight classes of skin lesions
with accuracy of 0.9492 [17].

Automated skin cancer identification is crucial for
enhancing accuracy and expertise of pathologists at
an early stage. A previous research conducted [18]
has proposed a Deep Convolutional Neural Network
(DCNN) model using transfer learning for accurately
classifying benign and malignant skin lesions. The

model shows impressive training and testing accuracy
of 0.9316 and 0.9193, respectively, after applying
various preprocessing filters to eliminate noise and
artifacts.

In another research [19], an optimal Deep Neural
Network (DNN) based on probability is developed
to detect skin diseases accurately. This classification
tool achieves a significant 0.95 accuracy rate, with
sensitivity at 0.91 and specificity at 0.97 by using
the Whale optimization method. Then, a method for
classifying skin images has been introduced using
CNN optimized with the Spatial and Spectral Atten-
tion (SpaSA) meta-heuristic optimizer [20]. It achieves
high accuracy rates across multiple datasets, including
0.9827 for ISIC Melanoma dataset (2019), 0.9883 for
Human Against Machine with 10000 training images
(HAM10000), and 0.8587 for the Skin Disease Images
dataset. The significance of deep learning model in
skin cancer detection is further emphasized [21], where
a vision transformer is introduced with accuracy of
0.9615 using HAM10000 dataset. Additionally, deep
learning model improves robustness through advanced
preprocessing methods.

Then, previous studies have explored practical meth-
ods for detecting skin cancer through image analysis
to enhance specialists’ ability to distinguish between
malignant tumors and benign ones [22]. Various meth-
ods such as Swarm Intelligence for locating lesions
in areas of interest have shown promising results
with classification accuracies reaching approximately
0.9852. According to another research [23], Canny
edge detection combines with CNN to classify multi-
class skin cancers using ISIC datasets, achieving an
impressive accuracy of 0.99. Lastly, a deep-learning
method trained on approximately 10,000 images shows
over 0.95 accuracy for test datasets in distinguishing
between malignant and benign lesions [24].

Although these studies have made significant contri-
butions, the analysis often neglects the specific impact
of preprocessing methods like Gaussian smoothing
on classification performance. Therefore, the research
aimed to investigate the effects of Gaussian smoothing
combined with transfer learning on the classification
accuracy of skin images affected by arsenic exposure.
Moreover, the main contributions of the research are
as follows:

1) Propose a framework and analyze the concept of
transfer learning using ResNet152V2 architecture,
which is previously trained for the detection and
classification of arsenic-affected as well as unaf-
fected skin.

2) Provide an analysis of comparative performance
measures on the effect of using noise removal
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Fig. 1. Proposed framework.

(Gaussian blur) and data augmentation methods
on ResNet152V2 architecture, which is related
to the performance of increasing accuracy in the
context of transfer learning

II. RESEARCH METHOD

In this section, the dataset used is introduced. Then,
it is followed by a detailed description of the proposed
method, which includes image preprocessing, the in-
troduction of Residual Networks (ResNet), and the
evaluation process, as shown in Fig. 1. The image pre-
processing step involves techniques to enhance image
quality and normalize data, ensuring better feature
extraction by the model. ResNet, a deep convolutional
neural network known for its residual learning capabil-
ity, is employed to improve classification accuracy and
mitigate the vanishing gradient problem. Finally, the
evaluation process uses standard metrics to rigorously
assess the model’s performance and generalizability on
unseen data.

A. Dataset Acquisition

ArsenicSkinImageBD dataset consists of a total
of 8,892 images, where each half represents healthy
skin (4,466) and skin affected by arsenic exposure
(4,466) [25, 26]. Each image has been converted to a
resolution of 244 × 244 pixels for further analysis. All
images in this dataset are saved in standard Portable
Network Graphic (PNG) format.

B. Image Preprocessing

First, image resizing is intended to change the size
of original image [27]. Resizing data related to image
processing has several advantages. First, in memory
and computational savings, data that are resized to a
smaller size can save memory and reduce computa-
tional burden, specifically when working with large
datasets. Second, it has more efficient processing.
Resized data have the potential to be processed more
quickly by the model because of smaller size and easy
processing. Third, in size consistency, image resizing
to a consistent size ensures that all input data have the
same dimensions for identical model training process.
Fourth, it has easier processing. Resized data are easily

organized and manipulated, particularly when used in a
series of data processing algorithms or model training.

Second, dataset rescaling is a normalization method
commonly used in deep-learning image process-
ing [28]. It is achieved by dividing every pixel value in
the image by 255, which is the maximum value a color
channel can provide on Red, Green, Blue(RGB) scale.
Eq. (1) shows the mathematical function of normalized
pixels. The normalized pixel is the adjusted value, and
real pixel ranges from 0 to 255. With the normalization,
each pixel value is in the range between 0 and 1, which
is easier for deep learning models to process.

Normalized Pixel =
Real Pixel

255
. (1)

Third, Gaussian filtering is a spatial filter commonly
used in image processing to decrease noise and extract
important features [29, 30]. This filter works by av-
eraging the pixel intensity around each pixel in the
image using Gaussian function. Eqs. (2) shows the
function of the Gaussian filtering. The G(x, y) is the
Gaussian value at coordinates (x, y). Then, σ is a
parameter that controls the sharpness of the Gaussian
curve. Meanwhile, x and y are the distances from the
middle point of the filter to the pixel being processed.
Figure 2 shows the process of removing noise from
original input image.

G(x, y) =
1

2πσ2
e−

(x2+y2)

2σ2 . (2)

Fourth, data augmentation is a method used in
deep learning to enhance the diversity and quantity
of training data. It is done by generating various
versions of existing images [31]. Augmentation aims to
reduce overfitting, improve model generalization, and
enhance the model robustness to variations in input
data [32]. Several augmented methods have been used
like rotation, mirroring, and flipping. A sample of
image data augmented is shown in Fig. 3.

C. Transfer Learning for Feature Extraction

Transfer learning-based feature extraction is a pow-
erful method in machine learning that uses a pre-
trained model on a specific task to extract features from
new data [33]. The method uses the knowledge em-
bedded in a pre-trained model. Furthermore, it allows
to bypass the need for training a model from scratch,
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Fig. 2. Noise removal with Gaussian smoothing.

Fig. 3. Sample of augmented images.

which can be resource-intensive and time-consuming.
The process of transfer learning for feature extraction
typically includes the following steps:

1) Select a pre-trained model: A model that has
been pre-trained on a similar task or a large and
diverse dataset needs to be selected. For the re-
search, ResNet152V2 architecture is used, which
shows strong performance in image classification
tasks. Pre-trained models like ResNet152V2 have
learned to identify general features such as shapes,
textures, and patterns from extensive datasets.

2) Freeze convolutional layers: In this step, the ini-
tial convolutional layers of pre-trained model are

frozen. It suggests that during subsequent training,
the weights of the layers will not be updated.
Freezing layers also preserve the general charac-
teristics learned by the model, which are crucial
for effective feature extraction.

3) Add a new classification layer: A new classifica-
tion layer is appended to the model. The layer
typically consists of one or more fully connected
layers leading to an output with a softmax activa-
tion function. Specifically, it is designed to clas-
sify new datasets based on the features extracted
from frozen convolutional layers.

4) Conduct advanced training: The newly added clas-
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Fig. 4. Multi-layer convolutional process in the residual network.

sification layers are then trained on a smaller,
task-specific dataset that pertains to the problem,
namely classifying skin images affected by ar-
senic. During training phase, only the weights of
the new classification layers are updated while
keeping the weights of original convolutional lay-
ers frozen. It allows the model to adapt to the
specifics of new tasks without losing the general
features learned during pre-training.

By using transfer learning-based feature extraction
with ResNet model, valuable features can be extracted
from the images. It is trained on a large dataset
using existing knowledge to build a better classifica-
tion model through less training data. This approach
leverages pre-trained weights from extensive datasets,
allowing the model to recognize complex patterns
and textures which are relevant to arsenic-related skin
conditions. Consequently, transfer learning reduces the
need for a large amount of labeled data and shortens
training time while maintaining high accuracy and
robustness in classification tasks.

D. ResNet152V2

ResNet152V2 is a variant of a very deep and com-
plex CNN architecture consisting of a total of 152
layers. It belongs to ResNet family of models, which is
known for its capabilities in deep network training [34,
35]. ResNet152V2 enables deeper learning without
performance degradation by using residual and bottle-
neck blocks. Using batch normalization and dropout,
ResNet152V2 can prevent overfitting during training.
Furthermore, it is a powerful option for computer
vision tasks where the representation of increasingly
complex features from image data is a requirement.
ResNet152V2 architecture consist of several parts.

First, it is convolutional block. ResNet152V2 con-
sists of a set of basic blocks that contain multiple

consecutive convolution layers. Each basic block com-
prises two or three convolutional layers, which are
then followed by batch normalization and Rectified
Linear Unit (ReLU) activation, enhancing clarity and
flow. The formula for the convolution operation is
shown in Eqs. (3). It has x as input for this layer,
W as the convolution weight matrix, b as a bias, ∗ as
convolution operator, and σ as an activation function,
such as ReLU.

y = σ(W ∗ x+ b). (3)

Figure 4 shows the multi-layer convolutional pro-
cess in the residual network. This network architec-
ture employs a series of convolutional blocks, each
containing multiple convolutional layers designed to
extract increasingly complex features from the input
images. Within these blocks, convolutional layers are
followed by batch normalization and ReLU activation
to improve clarity and flow of information, enhanc-
ing the network’s overall performance. The successive
application of these convolutional blocks enables the
network to learn intricate patterns while maintaining
efficient information propagation.

Second, generally, batch normalization is used to
increase stability and speed up training artificial neural
networks [36]. The formula for batch normalization is
shown in Eqs. (4). It has x as the input for the layer, µ
as the batch mean, σ2 as the batch variance, γ and β
as the learned parameters, and ϵ as the stability factor
to prevent division by zero.

BN(x) = γ
(x− µ)√
(σ2 + ϵ)

+ β. (4)

Third, one of the key innovations of ResNet is the
use of residual block, which enables deeper learning
by mitigating the problem of performance degradation
as the network becomes deeper [37]. Residual block
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Fig. 5. Multi-layer convolutional process in the residual network.

allows direct flow from input to output, bypassing
convolutional layers. It allows the network to easily
learn identities, facilitating training of deep networks.
The formula for residual block is shown in Eq. (5). It
has x as the input to the residual block, F (x, {Wii} as
the function of the learning in the residual block, and
Wi as the learned parameter.

Output = F (x, {Wii}) + x. (5)

A building block of the residual process is shown in
Fig. 5. It highlights a key element of ResNet models,
designed to promote efficient learning in deep archi-
tectures. Each block typically incorporates multiple
convolutional layers arranged in sequence, enabling the
network to extract complex and hierarchical features.
This design facilitates the network’s ability to learn
identity mappings, which eases the optimization of
deeper networks.

Fourth, ResNet152V2 uses bottleneck block to de-
crease the number of parameters used by the net-
work while preserving strong learning capabilities [38].
Bottleneck block comprises a 1×1 convolution layer
that reduces the dimensions of the feature, succeeded
by a more extensive convolution layer, and another
1×1 to enhance the dimensions. Figure 6 shows
bottleneck block for ResNet152. The block reduces
computational complexity, enabling deeper networks
to be trained without excessive resource demands by
compressing the feature maps initially. This approach

Fig. 6. Bottleneck block.

maintains representational power by re-expanding the
feature dimensions after processing, ensuring that cru-
cial information is retained for subsequent layers. The
bottleneck design effectively balances network depth
and computational efficiency, making ResNet152 a
powerful architecture for complex image recognition
tasks.

Fifth, in deep architecture, ResNet152V2 has a total
of 152 layers, making it a very deep network. This
depth allows higher learning of complex feature repre-
sentations from image data. Figure 7 shows the overall
architecture of ResNet152. In summary, ResNet152
leverages its deep architecture and residual connections
to enable effective learning of complex features from
input images. The network employs bottleneck blocks
to manage computational complexity while maintain-
ing high representational power. This combination of
depth, residual connections, and bottleneck structures
allows ResNet152 to excel in various image recogni-
tion tasks.

Sixth, loss function is used to measure how well
the model predicts the target [39]. In classification
cases, the cross-entropy loss is often used with the
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Fig. 7. ResNet152 Architecture.

formulation in Eq. (6). It has N as the number of
samples, yi as the actual label, and ŷi as the model
prediction for the i sample.

Loss = −
N∑
i=1

[yi log(ŷi) + (1− yi) log(1− ŷi)] (6)

E. Data Evaluation

To assess the classification performance, the re-
searchers obtain Confusion Matrix (CM). CM is an
important performance evaluation tool in classification
that allows visualization of model performance in more
detail [40]. Figure 8 shows how well the predicted
results of the model classification match the actual
values of observed data. From these components, sev-
eral important classification evaluation metrics can be
calculated.

1) Accuracy of the model predictions, which is
calculated according to Eqs. (7), is represented
as a percentage of correctly predicted samples.
It describes TP as True Positive, TN as True
Negative, FP as False Positive, and FN as False
Negative.

Accuracy =
TP + TN

TP + TN + FP + FN
. (7)

2) Precision is calculated using Eq. (8) and shows
the percentage of positive data samples accurately
predicted by the model.

Precision =
TP

TP + FP
. (8)

3) Recall is also known as sensitivity or true positive
rate. It shows the percentage of positive samples

Fig. 8. Confusion matrix.

that the model correctly predicts, which is calcu-
lated using Eq. (9).

Recall =
TP

TP + FN
. (9)

4) The F1-score is calculated by taking the harmonic
mean of precision and recall, as represented by
Eq. (10).

F1-Score =
2 · (Precision · Recall)

Precision + Recall
(10)

F. Experiment Set-Up

In the research, the dataset was split into 80%
for training and 20% for testing. Figure 9 presents
the data distribution for each class in the original
dataset, showing an imbalance between the two classes.
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Fig. 9. Data distribution for each class (original data).

Fig. 10. Data distribution for each class (augmented data).

Data augmentation techniques are applied to balance
the number of samples in each class, as shown in
Fig. 10 to address the issue. This augmentation aims
to improve the performance and generalization ability
of the model. Furthermore, the research evaluates how
Gaussian filtering influences the feature extraction pro-
cess performed by the ResNet152V2 model, using both
the original and augmented datasets for comparison.

Table I shows the same parameters used for both
original and augmented data. These include the input
image size (224×224 pixels), batch size (32), rescale
applied to the data generator (1/255), zoom range
(0.2), number of epochs (50), learning rate (0.001),
loss function (binary cross entropy), and (Adam) op-
timizer. This same method for each data allows for a
fair comparison of model performance on both types of
data. There is also an accurate assessment of the effec-
tiveness of data augmentation on model performance.

Table II shows an overview of the model architecture
used, consisting of the form of output from each layer,
as well as trainable and untrainable parameters. The

model architecture uses ResNet152V2 with the final
layer consisting of a global average pooling 2D and
two dense layers. The output dimensions of the model
are (None, 7, 7, 2048). It indicates that the output
of ResNet152V2 layer is a 2D tensor with a size of
7×7 and a depth of 2048. All the parameters used
in the model are 60,430,849, with 2,099,201 trainable
and 58,331,648 untrainable parameters. The number
of untrainable parameters mainly originates from pre-
trained ResNet152V2 model, while trainable is mainly
found in the dense layer. The weights of the dense
layers are parameters that can be trained in the model
and pre-trained ResNet152V2 layers are untrainable.

The research uses the Python programming lan-
guage and the libraries such as OpenCV, Sci-kit Learn,
TensorFlow, and Keras. The experiment is performed
using a PC with the following specifications: CPU
processor core i7 gen 9th, DDR4 16 GB, and GPU
NVIDIA GeForce GTX 1660 Ti. These tools and
libraries are selected due to their robustness and flexi-
bility in handling image processing and deep learning
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TABLE I
PARAMETER CONFIGURATION FOR EACH DATASET.

Parameters Original Data Augmented Data

Input size 224×224 pixel 224×224 pixel
Batch Size 32 32
Data generator Rescale = 1/255, zoom range = 0.2 Rescale = 1/255, zoom range = 0.2
Learning rate 0.001 0.001
Epoch 50 50
Loss function Binary cross-entropy Binary cross-entropy
Optimizer Adam Adam

Note: All parameters are kept constant for both original and augmented data.

TABLE II
THE MODEL SUMMARY OF PROPOSED TRANSFER LEARNING.

Layer (type) Output Shape Parameter

Input (input layer) (None, 224, 224, 3) 0
ResNet152V2 (Functional) (None, 7, 7, 2048) 58,331,648
Global average pooling2d (None, 2048) 0
Dense (Dense) (None, 1024) 2,098,176
Dense 1 (Dense) (None, 1) 1,025

Total parameters 60,430,849
Trainable parameters 2,099,201
Non-trainable parameters 58,331,648

Fig. 11. Original dataset loss and accuracy function without Gaussian filtering.

tasks. OpenCV is utilized for pre-processing operations
such as filtering and image enhancement, while Ten-
sorFlow and Keras are employed for designing and
training deep learning models. Sci-kit Learn supports
evaluation metrics and additional pre-processing steps.
The hardware specifications ensure efficient training
and testing processes, especially when handling large
datasets and deep neural network architectures.

III. RESULTS AND DISCUSSION

A. Results with Original Data

Figure 11 shows plots of loss and accuracy functions
without using Gaussian filtering method. During train-
ing, loss value is 0.0013, and accuracy value is 1.0000.
Meanwhile, the loss value is 0.0811 with accuracy

of 0.9767 during validation. It can be observed that
loss value on training and validation set has decreased
significantly from epoch to epoch. Accuracy during
training and validation also increases as epoch pro-
gresses. It shows the model effectiveness in learning
from training data and its ability to generalize to
unseen data. Training process is halted at the 14th

epoch because learning rate decreases. The process
is caused by using the ReduceLROnPlateau callback,
which aims to reduce learning rate when loss reduction
on validation set does not occur in several consecutive
epochs.

Next, Fig. 12 shows plots of loss and accuracy func-
tions using Gaussian filtering. During training, loss and
accuracy values are 0.0116 and 0.996, respectively. In

79

IN
 PRESS



Cite this article as: R. Kurniawan, Samsuryadi, and F. S. Mohamad, “Improved Classification of
Arsenic-Affected Skin Diseases through Image Processing and Transfer Learning”, CommIT Journal 19(1),
71–88, 2025.

Fig. 12. Original dataset loss and accuracy function with Gaussian filtering.

Fig. 13. Confusion Matrix (CM) of the original dataset: (a) unfiltered and (b) filtered.

validation phase, loss value is 0.0404, while accuracy
reaches 0.9883. It can be seen that loss on training
set continues to decrease as epoch progresses, while
accuracy shows a consistent increase. Loss value in
validation also decreases as the epoch progresses but
accuracy increases.

Figure 13 provides CM of original dataset ((a)
unfiltered, and (b) filtered). From CM, the results of the
model can be observed in two conditions, namely with-
out and with Gaussian smoothing. In the “affected”
category, the model without Gaussian smoothing has
142 correct and 3 incorrect predictions. Meanwhile, the
model with Gaussian smoothing has 134 correct and 1
incorrect prediction. In the “not affected” category, the
model without Gaussian smoothing has 109 correct and
3 incorrect predictions, while with Gaussian smoothing
shows 120 correct and 2 incorrect predictions. These
results show that the use of Gaussian smoothing tends

to improve the model performance in classifying both
categories, particularly in reducing the number of in-
correct predictions for the “affected” category.

Figure 14 shows the prediction error with original
dataset. The prediction error results are accompanied
by a confidence value for each image, which indicates
how confident the model is in the prediction. Fig-
ure 14(a) shows that the highest confidence values are
found in the two image prediction results, namely 0.87
and 0.86. This result is followed by the next highest
confidence value of 0.54. The remaining confidence
values for the next three predictions are 0.21, 0.01,
and 0.00. Figure 14(b) shows the highest confidence
value of 0.56. Meanwhile, the rest are 0.41 and 0.02.

B. Results with Augmented Data

Figure 15 shows plots of the loss and accuracy
curves during the training process without applying
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Fig. 14. Wrong prediction of the original dataset: (a) unfiltered and (b) filtered.

Fig. 15. Augmented dataset loss and accuracy function without Gaussian filtering.

the Gaussian filtering method. The training loss and
accuracy reach 0.0012 and 1.0000, indicating that the
model fits the training data very well. On the other
hand, the validation loss and accuracy are 0.0410 and
0.9881, which are slightly lower than the training
performance. This slight gap suggests that the model
generalizes well to unseen data, with no significant
signs of overfitting despite the absence of Gaussian
filtering.

Figure 16 shows plots of the loss and accuracy
curves when the Gaussian filtering method is applied
before training. The training process results in a loss
of 0.0062 and an accuracy of 0.9987, still indicating a
strong fit to the training data. Meanwhile, the validation
loss decreases to 0.0269, and the accuracy improves
slightly to 0.9904. These results suggest that apply-
ing Gaussian filtering enhances the model’s ability to
generalize by reducing noise in the input data and
improving feature extraction during training.

Figure 17 provides CM of augmented dataset ((a)
unfiltered, and (b) filtered). From the two CMs, the
performance of the model is shown in two condi-
tions, namely without and with Gaussian smoothing.
In the “affected” category, the model without Gaussian
smoothing has 891 correct and 9 incorrect predic-
tions. Meanwhile, the model with Gaussian smoothing
has 892 correct and 8 incorrect predictions. In the
“not affected” category, the model without Gaussian
smoothing has 866 correct and 12 incorrect predictions.
The model with Gaussian smoothing has 869 correct
and 9 incorrect predictions. From these results, the
use of Gaussian smoothing is considered to slightly
improve the model performance in classifying both
categories, particularly in reducing the number of in-
correct predictions for the “affected” category.

In Fig. 18(a), the highest confidence value is 0.99
and the lowest is 0.01. Meanwhile, in Fig. 18(b), the
highest confidence value is 0.96, and the lowest is
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Fig. 16. Augmented dataset loss and accuracy function with Gaussian filtering.

Fig. 17. Confusion Matrix (CM) of the augmented dataset: (a) unfiltered and (b) filtered.

0.01. It suggests that a higher confidence score of a
prediction correlates with a greater model certainty
in prediction. This difference also indicates that the
model produces more confident predictions on certain
samples compared to others, possibly due to clearer
distinguishing features. Additionally, the consistently
low minimum values highlight that the model can
differentiate between classes with high certainty when
it is confident, but may still show uncertainty in more
ambiguous cases.

C. Discussion
There are several main contributions of the research.

First, it classifies good accuracy in the effects of ar-
senic exposure on the skin using an image processing-
based framework and ResNet152V2 architecture. Sec-
ond, the research aims to investigate the use of Gaus-
sian smoothing method both on original and improved

data. Tables III shows the performance comparison
results of each experiment.

The results from Table III show that ResNet152V
model effectively classifies images in ArsenicSkinBD
dataset, achieving high accuracy and low loss values
across experiments. The proposed framework not only
enhances detection accuracy but also provides a robust
method for generalizing new data, which is crucial for
practical applications in clinical settings. Furthermore,
the model successfully learns patterns from the data.
Since accuracy of training set reaches 1.0000, the
model is able to correctly classify all training samples.
Accuracy on the test set is also high, with a value
above 0.99 (ResNet+Gaussian). This result indicates
that the model has a strong capability to generalize new
data. Precision, recall, and F1-scores have high values,
close to 0.99 for approximately all experiments. The
results show that the model has a good balance between
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Fig. 18. Wrong prediction of augmented dataset: (a) unfiltered and (b) filtered.

positive prediction accuracy. In line with the analysis,
the model also shows the ability to find all positive

samples and enhanced precision in classifying.

Using Gaussian method on ResNet152V model im-
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TABLE III
PERFORMANCE COMPARISON RESULTS.

ArsenicSkinBD
Dataset

Amount
of Images

Experiments Train
Loss

Train Ac-
curacy

Test Loss Test Ac-
curacy

Precision Recall F1-
Score

Time

Original data 1287 ResNet152V 0.0013 1.0000 0.0811 0.9767 0.98 0.98 0.98 4 m 41 s
ResNet152V +
Gaussian

0.0116 0.9961 0.0404 0.9881 0.99 0.99 0.99 12 m 1 s

Augmented
data

8892 ResNet152V 0.0012 1.0000 0.0410 0.9881 0.99 0.99 0.99 26 m 6 s

ResNet152V +
Gaussian

0.0062 0.9987 0.0269 0.9904 0.99 0.99 0.99 56 m 8 s

TABLE IV
COMPARISON OF SKIN DISEASE CLASSIFICATION.

Author Year Dataset Methodology Accuracy

[41] 2022 The International Skin Imaging Collaboration
(ISIC) 2019, Human Against Machine with 10000
training images (HAM10000)

Digital hair removal, Gaussian filtering, Gray-
Level Co-occurrence Matrix (GLCM) features,
Decision Tree, Support Vector Machine (SVM),
K-Nearest Neighbors (KNN)

SVM: 95%

[42] 2023 Human Against Machine with 10000 training im-
ages (HAM10000)

16 Convolutional Neural Network (CNN) models
for classification

Up to 99%

[43] 2023 Human Against Machine with 10000 training im-
ages (HAM10000)

Model fusion with attention module, data augmen-
tation

95.29%

[44] 2024 Human Against Machine with 10000 training im-
ages (HAM10000)

Hybrid Feature-Based (HFB)-Convolutional Neu-
ral Network (CNN)-Bidirectional Long Short-
Term Memory (BiLSTM) approach

96.3%

[45] 2024 Human Against Machine with 10000 training
images (HAM10000), Programa de Assistência
Dermatológica e Cirurgica - (PAD) at the Uni-
versidade Federal do Espı́rito Santo (UFES-
Brazil)/Pigmented Skin Lesions Dataset from the
Federal University of Espı́rito Santo – 2020 (PAD-
UFES-20)

Hybrid Convolutional Neural Network (CNN)-
DenseNet model

95.7%

[46] 2024 Human Against Machine with 10000 training im-
ages (HAM10000)

Self-Transfer Generative Adversarial Network
(STGAN) for data synthesis and classification

98.23%

Proposed work 2025 ArsenicSkinImageBD ResNet152V2 with Gaussian smoothing and trans-
fer learning

99.04%

proves accuracy of the test set from approximately
0.9881 to 0.9904. It means that data augmentation with
Gaussian method helps the model to better classify
complex samples. The use of data augmentation with
Gaussian method also causes a decrease in loss values
on the set of tests. The model becomes increasingly
efficient in optimizing its predictions. Although there
is an increase in accuracy, recall, precision, and F1-
scores either remain the same or slightly increase.
The results show that the implementation of Gaussian
smoothing method not only raises accuracy from ap-
proximately 0.9881 to 0.9904 but also improves and
enhances the model reliability in detecting complex
samples, contributing to more effective early diagnosis
and treatment.

By using data augmentation with Gaussian method,
there is an increase in training time from 26 to 56
minutes. It is reasonable considering the additional
processing required to apply Gaussian augmentation to
each batch of data. Overall, the method has a positive
impact on model performance by increasing accuracy
and consistency of prediction results. Although training
time increases slightly, the improved prediction quality

enhances trade-off, particularly in cases where high
accuracy is preferred.

Table IV shows the comparison of previous studies
for skin disease classification. Based on Table IV,
several studies have explored various methods for skin
disease classification, each with unique strategies and
datasets. A previous research [41] uses traditional
machine learning methods such as Support Vector
Machine (SVM), K-Nearest Neighbors (KNN), and
Decision Tree on ISIC 2019 and HAM10000 datasets,
achieving a maximum accuracy of 97% with SVM. An-
other previous research [42] utilizes 16 CNN models
on HAM10000 dataset, achieving approximately 99%
accuracy, and showing the potential of deep learning in
large-scale image analysis. A model fusion method is
also introduced with attention modules and data aug-
mentation, achieving 95.29% accuracy on HAM10000
dataset [43]. The previous research [44] proposes a
Hybrid Feature-Based (HFB)-CNN-Bidirectional Long
Short-Term Memory (BiLSTM) model and achieves
96.3% accuracy on HAM10000 dataset by addressing
imbalanced data issues through augmentation. An inte-
grated hybrid CNN-DenseNet model is also observed,
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showing accuracy of 95.7% on both HAM10000 and
Programa de Assistência Dermatológica e Cirurgica -
(PAD) at the Universidade Federal do Espı́rito Santo
(UFES-Brazil)/Pigmented Skin Lesions Dataset from
the Federal University of Espı́rito Santo – 2020 (PAD-
UFES-20) datasets, emphasizing the potential for effec-
tive diagnosis across various skin diseases [45]. Fur-
thermore, Self-Transfer Generative Adversarial Net-
work (STGAN) is introduced for data synthesis and
classification, achieving significant results with accu-
racy of 98.23% [46].

In comparison, the research leverages transfer learn-
ing using ResNet152V2 architecture combined with
Gaussian smoothing method. The results show ac-
curacy of approximately 99.04% on ArsenicSkinIm-
ageBD dataset. The method is competitive with state-
of-the-art methods while addressing a unique prob-
lem, namely classifying arsenic-affected skin diseases.
Compared to most previous reports on generic skin
disease datasets like HAM10000, the research tar-
gets a specific dataset designed to analyze arsenic-
related skin conditions. The innovative application of
Gaussian smoothing for noise reduction and feature
clarity further distinguishes from previous studies. This
comparison shows the effectiveness and novelty of the
framework in improving classification performance for
a specialized application area.

IV. CONCLUSION

In conclusion, the research significantly contributes
to the improved classification of arsenic-affected
skin diseases using image processing methods and
ResNet152V2 architecture. Specifically, the impact of
Gaussian smoothing method is investigated on both
original and augmented data to enhance the model clas-
sification performance. The results show that applying
Gaussian smoothing improves the testing set accuracy
from approximately 0.9881 to 0.9904. This improve-
ment shows the effectiveness of Gaussian smoothing
in enabling the model to better classify complex skin
samples affected by arsenic exposure. Moreover, the
use of Gaussian smoothing also reduces loss values
on the testing set, indicating that the model becomes
more efficient in optimizing its predictions. The high
precision, recall, and F1-score (close to 0.99) across
experiments further confirm the model consistency and
reliability in performing accurate classifications. These
results show the potential of the framework to support
early detection and diagnosis of arsenic-induced skin
diseases.

Despite the significant contribution, there are limi-
tations in the research that should be acknowledged.
The application of Gaussian smoothing significantly

increases training time from 26 minutes to 56 min-
utes, making it less ideal for real-time applications
or resource-constrained environments. Moreover, the
research focuses on a specific augmentation method,
leaving the exploration of other models for future
analysis. Expanding the dataset to include more di-
verse skin conditions or environmental factors can also
improve the model generalizability. Although training
time increases, the improved classification accuracy
and consistency achieved through Gaussian smoothing
make it a valuable method for enhancing detection
capabilities. Additionally, the framework shows sig-
nificant promise for early detection and management
of arsenic-affected skin diseases, potentially leading to
better health outcomes and reduced disease burden.
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