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Abstract—Blindness presents a significant challenge in
the development of assistive technologies, particularly for
navigation, as it requires accurate distance perception
to enable effective mobility for the visually impaired.
The research addresses this issue by evaluating and
comparing the performance of the YOLOv8 model in-
tegrated with OpenCV and the Coordinate Attention
Weighting (CAW) technique for distance estimation in
blind navigation systems. The main research objective
is to improve distance estimation accuracy without the
need for additional sensors. Initially, YOLOv8 with
OpenCV shows less optimal results, prompting efforts
to enhance its performance to surpass the effectiveness
of CAW, while maintaining a sensor-free solution. The
research then integrates YOLOv8 with OpenCV for
baseline comparison and applies CAW for advanced
feature attention in the distance estimation process. The
research also integrates mathematical formulations for
camera calibration and depth estimation, utilizing tech-
niques such as triangulation and reprojection to refine
the accuracy of object distance prediction. The results
show that improved YOLOv8 + OpenCV significantly
outperforms original YOLOv8 + OpenCV, with reduced
Mean Squared Errors (MSE) across various distance
intervals (0-1 m, 1-2 m, 2-3 m, 3-4 m, and 4-5 m).
YOLOv8 + CAW also shows improvement compared to
the original YOLOv8 + OpenCV but does not surpass the
performance of the improved OpenCV integration. These
findings demonstrate the potential of refined computer
vision techniques in achieving high-accuracy and sensor-
free distance estimation, enhancing real-time navigation
systems for the blind. The research paves the way for
further advancements in the development of accessible
and reliable navigation technologies for the visually
impaired.
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I. INTRODUCTION

COMPUTER vision has advanced remarkably in
recent years, fueled by rapid progress in deep

learning techniques [1, 2]. These advancements have
enabled systems to handle complex tasks with high
accuracy and efficiency, proving essential in appli-
cations requiring precise spatial awareness. One of
the practical applications of computer vision is as-
sisting individuals with visual impairments in detect-
ing objects and estimating distances. Such an appli-
cation significantly enhances their independence and
mobility [3]. By recognizing obstacles and gauging
distances, they can navigate their surroundings more
safely, fostering greater autonomy and confidence in
daily life [4–6]. To achieve this goal, many researchers
strive to develop assistive technologies, particularly
through the optimization of existing computer vision
frameworks [7–9].

One prominent real-time object detection approach
is the You Only Look Once (YOLO) framework,
known for its precision and efficiency. YOLOv8, the
latest version, has demonstrated strong performance
across various applications [10, 11]. When integrated
with OpenCV, YOLOv8 creates a versatile system
combining image processing, feature extraction, and
geometric transformation tools to enhance object de-
tection and distance estimation [12–14].

Generally, conventional OpenCV-based distance es-
timation methods rely on basic geometric calcula-
tions, which often lack precision in complex environ-
ments [15–17]. These methods typically use simple ge-
ometric principles such as triangulation or depth maps
generated through stereo vision, which can be affected
by noise or object occlusion in real-world scenarios.
Recently, many researchers have made advancements

mailto:erwinsyahrudin@students.amikom.ac.id
mailto:ema.u@amikom.ac.id
mailto:anggit@amikom.ac.id


Cite this article as: E. Syahrudin, E. Utami, and A. D. Hartanto, “YOLOv8-Based Distance Estimation for
Blind Navigation: Performance Comparison of OpenCV and Coordinate Attention Techniques”, CommIT
Journal 19(1), 45–57, 2025.

TABLE I
SAMPLE SUBSETS FROM DATASETS.

No Dataset Sample Size and Selected Attributes

1. Common Objects in Context (COCO) 50 images with bounding boxes, object categories (person, car, dog)
2. Karlsruhe Institute of Technology and Toyota Technological

Institute (KITTI)
10 images with bounding boxes, object categories (car, pedestrian), and Light
Detection and Ranging (LIDAR) data

3. Cityscapes 10 images with bounding boxes, object categories (pedestrian, car), and
segmentation

4. New York University Depth Dataset Version 2 (NYU Depth V2) 10 images with bounding boxes and depth maps for indoor scenes
5. Custom Dataset 20 images with bounding boxes, object categories (chair, table), and ground

truth distance

like Coordinate Attention Weighting (CAW), which
have introduced more sophisticated approaches by in-
corporating spatial attention mechanisms, improving
the accuracy of distance estimation in dynamic en-
vironments [18]. This method enhances the feature
extraction process, allowing the system to focus on
relevant regions and ignore irrelevant ones. As a result,
the system’s robustness in complex settings can be
improved [11, 19, 20].

The research aims to address this gap by conducting
a comprehensive comparative analysis of those two
approaches: YOLOv8 integrated with OpenCV and
YOLOv8 enhanced with Coordinate Attention Weight-
ing (CAW). The primary objectives are to evaluate
each approach’s performance, accuracy, and reliability
in object detection and distance estimation tasks. To
achieve this, the researchers employ techniques such
as camera calibration and depth estimation, utilizing
mathematical formulations based on triangulation and
reprojection [21, 22]. These methods refine the accu-
racy of object distance prediction, which is critical
for blind navigation systems. The results from these
models are compared using Mean Squared Errors
(MSE) and other metrics, providing valuable insights
toward the development of more sophisticated assistive
technologies for visually impaired navigation.

Although the research does not propose new algo-
rithms or mathematical formulations, it is still signif-
icant in the practical application of advanced models
like YOLOv8 with OpenCV in assistive technologies.
It optimizes YOLOv8 + OpenCV and evaluates the
potential of integrating CAW to improve the spatial
awareness of visually impaired individuals. Addition-
ally, the researchers seek to advance the state-of-the-
art in computer vision-based assistive systems, offering
innovative solutions that enhance spatial awareness and
safety for individuals with visual impairments.

II. RESEARCH METHOD

The research follows a structured approach to assess
and compare the performance of two approaches for
distance perception in navigation systems for visu-
ally impaired individuals: YOLOv8 integrated with

OpenCV and YOLOv8 enhanced with CAW. This
section details the essential components of the method-
ology, including the dataset, experimental setup, imple-
mentation procedures, evaluation criteria, and statisti-
cal analysis.

A. Dataset Subset for Testing

The research begins by examining datasets to evalu-
ate the model’s performance. A small and manageable
portion of each dataset is selected for initial testing.
These carefully chosen subsets encompass a wide
variety of conditions, including different object types,
distances, and lighting scenarios, ensuring that the
model is tested in diverse real-world conditions [23].
This initial selection serves as a preliminary evaluation,
helping to identify potential issues in the model’s
performance before scaling up to larger and more
complex datasets. The subsets listed in Table I are used
for both training and evaluation purposes, providing a
solid foundation for further fine-tuning and validation
of the model. A thorough initial assessment can be
conducted by starting with these smaller subsets, and
necessary adjustments can be made before proceeding
to the full-scale testing phase.

The dataset subsets in Table I can be described as
follows. First, a random sample of 50 images from
the Common Objects in Context (COCO) dataset is
selected, focusing on a few common object categories
such as people, cars, and animals. The goal is to
ensure the model can detect and estimate distances to
various everyday objects in typical outdoor environ-
ments. Second, from the Karlsruhe Institute of Tech-
nology and Toyota Technological Institute (KITTI)
dataset, 10 images are selected, including both outdoor
scenes with vehicles and pedestrians. These images
contain LIDAR data that can be used for distance
validation and comparison. Third, 10 images from the
Cityscapes dataset featuring urban environments are
used. These images include typical urban objects like
pedestrians, cars, and traffic signs, with corresponding
segmentation and object category labels. Fourth, in the
NYU Depth V2 dataset, 10 indoor scene images are
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steps for object detection and distance estimation. Figures 2 and 3 outline the detailed processes involved 

in the implementation using OpenCV and CAW, respectively.  

 

 

Fig. 2. YOLOv8 Integration with OpenCV 

 As illustrated in Fig. 2, the YOLOv8 model is employed to identify objects within images. It produces 

bounding boxes and class labels for each detected object. Initially, the model is loaded with pre-trained 

weights, which are then fine-tuned using a custom dataset to improve detection performance for specific 

Fig. 1. Process of experimental setup. CAW is Coordinate Attention Weighting.

selected, including depth information. These images
cover furniture, objects, and people in indoor environ-
ments, providing depth maps useful for testing depth
estimation capabilities. Last, a set of 20 images from
the custom dataset features common household and
environmental objects (e.g., chairs, tables, and doors).
These images include both object categories and an-
notated ground truth distances to reflect real-world
navigation challenges for visually impaired individuals.

B. Experimental Setup

Once the subset is collected, an experimental setup is
carried out using a structured and thorough approach.
The detailed steps in setting up the experiment are
illustrated in Fig. 1. A wide range of images and videos
are gathered to represent different indoor and outdoor
settings. These datasets are meticulously annotated

with ground truth bounding boxes and distance details
to ensure accurate evaluation. The datasets include
publicly available sources, such as COCO and KITTI,
along with a custom dataset specifically designed to
simulate real-world navigation challenges faced by vi-
sually impaired individuals [24]. Additionally, the data
collection process encompasses various images and
videos with diverse lighting conditions, occlusions, and
object types, ensuring the model’s robustness across
multiple environments. The data are then divided into
three subsets: training, validation, and testing sets, to
allow for a proper assessment of the model’s ability to
generalize.

For the analysis, YOLOv8 is implemented with both
OpenCV and CAW for the distance estimation task.
Object detection is applied to the dataset, and dis-
tances are calculated using two different approaches:
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Fig. 3. YOLOv8 Integration with Coordinate Attention Weighting (CAW).

traditional geometric methods within OpenCV and an
advanced spatial attention mechanism through CAW.
Then, model performance is evaluated using sev-
eral metrics, including accuracy (Mean Absolute Er-
ror (MAE) and Root Mean Squared Error (RMSE))
and speed (Frames per Second (FPS) and inference
time) [25]. A comparative analysis is also conducted
to examine the statistical differences between the two
methods, helping the researchers to determine the most
effective approach for distance estimation in blind
navigation systems. The research is concluded by of-
fering recommendations for further improvements in
assistive technologies, especially for visually impaired
individuals.

C. Implementation Details

The experimental setup in the research is imple-
mented in two primary configurations: YOLOv8 in-
tegrated with OpenCV and YOLOv8 enhanced with
CAW. Each configuration follows a series of steps
for object detection and distance estimation. Figures 2
and 3 outline the detailed processes involved in the
implementation using OpenCV and CAW, respectively.

As illustrated in Fig. 2, the YOLOv8 model is
employed to identify objects within images. It produces
bounding boxes and class labels for each detected
object. Initially, the model is loaded with pre-trained
weights, which are then fine-tuned using a custom
dataset to improve detection performance for specific
situations encountered by visually impaired users. Ge-
ometric calculations are employed and facilitated by
OpenCV functions to estimate the distance of the
detected objects. This process uses the known physical
size of the objects and their image size to determine the
distance [26, 27]. Methods such as monocular depth
estimation or stereo vision are applied for enhanced
accuracy.

As shown in Fig. 3, the CAW is incorporated into the
YOLOv8 framework. This process is done by adding
a CAW layer, which enhances spatial attention and
boosts the model’s focus on important features [27].

The modified YOLOv8+CAW model is then trained
on a custom dataset to optimize its detection perfor-
mance. The output from the YOLOv8+CAW model
is utilized for more accurate distance estimation. Pre-
vious research argues that the CAW mechanism en-
hances spatial awareness, resulting in more precise dis-
tance measurements [28]. While similar geometric and
vision-based methods have been used in the OpenCV
approach, the inclusion of CAW provides improved
attention to object features for better outcomes.

III. RESULTS AND DISCUSSION

The research results are presented in two main parts:
evaluation metrics and statistical analysis. In each sec-
tion, a detailed comparison between the performance
of YOLOv8 integrated with OpenCV and YOLOv8
enhanced with CAW is made. The goal is to assess
how these approaches impact distance estimation in
navigation systems intended for individuals with visual
impairments.

A. Evaluation Metrics

The evaluation of between YOLOv8 combined with
OpenCV and YOLOv8 enhanced with CAW is con-
ducted using several important performance metrics,
including MAE, RMSE, FPS, and inference time.
The findings are presented in Tables II to IV, which
outline the strengths and weaknesses of each model
across different scenarios. The first metric, MAE, is
obtained with Eq. (1). It has yi as the actual distance,
ŷi as the estimated distance, and n as the number
of observations [28]. Meanwhile, the second metric,
RMSE is expressed using Eq. (2). RMSE is calculated
as the square root of the mean of the squares of the
differences between the observed values yi and the
predicted values ŷi [29]. Both metrics are used to
measure the accuracy of distance estimation, where
lower values in these metrics indicate higher accu-
racy. MAE represents the average error, while RMSE
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TABLE II
ACCURACY METRICS OF MEAN ABSOLUTE ERROR (MAE) AND

ROOT MEAN SQUARED ERROR (RMSE).

Metric YOLOv8 + OpenCV
YOLOv8 + Coordinate
Attention Weighting
(CAW)

MAE (m) 0.42 0.35
RMSE (m) 0.58 0.50

TABLE III
SPEED OF OBJECT DETECTION AND DISTANCE ESTIMATION.

Metric YOLOv8 +
OpenCV

YOLOv8 +
Coordinate
Attention
Weighting (CAW)

Frames per Second (FPS) 25 20
Inference Time (ms) 41 51

emphasizes larger discrepancies by squaring the error
differences [30].

MAE =
1

n

n∑
i=1

|yi− ŷi|, (1)

RSME =

√√√√ 1

n

n∑
i=1

(yi− ŷi)2. (2)

Table II shows that YOLOv8 + CAW achieves lower
MAE (0.35 m) and RMSE (0.50 m) than YOLOv8
+ OpenCV with MAE at 0.35 m and RMSE at
0.50 m. The result suggests that the CAW mechanism
improves the model’s focus on essential features, en-
abling more precise distance estimations by enhancing
spatial attention and reducing the impact of irrelevant
background elements. The improved feature weighting
allows the model to better differentiate objects from
their surroundings, leading to more consistent and
reliable distance measurements across various lighting
conditions and object types.

After that, the FPS and metrics inference time are
assessed using Eqs. (3) and (4). They evaluate the
model’s efficiency in real-time applications. The FPS
measurement determines how smoothly the system can
process and detect objects per second, while the infer-
ence time analysis helps assess the computational load
and responsiveness of the model. These evaluations
are crucial for ensuring that the proposed approach
is not only accurate but also practical for real-world
deployment.

FPS =
Number of Frames

Total Time (seconds)
, (3)

Inference Time (ms) =
Total Time (ms)

Number of Frame
. (4)

TABLE IV
ROBUSTNESS MODEL WITH CONDITION LOW LIGHT AND HIGH

OBJECT DENSITY.

Condition YOLOv8 + OpenCV YOLOv8 + CAW

Low Light 0.61 MAE 0.41 MAE
Occluded Objects 0.56 MAE 0.39 MAE
High Object Density 0.66 MAE 0.46 MAE

Note: Coordinate Attention Weighting (CAW) and Mean
Absolute Error (MAE).

Real-time performance is essential in blind navi-
gation systems, where high-speed processing ensures
timely object detection and distance estimation. As
seen in Table III, YOLOv8 + OpenCV achieves a
higher FPS (25) and lower inference time (41 ms)
than YOLOv8 + CAW, with an FPS of 20 and an
inference time of 51 ms. Although OpenCV is faster,
the difference is relatively minimal, and both config-
urations can operate in real time. The slight speed
advantage of YOLOv8 + OpenCV is counterbalanced
by the increased accuracy of YOLOv8 + CAW, making
both models viable for practical applications depending
on specific needs.

Table IV examines model robustness under low-light
conditions, occlusions, and high object density. In these
challenging scenarios, YOLOv8 + CAW outperforms
YOLOv8 + OpenCV, showing MAE values of 0.41,
0.39, and 0.46. In contrast, YOLOv8 + OpenCV ex-
hibits higher MAE values with 0.61, 0.56, and 0.66.
This robustness in CAW is critical for applications
involving visually impaired users, where environmental
variations can heavily impact usability.

B. Enhanced YOLOv8 with OpenCV Integration for
Improved Distance Detection

From the previous results, several strategies can
be applied to enhance the accuracy performance of
YOLOv8 for distance detection using OpenCV and
bring it closer to the capabilities of CAW. These
strategies may include optimizing the preprocessing
pipeline, fine-tuning the model’s hyperparameters, and
incorporating advanced filtering techniques such as
Kalman filters to refine distance estimation. The en-
hancement presents a viable alternative to CAW with-
out the need for extra sensors, reducing hardware de-
pendency while maintaining computational efficiency.
This approach, as illustrated in Fig. 4, ensures that the
system remains accessible, cost-effective, and practical
for real-world deployment, particularly in assistive
technologies for visually impaired users.

In particular, Table V outlines the specific steps
involved in the process. These steps include im-
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depth estimation techniques to create depth maps, and combining these with point cloud data for precise 

distance measurement. Additional techniques include post-processing methods such as filtering, 

integrating contextual information, and fine-tuning the YOLOv8 model using annotated distance data 

to refine accuracy further. Using OpenCV as a replacement for CAW, this approach takes advantage of 

a well-established, open-source computer vision library recognized for its powerful tools in real-time 
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Table 5 Process Flow for YOLOv8-Based Object Detection and Distance Estimation System.

Fig. 4. YOLOv8 with OpenCV for distance detection.

TABLE V
PROCESS FLOW FOR YOLOV8-BASED OBJECT DETECTION AND DISTANCE ESTIMATION SYSTEM.

Step Purpose Techniques Used Expected Outcome

1. Input image/video Provide initial visual data for anal-
ysis

Image or video feed Visual input for object detection
and distance estimation

2. Calibration and detection Ensure accurate object detection
and measurement

Camera calibration, YOLOv8 ob-
ject detection

Calibrated camera para m and de-
tected objects with bounding boxes

2.1 Camera calibration Adjust camera parameters to re-
duce distortion

Calibration algorithms Optimized camera setup for precise
distance measurements

2.2 YOLOv8 object detection Identify and classify objects in the
scene

YOLOv8 model for detection Object classes and bounding boxes

3. Distance calculation Calculate the distance between the
camera and the detected objects

Advanced geometric techniques,
distance calculation

Estimated object distances

4. Depth estimation Enhance spatial understanding of
detected objects

Depth estimation algorithms
(stereo or monocular)

Refined distance information,
adding depth context

5. Model improvement Improve YOLOv8’s detection and
distance estimation performance

Fine-tuning YOLOv8, a dataset
with distance annotations

Enhanced detection and distance
accuracy

6. Post-processing Refine and filter distance estima-
tion results

Post-processing techniques, con-
textual integration

Smoothed and contextually rele-
vant distance data

6.1 Post-processing techniques Filter noise and refine distance es-
timations

Smoothing and filtering irrelevant
data

Reliable and accurate distance re-
sults

6.2 Contextual information integration Incorporate environmental context
for relevance

Environmental/contextual data
analysis

More meaningful distance esti-
mates with context

7. Estimated distances Provide final distances for detected
objects

Consolidation of results Final object distance estimates
ready for use

7.1 Machine learning models Enable further analysis or predic-
tive insights

Machine learning algorithms Enhanced accuracy or customiza-
tion for specific applications

proving camera calibration, setting up a stereo cam-
era system for depth perception, utilizing advanced
depth estimation techniques to create depth maps, and
combining these with point cloud data for precise
distance measurement. Additional techniques include
post-processing methods such as filtering, integrating
contextual information, and fine-tuning the YOLOv8

model using annotated distance data to refine accuracy
further.

The approach takes advantage of a well-established,
open-source computer vision library recognized for
its powerful tools in real-time image processing and
depth estimation using OpenCV as a replacement for
CAW. This method ensures both high accuracy and
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TABLE VI
INPUT IMAGE OR VIDEO.

Input Type Description Example Effect on System

Image Single-frame image for object de-
tection.

A static image from a camera. Providing a snapshot for object de-
tection.

Video A continuous video stream for real-
time processing.

A video feed from a camera. Enabling real-time object tracking
and distance estimation.

TABLE VII
CAMERA CALIBRATION.

Calibration Step Methodology Description Effect on System

Intrinsic Calibration Camera matrix and distortion coef-
ficients.

Correcting lens distortion and en-
suring accurate image capture.

Improving accuracy in object detec-
tion and distance estimation.

Extrinsic Calibration Camera positioning and orientation. Ensuring correct placement of the
camera in space.

Being essential for spatial under-
standing and depth calculation.

TABLE VIII
RESULTS OF DISTANCE CALCULATION.

Distance Range YOLOv8 +
OpenCV MAE

YOLOv8 +
OpenCV Improved
MAE

YOLOv8 + CAW
MAE

YOLOv8 +
OpenCV RMSE

YOLOv8 +
OpenCV Improved
RMSE

YOLOv8 + CAW
RMSE

0-1 m 0.42 m 0.38 m 0.39 m 0.52 0.48 0.48
1-2 m 0.48 m 0.44 m 0.45 m 0.57 0.54 0.53
2-3 m 0.56 m 0.51 m 0.52 m 0.64 0.60 0.60
3-4 m 0.61 m 0.58 m 0.58 m 0.69 0.65 0.66
4-5 m 0.73 m 0.68 m 0.67 m 0.78 0.74 0.74

Note: Coordinate Attention Weighting (CAW), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE).

efficiency while being cost-effective and accessible for
developing assistive technologies for individuals with
visual impairments.

C. Process Implementation
The following section delves into a comprehensive

comparison of the various configurations of YOLOv8,
specifically focusing on the original YOLOv8 inte-
grated with OpenCV, an enhanced version of YOLOv8
with OpenCV, and enhanced YOLOv8 with CAW.
Table VI provide detailed quantitative insights into how
each configuration performs across varying distance
ranges. It showcases how even small adjustments can
significantly impact the model’s ability to provide
reliable distance perception, especially for visually
impaired navigation.

In Table VI, two main types of input are discussed:
image and video. Image refers to the use of a single
image acquired from a camera for object detection,
providing a static image useful for object analysis.
Video, on the other hand, refers to the use of a
continuous video stream, allowing real-time processing
for continuous object tracking and distance estimation.
Static images are more suitable for one-off analysis ap-
plications, while video is more suitable for applications
that require real-time interaction, such as navigation for
the visually impaired [31].

Table VII discusses the steps in camera calibration.
In the research, intrinsic calibration uses the camera
matrix and distortion coefficients to correct lens distor-
tion, which improves the accuracy of object detection
and distance estimation [32]. Meanwhile, extrinsic
calibration, which involves determining the position
and orientation of the camera in space, is essential
for understanding object mapping accurately in real
environments [33, 34]. Without proper calibration, the
system cannot produce accurate distance estimation,
especially in applications for blind people that require
high precision in object detection [35].

Table VIII reveals the performance of three machine
learning models for distance estimation. The models
are evaluated at five different distance ranges (0-1 to
4-5 m) using two main metrics: MAE and RMSE.
The models tested are YOLOv8 + OpenCV, improved
YOLOv8 + OpenCV, and YOLOv8 + CAW. It provides
an in-depth look at the effectiveness of each model in
estimating distance accurately.

MAE measures the average absolute error between
the actual and predicted distances, where a lower value
indicates higher estimation accuracy [25]. In the 0-
1 m range, the improved YOLOv8 + OpenCV model
performs the best with an MAE of 0.38 m, which is
lower than the standard YOLOv8 + OpenCV model
with an MAE of 0.42 m, and YOLOv8 + CAW with
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TABLE IX
RESULTS OF DEPTH ESTIMATION.

Depth Estimation Method YOLOv8 + OpenCV YOLOv8 + OpenCV Improved YOLOv8 + CAW

Stereo Vision 0.60 MAE 0.55 MAE 0.50 MAE
Monocular Depth Estimation 0.45 MAE 0.40 MAE 0.42 MAE
Depth Map Integration 0.52 MAE 0.48 MAE 0.49 MAE

Note: Coordinate Attention Weighting (CAW) and Mean Absolute Error (MAE).

TABLE X
MODEL IMPROVEMENTS.

Improvement Type Implementation Improved YOLOv8 + OpenCV

Stereo Vision Enhancing the camera’s ability to capture accurate images. Reducing distortion errors.
Feature Attention Using Coordinate Attention Weighting (CAW). Improving object recognition and distance perception.
Model Optimization Fine-tuning the YOLOv8 model for specific tasks. Increasing accuracy of distance estimation.
YOLOv8 Improvement Improving model architecture and fine-tuning for specific

environments.
Further enhancing detection accuracy, especially in complex
scenarios.

0.39 m. This finding shows that the improved model
has an advantage in detecting objects at close range
with high accuracy.

In the 1-2 m range, improved YOLOv8 + OpenCV
also excels with an MAE of 0.44 m, followed by
YOLOv8 + CAW at 0.45 m. On the other hand,
YOLOv8 + OpenCV still has a larger error at 0.48 m.
This trend continues in the following distance ranges.
At a distance of 2-3 m, the improved model has
an MAE value of 0.51 m, smaller than YOLOv8 +
OpenCV at 0.56 m and YOLOv8 + CAW at 0.52 m.
Likewise, at the 3-4 m and 4-5 m ranges, improved
YOLOv8 + OpenCV maintains its advantage with
MAEs of 0.58 m and 0.68 m, respectively, indicat-
ing a consistent improvement in accuracy in distance
estimation.

RMSE gives more weight to larger errors, which
can reveal the system’s performance in managing
more extreme error variations [36]. At 0-1 m, the
improved YOLOv8 + OpenCV and YOLOv8 + CAW
models have the same RMSE value at 0.48, lower
than YOLOv8 + OpenCV, which is at 0.52. This
finding shows that improving YOLOv8 with additional
methods, such as improved OpenCV and CAW, can
reduce significant errors at close range. At 1-2 m,
improved YOLOv8 + OpenCV achieves an RMSE of
0.54, better than YOLOv8 + OpenCV with an RMSE
of 0.57. It is also slightly better than YOLOv8 + CAW
which reaches 0.53.

As the distance increases, the improved YOLOv8
+ OpenCV model continues to show superiority in
reducing errors, with RMSE values of 0.60 at 2-3
meters, 0.65 at 3-4 m, and 0.74 at 4-5 m, respectively.
On the other hand, YOLOv8 + CAW shows similar
RMSE values as improved YOLOv8 + OpenCV at 2-
3 m and 4-5 m, 0.60 and 0.74, respectively. These
values indicate that CAW is also quite effective in

maintaining the stability of distance estimation at larger
distances.

Then, depth estimation is evaluated using three dif-
ferent methods: stereo vision, monocular depth estima-
tion, and depth map integration, as shown in Table IX.
Improved YOLOv8 + OpenCV shows an improve-
ment in depth estimation accuracy compared to the
standard model, both in stereo vision and monocular
depth estimation [37, 38]. It suggests that enhancing
the YOLOv8 model with OpenCV can improve the
accuracy of depth measurement, which is important
for applications involving spatial navigation, such as
for the visually impaired.

The research also describes various types of model
improvements, such as camera calibration, use of fea-
ture attention (CAW) techniques, optimization of the
YOLOv8 model, and improvements to the YOLOv8
architecture itself. Table X shows that each improve-
ment aims to improve the accuracy of object detection
and distance estimation. For example, the use of CAW
in the model can improve object recognition and depth
understanding, which are very important in applica-
tions for the visually impaired.

Table XI explains the post-processing techniques
applied to improve the detection results. In the re-
search, all models apply filtering and depth smoothing
techniques to reduce noise and produce more stable
depth estimation. However, only improved YOLOv8
+ OpenCV and YOLOv8 + CAW models applied
contextual refinement, which integrates contextual in-
formation to improve the results of object detection
and distance estimation. It provides significant im-
provements in environment recognition for the visually
impaired.

In Table XII, two main types of contextual informa-
tion are integrated into the system to improve the accu-
racy of detection and distance estimation, namely envi-
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TABLE XI
POST-PROCESSING TECHNIQUES.

Technique YOLOv8 + OpenCV Improved YOLOv8 + OpenCV YOLOv8 + CAW

Filtering Yes Yes Yes
Depth Smoothing Yes Yes Yes
Contextual Refinement Yes Yes Yes

Note: Coordinate Attention Weighting (CAW).

TABLE XII
CONTEXTUAL INFORMATION INTEGRATION.

Information Type Integration Method Effect on Accuracy

Environmental Context Location data integration. Increasing the accuracy of object detection in different environments.
Object Tracking Integration with tracking algorithms. Improving distance estimation by reducing errors caused by object movement.

TABLE XIII
RESULT DETECTION DISTANCE IN THE REAL WORLD.

Object YOLOv8 + OpenCV YOLOv8 + CAW Improved YOLOV8 + OpenCV

People 1.35 m 1.28 m 1.05 m
Motorcycle 3.47 m 3.05 m 2.71m
Motorcycle 4.53 m 3.83 m 3.53 m
Motorcycle 5.37 m 4.42 m 4.19 m
Bus 2.04 m 1.89 m 1.59 m
People 5.10 m 4.23 m 3.98 m
Truck 2.35 m 2.14 m 1.83 m
Motorcycle 14.11 m 9.02 m 11.01 m
People 2.01 m 1.86 m 1.57 m
Motorcycle 2.22 m 2.03 m 1.73 m

MSE 4.5623 3.2621 3.0834

Note: Coordinate Attention Weighting (CAW) and Mean Squared Error (MSE).

ronmental context and object tracking. Environmental
context includes the integration of location data that
allows the system to recognize different environments
and adjust object detection to specific conditions at a
particular location, such as indoors or outdoors [39]. It
helps to improve the accuracy of detecting objects that
may change depending on environmental conditions.

Next, object tracking is implemented with a tracking
algorithm to follow the movement of objects con-
tinuously. It is very important in reducing distance
estimation errors that may occur due to the movement
of objects in the video frame. By following the position
of the object, the system can estimate the distance more
accurately and stably, which is very valuable in real-
time navigation applications for blind people.

Figure 5 illustrates the comparison of distance
estimation results using three different approaches:
YOLOv8 + OpenCV, YOLOv8 + CAW, and improved
YOLOv8 + OpenCV. As shown in Table II, YOLOv8
+ CAW provides more accurate distance estimations
compared to YOLOv8 + OpenCV, particularly for
various objects such as people, motorcycles, buses,
and trucks. However, the enhancements in improved
YOLOv8 + OpenCV demonstrate that an optimized
model can achieve closer accuracy to YOLOv8 + CAW

and, in some cases, even surpass it. For instance, the
initial distance estimation for a person at 1.35 m using
YOLOv8 + OpenCV improves to 1.05 m after opti-
mization. Similarly, for a motorcycle initially estimated
at 5.37 m, the improved model refines it to 4.19 m.
Overall, the enhancements in YOLOv8 + OpenCV
show significant improvements without requiring addi-
tional attention mechanisms like CAW, suggesting that
with better data processing, signal filtering, and refined
distance modeling, improved YOLOv8 + OpenCV can
serve as a more efficient alternative for accurate dis-
tance detection without the need for additional sensors.

The real-world test results in Table XIII provide a
comparative analysis of distance estimation techniques
using YOLOv8 with three approaches: OpenCV (base-
line), CAW, and improved OpenCV. The evaluation
focuses on the Mean Squared Error (MSE) value [40],
which is calculated against the synthetic ground truth
distance. The improved OpenCV method shows the
lowest MSE of 3.0834, indicating its improved accu-
racy in distance prediction. It is visually represented
in Fig. 5, where the improved calibration and opti-
mization reduce the estimation error more compared
to the baseline and CAW methods. Conversely, the
baseline OpenCV approach has the highest MSE of
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4.5623, indicating less precise distance prediction. The
improved CAW approach achieves a medium MSE of
3.2621 by increasing feature attention and bounding
box precision.

The MSE formula is adapted to incorporate a com-
bination of geometric and optimization principles to
explain this improvement mathematically. In Eq. (5), d̂i
represents the estimated distance, di is the ground truth
distance, and N is the total number of objects. Then,
the predicted distance d̂i in the improved OpenCV
method is derived using a calibrated version of the
triangulation formula, incorporating optimized param-
eters for focal length (f1) and real-world object width
(W 1) [41].

MSE =
1

N

N∑
i=1

(d̂i − d1)
2, (5)

In Eq. (6), d̂i is the pixel width of the detected

object. Then, p is is obtained from the results of
object detection in images using algorithms such as
OpenCV. For example, if it detects a water bottle,
and its bounding box in the image has a width of
80 pixels, p is 80. By adjusting f1 and W 1 to ac-
count for real-world variations, the improved OpenCV
method reduces estimation errors. The combination
of these adjustments can be viewed as a systematic
improvement modeled by weighted contributions from
baseline and enhanced methods in Eq. (7). The α and
β are weighting factors representing the contributions
of the baseline and optimized methods. This formu-
lation allows for a fine-tuned balance, leveraging the
strengths of each approach. The results from Table XIII
affirm that integrating geometric principles [42], cali-
bration, and optimization techniques in the improved
OpenCV method significantly enhances accuracy, mak-
ing it well-suited for critical applications like blind
navigation systems.
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d̂i =
f1.W 1

p
, (6)

d̂i = a.dbaseline + β.denhanced,

where α+ β = 1. (7)

IV. CONCLUSION

In the research, the researchers compare the perfor-
mance of YOLOv8 integrated with OpenCV and CAW
techniques for distance estimation in a blind naviga-
tion system. Initially, YOLOv8 with OpenCV exhibits
lower accuracy compared to YOLOv8 with CAW.
Thus, improvements are made in the OpenCV integra-
tion. By incorporating the spatial attention mechanism
from CAW and refining OpenCV’s processing, the
researchers significantly enhance the accuracy of dis-
tance estimation. The main results show that improved
YOLOv8 + OpenCV outperforms original YOLOv8 +
OpenCV and approaches the performance of YOLOv8
+ CAW in terms of accuracy, with a lower MSE, cal-
culated using geometric principles and triangulation-
based depth estimation.

These findings emphasize the potential of integrating
OpenCV with deep learning models, such as YOLOv8,
for practical, sensor-free blind navigation systems.
Enhancing distance perception through methods like
camera calibration and reprojection reduces the need
for additional hardware sensors. The application of
CAW further optimizes the feature extraction process,
increasing the system’s ability to detect and measure
objects in dynamic and complex environments. This
approach offers an accessible and cost-effective so-
lution for navigation technologies, providing visually
impaired individuals with a more reliable means of
spatial awareness. However, limitations exist in the
performance of each method depending on the environ-
ment. For example, the original YOLOv8 + OpenCV is
more effective in straightforward settings with minimal
obstacles, whereas YOLOv8 + CAW excels in complex
environments with variable object sizes and occlusions.
The MSE calculations, based on triangulation and
reprojection methods, reveal how accuracy is affected
in various conditions.

Further research should explore these environmental
factors and test the models in real-world scenarios. In
particular, future research can benefit from collecting
feedback from visually impaired users, allowing for the
refinement of these models to enhance their practical
utility in everyday navigation. Additionally, combining
deep learning models with real-time image process-
ing, such as camera calibration and depth estimation
techniques, can further strengthen the robustness and
efficiency of blind navigation systems.
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