CommlT Journal 18(2), 183-195, 2024

Indonesian-English Textual Similarity

Detection Using Universal Sentence Encoder
(USE) and Facebook AI Similarity Search
(FAISS)

Lucia D. Krisnawati'*, Aditya W. Mahastama?, Su-Cheng Haw?,
Kok-Why Ng*, and Palanichamy Naveen®
L.2Informatics Department, Faculty of Information Technology, Universitas Kristen Duta Wacana

Yogyakarta, Indonesia 55224

3=5Faculty of Computing and Informatics, Multimedia University
Cyberjaya, Malaysia 63100

Email: 'krisna@staff.ukdw.ac.id, ?mahas @staff.ukdw.ac.id, *sucheng@mmu.edu.my,
“kwng @mmu.edu.my, °p.naveen@mmu.edu.my

Abstract—The tremendous development in Natural
Language Processing (NLP) has enabled the detection
of bilingual and multilingual textual similarity. One of
the main challenges of the Textual Similarity Detection
(TSD) system lies in learning effective text representation.
The research focuses on identifying similar texts between
Indonesian and English across a broad range of semantic
similarity spectrums. The primary challenge is generat-
ing English and Indonesian dense vector representation,
a.k.a. embeddings that share a single vector space.
Through trial and error, the research proposes using the
Universal Sentence Encoder (USE) model to construct
bilingual embeddings and FAISS to index the bilingual
dataset. The comparison between query vectors and
index vectors is done using two approaches: the heuristic
comparison with Euclidian distance and a clustering
algorithm, Approximate Nearest Neighbors (ANN). The
system is tested with four different semantic granularities,
two text granularities, and evaluation metrics with a
cutoff value of k={2,10}. Four semantic granularities
used are highly similar or near duplicate, Semantic
Entailment (SE), Topically Related (TR), and Out of
Topic (OOT), while the text granularities take on the
sentence and paragraph levels. The experimental results
demonstrate that the proposed system successfully ranks
similar texts in different languages within the top ten.
It has been proven by the highest F1@2 score of 0.96
for the near duplicate category on the sentence level.
Unlike the near-duplicate category, the highest F1 scores
of 0.77 and 0.89 are shown by the SE and TR categories,
respectively. The experiment results also show a high
correlation between text and semantic granularity.

Index Terms—Textual Similarity Detection, Universal
Received: Feb. 09, 2024; received in revised form: July 17, 2024;

accepted: July 22, 2024; available online: Sep. 09, 2024.
*Corresponding Author

Sentence Encoder (USE), Facebook Al Similarity Search
(FAISS)

I. INTRODUCTION

EXTUAL Similarity Detection (TSD) has been

closely related to Information Retrieval (IR), text
retrieval, Plagiarism Detection system (PDS), and Text
Reuse Detection (TRD) which fall within the area of
Natural Language Processing (NLP). Tracing down
research and applications on TSD, it has its root in
a detection algorithm proposed by Ottenstein [1] in
1976 which originally designed to identify similarity
of source codes written in Formula Translation (FOR-
TRAN). TSD in natural language is initialized by the
previous researchers who develop algorithm to detect
copies for sorting and indexing unique documents the
electronic library [2].

Alhough these research areas equally detect text
similarities, their similarity spectrum vary greatly [3].
For example, IR system attempts to find relevant in-
formation based on user queries [4], focusing on the
topic level similarities [5]. In contrast, PDS and TRD
seek similarities at both lexical and semantic levels
ranging from phrases, sentences, to entire passages [3].
While TRD and PDS methods are almost similar, TRD
focuses on finding illegal text reuse, whereas PDS
addresses both legal and illegal similar texts. From
the researchers’ perspective, the term ‘textual similarity
detection’ can be used interchangeably with TRD/PDS.

Designing an effective TSD system involves ad-
dressing challenges similar to those in PDS and text

mailto:krisna@staff.ukdw.ac.id
mailto:mahas@staff.ukdw.ac.id
mailto:sucheng@mmu.edu.my
mailto:kwng@mmu.edu.my
mailto:p.naveen@mmu.edu.my

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

retrieval that lie on two key points: how to learn
the text representation and to model the relevance or
similarity matching [4]. The text representation applied
in earlier TSD systems has been dominated by Bag-of-
Words (BoW) model [6] which matches query vectors
and the relevant documents on the basis of lexical
level. Though the BoW model, a.k.a sparse vector
representation, remains of fundamental importance in
recent neural-based IR models, its main drawback lies
in the fact that it matches the exact terms. If it matches
the related words such as synonyms or homonyms,
it needs multi-stage retrieval architecture by adding
query expansion, term importance prediction or/and
reranker [4, 7].

The drawbacks of sparse vector-based text repre-
sentation has been overcome by the dense vector
representation introduced by previous researchers [8]
which is able to match a query to its related terms in
context. Thus, finding semantically similar sentences
or passages in a monolingual text presents no more
meaningful challenges. However, the availability of a
large number of electronic texts on the web that is
accessible openly allows for the content duplication in
different languages and plagiarism. In academic field,
it is required to check the originality of one’s writing
to avoid plagiarism. When monolingual TSD or IR
systems fail to retrieve similar texts written in different
language, a bilingual TSD/IR is needed.

The research focuses on finding similar bilingual
texts on a wide range of similarity spectrums, i.e.,
topically related to lexically and semantically duplicate
texts in Indonesian and English. The main challenge
lies in generating English and Indonesian dense vector
representation, a.k.a. word and sentence embeddings
that put semantically related words/sentences in both
languages in the same vector space and have the closer
dense vector values. To address this challenge, the
researchers propose using dense vectors to retrieve
similar texts written in English for an Indonesian text
and vice versa. The contribution of the research is
set on using Universal Sentence Encoder (USE) and
Facebook Al Similarity Search (FAISS) for bilingual
similar text retrieval in Indonesian-English.

A. Related Works

Though textual similarity detection is very often
applied for information as well as text retrieval [3, 4],
it frequently becomes the backbone of more complex
applications. For instance, previous researchers [9] uti-
lize TSD outputs to match user questions with those in
the database in their open-domain Question-Answering
system. Meanwhile, another research [10] employs
it in a chatbot that assist students asking questions

related to faculties, activities, exams, and admission.
Lexical or semantic TSD systems are also applied for
detecting text reuse [5, 11], natural language-based
textual plagiarism [2, 3, 12], and code plagiarism in
programming assignments [13] . In distant learning,
TSD is very applicable for building an automatic grad-
ing system [14] or essay scoring system [15]. Then,
in e-commerce field, recommender systems relying on
TSD are proposed [12, 16].

The earlier building blocks of TSD systems com-
prise two salient stages: text retrieval and text anal-
ysis [2]. In text retrieval stage, Vector Space Model
(VSM) based on BoW model has dominated the text
representation method and technique [2]. Among other
term weighting methods, the classic TF-IDF has been
predominantly implemented for constructing a sparse
vector representation [4]. This sparse retrieval has been
a robust method for matching queries to the documents
in the lexical and syntactic structure.

The improvement of machine learning, specifically
deep learning, has enabled dense retrieval, i.e., retrieval
model that employs dense vectors or embeddings to
represent texts to capture semantic meaning of input
texts [4, 17]. The tools and algorithms for generat-
ing dense vectors commonly used in text retrieval
are Bidirectional Encoder Representations from Trans-
formers (BERT) [18], Word2Vec [8], Global Vectors
(GloVe) [19], and FastText [20] which also provide
a means of pretrained words as well as sentence
embeddings from the open source corpora [21].

The emergence of transfer learning and the pre-
trained embeddings leads a path to construct cross-
lingual as well as multilingual embeddings which
becomes a key facilitator in developing bilingual or
multilingual TSD. Recently, there are two salient ap-
proaches in constructing bilingual and multilingual
embeddings [21]. The first approach generates em-
beddings directly from sentences or document-aligned
bilingual corpora [22, 23]. In contrast, the second
approach applies transfer learning functions that will
project the vectors from the embeddings from one
language that of another one [21]. A significant accom-
plishment in constructing the multilingual embedding
is achieved by Google scientists [24] who propose
USE. This multilingual USE embeds texts from 16
languages into a single shared semantic space with a
multi-task dual encoder [24].

The sparse retrieval-based TSD systems commonly
employ an inverted index which mainly comprise a
dictionary and a collection of posting list to accelerate
the matching process [17]. The dictionary enlists all
terms found in the corpora, and each posting list saves
information on the terms such as document identifiers
where the terms are found and their frequency or

184

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

vector values are shown [2]. Such indexing scheme
presents significant challenges when it is applied for
dense retrieval-based bilingual TSD. In meeting these
challenges, previous researchers [25] have proposed
SPANN which is a memory-disk hybrid vector in-
dexing and search system based on inverted index
methodology. An open-source indexing and search
system known as FAISS for dense retrieval is proposed
by previous research [26]. Both SPANN and FAISS can
be used to index a large number of text representations.

There is a handful work on Indonesian-English TSD
based on dense vectors as its text representation. The
first example generates dense vectors from the aligned
Indonesian-English sentence pairs using Word2Vec.
The matching is done by aligning the dense vectors
in Indonesian to those in English by computing their
canonical correlation analysis [27]. Like the first exam-
ple, the second example constructs word embeddings
with Word2Vec to build a monolingual TSD system.
However, the matching is done by directly measuring
the vector similarity with cosine similarity metric [28].
Back to bilingual TSD, the third example captures
the semantic similarity by utilizing Latent Semantic
Analysis (LSA) and Linear Vector Quantization (LVQ)
to optimize its performance [29]. Different from these
Indonesian-English TSD, the proposed method uses
USE in generating the dense vector, FAISS for its
indexing, and similarity metrics in making text com-
parison.

II. RESEARCH METHOD

The research starts with methods used for building
the training and testing dataset. Then, it describes the
system architecture and its components, concluding
with the evaluation metrices.

A. Dataset Building

After some trials and errors in designing the datasets,
the researchers considers the approach of constructing
the embeddings directly from the training dataset as
suggested in previous research [22, 23]. Thus, the
researchers constructs pairs of Indonesian-English sen-
tences and paragraphs. The detailed process of con-
structing the dataset construction is described in the
following paragraphs.

To begin with, the researchers decide to use
Wikipedia as the source of the dataset due to its
availabillity of articles on the same topics in both In-
donesian and English. A web scrapping code is written
in Python to grab Wikipedia texts. As constraints for
the web grabbing, articles in Indonesian which have
their equivalences in English are grabbed by checking
the English version link that is provided in the left

pane on each Wikipedia’s article. The web scrapping
yields numerous article pairs. However, only some
parts of their contents show corresponding semantic
relations in Indonesian and English. Therefore, the
researchers manually parallelize the Indonesian text
with its counterpart in English.

The corpus parallelization process is done by stu-
dents with good English proficiency under the follow-
ing instructions:

1) They are not allowed to change, rewrite, or trans-
late the content. The aim is to preserve the natural
content of the article.

2) They need to reorder the sentences in a paragraph,
so each Indonesian paragraph matches the English
paragraph in the number of sentences, ensuring
that semantically equivalent sentences are in the
same order.

3) They are allowed to delete Indonesian sentences
in a paragraph if its English counterpart cannot
be found in other paragraphs in the entire article.

4) They can insert a sentence found in another
paragraph if that sentence is an equivalence of
its counterpart sentence that is missing in one
specific paragraph checked on.

5) If the English counterpart has two paragraphs,
while the Indonesian consists only one paragraph,
they are allowed to split Indonesian paragraph into
two paragraphs to maintain the order of equivalent
sentences.

6) If an English sentence has two Indonesian coun-
terparts, they can merge those sentences into one
and adjust the grammatical form accordingly, like
a dependent clause preceding or following the
main clause.

The example of pairs of raw paragraphs and their
reordered ones are displayed in Figs. 1 and 2. It shows
the results of the application of the rules described
previously. The reordered and aligned paragraphs of
each article are then saved in each plain text format
which is given an identifier (ID) taking its source
language as its main marker. For example, ID001.txt
is for an Indonesian article while ENOOI is ID001’s
equivalence in English. The shortest document con-
sists of 3 paragraphs while the longest comprises 19
paragraphs.

The selection of the articles to be included in the
work of reordering is also based on their topics that are
randomly chosen. If they convey the predefined topics,
they will be selected. There are 44 topics that the
researchers work on. The list is displayed on Table I.
The determination whether an article belongs to one
of these topics is also done manually by students who
do the reordering. As the article reordering is done

185

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommIT Journal 18(2), 183-195, 2024.

The raw Texts

pandemic in Indonesia is part of the ongoing
worldwide pandemic of coronavirus disease 2019 (COVID-
19) caused by severe acute respiratory syndrome coronavirus|
2 (SARS-CoV-2). It was confirmed to have spread to
Indonesia on 2 March 2020, after a dance instructor and
er mother tested positive for the virus. Both were infected
from a Japanese national.

Fig. 1. Raw texts in Indonesian and English.

Fig. 2. Ordered texts in Indonesian and English.

manually, it is laborious and time consuming. Consid-
ering time span and budget constraints of the research,
it stops after having 116 documents as training and
testing data. Articles having different topics from those
in training data are chosen as Out of Topic (OOT)
documents. The preprocessing of these documents is
described in the following subsection.

B. System Architecture

The architecture of the proposed semantic text re-
trieval is described. Its steps shown in Fig. 3 follows
the semantic search system. Figure 3 shows that the
process of developing the TSD system starts with the

TABLE I
L1ST OF ToPICS COVERED IN THE DATASET.

No. Topics No. Topics

01 Pandemi COVID-19 di Indonesia 23 Muria

02 ChatGPT 24 Lawu

03 Keraton 25 Gunung Agung
04 Malioboro 26 Merapi

05 RAtu Boko 27 Bali

06 Candi Prambanan 28 Bahasa Inggris
07 Pelangi 29 Children

08 Tugu Jogja 30 Indonesia

09 Gerhana matahari 31 Jumat Agung
10 Saturnus 32 Kamis Putih
11 Lawang Sewu 33 Komodo

12 Telegram 34 Kotonoha

13 Venus 35 Minggu Palma
14 Ikan Hiu 36 Nato

15 Pura 37 Paskah

16 Kelapa 38 Perang Dunia
17 Robotika 39 Puasa dan Pantang
18 Weathering with You 40 Rendang

19 Pattimura 41 Rusia

20 Singapura 42 Soeharto

21 Your Name 43 Suzume

22 Merbabu 44 Wayang

web scrapping from Wikipedia portal as described
earlier. The results of web scrapping are processed
to ensure that they contain the same number of para-
graphs and sentences in the same order. These plain
textdocuments are then preprocessed. The next step is
to construct the dense vector which utilizes the Multi-
Lingual Universal Sentence Encoder (MUSE) model
provided by Google Scholar as an open source model.
The dense vectors of these documents are then indexed
using FAISS library. FAISS library is employed to
match or compare the query of dense vectors with those
documents in the dataset.

C. Preprocessing Phase

The reordered documents described previously are
saved in separate subfolders of the dataset folder ac-
cording to its language clusters. The text preprocessing
is applied for each document in each cluster. Overall,
the researchers implement two stages of preprocessing
texts only. They are text normalization and text seg-
mentation. Two processes of text normalization (case
folding and punctuation elimination) are implemented.
In case folding, all capital letters are transformed
into lowercase letter. It is decided to eliminate all
punctuations except those that are commonly used to
deliminate sentences or to mark a part of sentences.
Thus, the punctuations kept are period, comma, excla-
mation marks, question marks as well as new line as
the paragraph delimiter [. , ! ? \n].

After a document has been normalized, the segmen-
tation in the level of paragraph is done by using the
new line symbol \n. Headings and subheadings are
treated as a separate paragraph with a reason that they

186

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

‘f*_;-... ‘1:'

i by ore

P
LT I'__;.
i St

(Crdering)
FProcess

Dataset

—

Fig. 3. The architecture of the proposed system.

have no sentence delimiter. If they are merged into
their succeeding paragraph, it will be a part of the first
sentence in that paragraph. The identification of each
segmented paragraph was done by using the language
identifier (ID/EN) followed by five digits in which the
first three digits are allocated to their index number of
processing iteration, and the last two digits show the
index of paragraph in a currently processed document.

Sentence segmentation is applied to the seg-
mented paragraphs using the Natural Language Toolkit
(NLTK) tokenize package and the sent_tokenize()
method. In this case, the headings and subheadings are
treated as single sentences. The process of assigning
identifier for each segmented sentence follows the
paragraphs. The distinction lies in the last two digits
which are reserved for the index of each sentence
within a document. Both the segmented sentences and
paragraphs are saved in a separate CSV formatted
document.

D. Bilingual Embedding Construction

Initially, the research intends to use pretrained word
embeddings from a repository openly provided by the
Language Technology Group, at the University Oslo
(http://vectors.nlpl.eu/repository/). This repository pro-
vides not only multilingual word embeddings, but also
detail descrition of the model, hyper-parameters and
corpora used to train them. It also provides two models

Embedding
construction

=

Test Files

Text Preprocessing

FAISS
Libraries

Dense Vector

Matching
= : Indexing ‘
Preprocessing

of Indonesian word embeddings trained on different
corpora. However, using English and Indonesian word
embeddings from this repository presents a twofold
problem, i.e., system crash due to the hardware lim-
itations and the inherent issues of separately trained
embedding models. The hardware constraint can be
readily addressed with cloud computing, but the second
issue poses a significant challenge.

The main issue of the second problem is that
the Indonesian embeddings are trained using different
models than English embeddings. Theoretically, the
vector space spanned by each embedding model is
distinct [21]. Consequently, the Indonesian and English
vectors, having been trained from different models,
cannot be directly compared because they do not reside
in the same vector space. Previous research [21] has
encountered this issue and proposed a solution by
mapping these disparate vectors to a single space
to achieve comparability. In response, the researchers
seek an embedding modell capable of projecting mul-
tilingual embeddings in a single vector space, and
the researchers identify the USE model as a suitable
option.

USE, an abbreviation of Universal Sentence En-
coder, is a model for encoding sentences into embed-
ding vectors that specifically target transfer learning
to other NLP tasks proposed by Google research
team [30]. USE makes two models namely Trans-

187

http://vectors.nlpl.eu/repository/

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

import tensorflow_hub as hub

Module_url = ‘https://tfhub.dev/google/universal-
sentence-encoder-multilingual/3’
embed = hub.load(module_url)

Fig. 4. A snippet on how to call MUSE.

former and Deep Average Network (DAN) [30]. There
are several versions of USE. The one that generates
bilingual embeddings in one vector space is MUSE.
MUSE is a new member of USE which is a multi-
lingual sentence embedding model based on Convolu-
tion Neural Network (CNN) and Transformer architec-
ture. The followings are the summary information on
MUSE [24]:

1) CNN encoder uses 2 CNN layers with filter width
of [1, 2, 3, 5] and 256 filters per width.

2) Transformer encoder employs 6 transformer lay-
ers, with 8 of attentions heads, 512 of hidden size,
and 2048 of filter size.

3) The models are implemented in Tensor-Flow and
made available on TensorFlow Hub.

4) The models embed 16 languages into a single and
shared semantic space using a multi-task trained
dual encoder. Unluckily, Indonesian is unavail-
able.

5) It serves three tasks: question-answering task,
translation ranking task, and natural language
inference task [24].

MUSE model is publicly available and download-
able to the local PC or server for offline usage, but
it also can be directly called from its URL. Figure 4
demonstrates the call of MUSE. Firstly, the MUSE
model is called from tfthub.dev library. Secondly, the
researchers need to load it from the tensorFlow-hub
module. A text can be passed on as a sole parameter
of this module since it automatically creates an embed-
ding with 512 dimensions. The code snippet in Fig. 4
is simplified due to the limited space here.

E. Indexing with Facebook Al Similarity Search
(FAISS)

In term-based retrieval system, the most popular
indexing scheme is the inverted index due to its ef-
ficiency and simplicity [17]. However, its efficiency
becomes a question when it is applied to index dense
vectors. Thus, the researchers turn to the available
open-source library for dense vector indexing. The
researchers come upon FAISS which provides sev-
eral indexing algorithms, capable of indexing a large

import faiss

index = faiss.IndexFlatL.2(embed dim)
index 1= faiss.IndexIDMap(index)

index_i.add with_ids(embeddings, lg_ids)

Fig. 5. The simplified snippet for creating a flat index in indexing
with Facebook AI Similarity Search (FAISS).

number of document embeddings. Among these in-
dexing algorithms, the researchers apply two indices:
indexflatL.2 and indexIVFFlat.

IndexflatL2 belongs to flat index class which has
two variants of metrics for calculating the vector dis-
tances. It is coined as a flat index because it neither
modifies any vectors that are stored in it, nor trains
them [31]. Given a set of dense vectors from a query
text, IndexflatL.2 simply compares them to every other
full-size vector in the index. To implement indexflatL2,
the researchers need to import FAISS, the dense vector
dimensionality, and data/documents. This index needs
a single parameter, i.e., the dimensionality of the dense
vector. Figure 5 shows the simplified code snippet on
how to implement indexflatL2.

Figure 5 shows that after initializing the indexFlatL.2
with the vector dimension, it needs to be encapsulated
to another index with IndexIDMap() module. It is
done to avoid crash since indexFlatL2 does not support
the add_with_ids() module. After the encapsulation,
the dense vector along with their identifiers can be
stored in the index using the add_with_ids() module.
The search or comparison between query vectors and
those in the index in FlatL2 is measured by L2-norm
Euclidean distance [31].

IndexIVFFlat is an optimization of flat index by
partitioning it into Voronoi cells [31]. The partitioning
is done by clustering the vector embeddings. Thus, a
centroid is computed for each cell or cluster. Given a
set of dense query vectors, indexIVFFlat compares the
query vectors with the centroids. Then, the search is
restricted to the partitions whose centroids have mini-
mum distances from the query vectors. The comparison
is done by applying ANN [17, 26]. To implement
indexIVFFlat, the researchers need to call indexflat
to quantize the newly created index. In this case,
the researchers use the indexflatIP variant which em-
ploys Inner Product (IP) instead of Euclidian distance.
As indexIVFFlat makes use of clustering, it needs a
parameter that states clearly the number of cells or
clusters in addition to the vector dimension. The vector
embeddings are needed to be trained in this index.
Lastly, the researchers add the embeddings and their

188

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

import faiss

quantizer = faiss.IndexFlatIP(embed_dim)
index = faiss.IndexIVFFlat(quantizer, embed_dim, ncells)

index.train(embeddings)

index.add_with_ids(embeddings, lg_ids)

Fig. 6. A simplified snippet for creating indexIVFFlat.

identifiers to the index by calling the add_with_ids()
method. In the bilingual setting, this process that needs
to iterate is the addition of vector embeddings and their
IDs in the index. Figure 6 shows the simplified way of
creating index with FAISS indexIVFFlat.

F. Evaluation Metrics

In sparse retrieval, the popular metrics for measuring
its performance are Precision, Recall, and F1 Score.
Since the highly similar texts are always ranked at
the top of TSD system outputs, the researchers decide
to use the cut-off metrics proposed by previous re-
search [4]. These are the commonly used metrics, how-
ever their computations stop after £ points. Thus, Pre-
cision@k calculates the proportion of texts weighted
highly similar at the top &k and is computable by the
Eq. (1). @ denotes a set of queries while g represents an
individual query. k is a is a cut-off point, while #ret, 1
stands for the retrieved documents whose similarity are
ranked on the top k.

Q
1 H#ret, i
Prec@Qk = — E 9% (1)
Q po k

Like Precision@k, Recall@k computes the propor-
tion of the texts weighted highly similar by the TSD
system among those labeled having highly similarity. It
is computed by Eq. (2) where the number of retrieved
documents, ret, i is divided by the number of relevant-
labelled documents to query (rel,). Then, F1@k as
shown in Eq. (3) is a harmonic means of Precision@k
and Recall@k as well.

Q
1 #retq
— - ek 2
RecQk ;:1 ol 2)

q

Q 2 x PrecQk * RecQk
PrecQk + RecQk -~

1
Flak = — 3
Q- 3)

=1

III. RESULTS AND DISCUSSION

The experiment and evaluation are conducted with
the dataset with described building process in previous
section. However, it has not described the building
process of the test documents. Hence, this section

presents the testing document creation and testing
scenario, followed by the experiment results and its
discussion.

A. Testing Document Creation

In creating the test documents, the researchers hire
three students from Informatics and English Depart-
ments. Their main task is to rewrite some documents in
Indonesia having semantic similarity with those in the
dataset. They are given the list of topics listed in Table I
and the document IDs belong to those topics. They are
asked to choose some topics and documents belong
to each topic they have selected. To accomplish their
tasks, they are provided the following instructions:

1) Read the selected documents thoroughly.

2) Choose minimally three and maximally five para-
graphs from a particular document.

3) Rewrite the paragraphs by paraphrasing it and
keep in mind that the rewritten texts need to
have high degree of semantic similarity from their
sources.

4) Label the document with test document ID fol-
lowed by the source document ID. For example,
the source document ID is id0OS. Then the ID for
the test document is tid005.

5) Allow them to rewrite a paragraph so that it has
different number of sentences from its source.

6) Put each rewritten paragraph to Google Translate
to translate it into English.

7) Save the translated version as the English test
documents that the naming process takes the same
step as in number 4, e.g., ten005.

8) Proofread the translation result. If the Google
Translate output contains grammatical mistakes,
the students from the English Department should
rectify it.

9) Choose articles from Wikipedia manually whose
topics are not on the lists. For example, there are
topics on Malioboro and Keraton in the list, so
finding articles on Javanese culinary or culture
will fit this criteria. These articles are included
as the OOT test set.

The queries or test texts are formulated from the
rewritten documents along with their translation. These
documents undergo preprocessing. Some documents
are randomly selected and segmented into paragraphs.
The rest of the documents are segmented into sen-
tences. Both the rewritten and translated texts are
saved in a comma-separated values (.csv) and plain
text (.txt). Thus, the researchers have four pairs of
query categories, i.e., Indonesian queries in the level of
paragraph, English queries in the form of paragraphs,

189

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

TABLE II
THE STATISTIC DATA ON THE DATASET.

Number of Documents

Granularity

Indonesian English Total
Dataset to Index
- Sentences 1,917 1,917 3,834
- Paragraphs 558 558 1,116
Test set
- Sentences 98 98 196
- Paragraphs 28 28 56
- Out of Topic (OOT) texts 11 11 22

TABLE III

THE RETRIEVAL RESULTS FOR HIGHLY SIMILAR TEXT.

Granularity Index Algo- F1@2 Prec@10 Rec@10 Fl@l10
rithm
FlatL2 0.91 0.20 1.00 0.33
Paragraph The 0.84 0.18 091 0.30
Researchers-
10
IVF-15 0.84 0.17 0.86 0.28
IVF-20 0.95 0.20 0.98 0.33
FlatL2 0.96 0.20 1.00 0.33
Sentences IVF-10 0.92 0.19 0.98 0.32
IVF-15 0.85 0.18 0.89 0.29
IVF-20 0.86 0.17 0.86 0.29

Note: IVF= Inverted Index Flat

Indonesian and English queries in the form of com-
plete, and well form sentences. The statistic data on the
datasets included the test set can be seen in Table II.

B. Experiment Results

The test dataset as queries are inputted into the
proposed model. In iteration, the dense vectors of each
query are computed using MUSE, then they are fed to
FAISS to be compared with the dense vectors of the
indexed texts. The researchers experiment indexflatL.2
and indexIVFFlat on the queries, as described on
Table II. For indexIVFFlat, the researchers partition
the dense vectors into 10, 15, and 20 clusters and use
the Inner Product (IP) for comparison among the dense
vectors. The evaluation metrices described previously
are applied, and the cutoff values of k are set up to
2 and 10. The results of this experiment are displayed
on Table III.

At first, the researchers set up the cutoff value & to
be equal to 2 (k=2) with a reason that the researchers
need to check whether the highly similar text from
the query in a different language can be matched and
retrieved. However, with only two texts in Indonesian
and English labeled as having high similarity for each
query, the computation of the confusion matrix for
precision, recall and F1 score yields exactly the same
rate when £k is set up to 2. Therefore, only the F1 score
with cutoff value 2 is displayed in Table III.

In all experiment settings, the F1@2 scores are
relatively high with the highest rate of 0.92 and the
lowest rate of 0.84. These rates also show a pattern
where the finer granularity, sentences, achieves higher
F1 scores than paragraphs with an exception on the
IVF-20 setting only. With such rate, the researchers
think that the high score of F1@2 is bias due to the
same values between k and the number of labeled
matches. For that reason, it will be interesting to check
the recall rate if the cutoff value k£ is set to 10.
Although the precision rates drop significantly in all
experiment settings, the recall rates for indexFlatL.2
both for sentence and paragraph levels achieve the
maximal rate, 1.0.

In this experiment, FlatL.2 outperforms IVFFlat be-
cause FlatL.2 compares the dense vectors exhaustively.
For example, each set of dense vectors in the index will
be compared with those in the query. The Euclidian
Distance or L2 is used to measure the distance be-
tween these vectors. As a result, index FlatL2 provides
accurate output. However, it suffers in high compu-
tation time. In contrast, IVFFlat tries to reduce the
computation time by applying clustering using Voronoi
Diagram concept. It is a little bit faster than FlatL2.
However, its search quality experimented with 10, 15,
and 20 number of clusters is still below the search
quality of FlatL.2.

As the researchers scrutinize the top ten ranked texts
for each query, the researchers realize that the low
scores of Precision@ 10 leading to low F1@10. Hence,
the researchers are unable to judge the low perfor-
mance of the proposed method. The reason is that
some texts ranked on the top ten have semantic relation
with the query but they are not labeled as a match due
to the annotators’ ignorance on the existence of such
texts in the dataset. Thus, measuring the performance
on highly similar or near-duplicate texts based on the
label only will diminish the real performance of the
proposed model.

To overcome the drawback of such evaluation com-
putation, the researchers design the semi manual eval-
uation by measuring two other categories: the semantic
entailment and topically related texts. The researchers
defines the following criteria:

1) Highly similar or near duplicate: the source texts
are the queries that students rewrite. They are
labelled as the match and algorithmically com-
puted. Their computation results are displayed in
Table III.

2) Semantic Entailment (SE): the sentences or para-
graphs share approximately 20-50% terms in the
query, and/or the topic of the query entails the
topic of texts ranked on top ten or vice versa.

190

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommIT Journal 18(2), 183-195, 2024.

Semantic Entailment Rate

1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

FlatL2

paragraph

M Prec

Fig. 7. Precision, recall, and F1 scores for Semantic Entailment (SE).

3) Topically Related (TR): the sentences or para-
graphs share approximately up to 19% semanti-
cally related terms in the query and/or the topic
is strongly related. For example, the query talks
about the Sultan palace, and the text discusses on
Sultan’s coronation in the palace.

4) OOT: a query is included in OOT when its topic
has no relation to all topics listed in Table I. Its
precision is judged manually by human readers
who read all top ten ranked texts. If they have
semantic relation, these texts will be considered
as relevant to OOT.

The evaluation metrics for SE and TR categories are
semi-manually computed, meaning that the judgement
of the top ranked texts considered relevant is done
manually by human readers. It is done by reading each
top ranked text and decide whether the text belong to
one of four categories above based on the requirements
of each category. However, they count the number of
relevancy and input the evaluation system. Then, the
precision score is algorithmically computed. Figure 7
displays the metric rates for the SE category.

The SE concept has a wider spectrum so that it
includes the texts in the near duplicate category. Thus,
it will automatically increase the Precision@10 rate.
As number of the indexed texts falling in this category
is unknown and hidden in the dataset, the researchers
base the recall computation on the number of relevant-

M Rec

1.00 1.00
— 0.89
77
65
0.62 64 61
0.51
0.48 T

FlatL2

sentences

MF-1

labelled texts as in the highly similar or near duplicate
category. In other words, the researchers use their Re-
call@10 rate to compute the F1@10 score. The same
approach is applied in computing the precision@10
rate for TR category. Figure 8 shows the results of
evaluation metrices for TR category.

As the similarity spectrum of TR category is coarser
and more general, the near-duplicate and SE concepts
become its subsets. For this reason, the computation
of Precision@10 for TR category includes texts la-
beled as highly similar and SE. It explains why the
Precision@ 10 score of TR is higher in all experiment
settings compared to its former categories.

The experiment on OOT aims to check the vast
coverage of the proposed model in retrieving texts
having semantic relation. Logically, given texts having
topics different from dataset, the system will output
non-sense texts. Since this is a semantic search using
bilingual dense vectors, the researchers would like to
see what kind of texts ranked on the top 10. The se-
mantic relation in OOT context refers to lexical as well
as contextual relations. The lexical relation comprises
synonyms, antonyms, homonyms, hypernyms, and pol-
ysemy. Meanwhile, the contextual relation includes SE,
association, and connotation as well. These are criteria
to judge the relevancy of top 10 ranked text outputs
to OOT. The Precision@10 achieves 0.89 rate (see
Fig. 9) shows that the proposed system is not only

191

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommIT Journal 18(2), 183-195, 2024.

Topically Related Rate

1.00
1.00 0.8 .94
0.90 0.86
.79 075
0.80 0.74 0.72 ;
0.68 0.69

0.70 65 64
0.60
0.50
0.40
0.30
0.20
0.10
0.00

FlatL2 IVE-15 FlatL2 IVE-15

paragraph sentences

MPrec MRec MF-1

Fig. 8. The experiment results on the Topically Related (TR) category.

Prec@10 for OOT

0.90
0.85
0.80 sentences IVF-15
sentences FlatL2
075 paragraph IVF-15
paragraph FlatL2
0.70

Prec@10

Fig. 9. The precision rate for Out of Topic (OOT) scheme.

192

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

capable of identifying such semantic relation only, but
also ranking highly texts having semantic relation in
different language than the query—Indonesian—-English
or vice versa.

The results of four experiment settings presented
in Table III and Figs. 7-9 show that the high scores
for text granularity correlates with the semantic gran-
ularities. This is demonstrated by F1 scores that are
higher on the fine-grain level, sentences, for the finer
semantic granularity—highly similar or near duplicates
(cf., Table III). The F1 scores for the coarse-grain level
— paragraphs are higher mostly in the setting of coarse-
grained semantic topics which are in the SE and TR
(cf., Figs. 7 and 8).

IV. CONCLUSION

Focusing on identifying and detecting semantic sim-
ilarities between texts in Indonesian and English, the
research successfully implements the pretrained USE
model to construct dense vectors of the bilingual
dataset in a single shared vector space. The indexing
of these dense vectors is achieved by devising FAISS,
while the comparison between query vectors and those
in the index is done by employing two different ap-
proaches, i.e. the heuristic comparison with L2-norm
Euclidian Distance and a clustering algorithm, ANN.

In evaluating the performance of the proposed sys-
tem, the cutoff metrices @k used are Precision, Recall,
and F1 scores at k = 2, 10. Tested across four different
semantic granularities and two text granularities, the
experiment results demonstrate a strong correlation
between text granularity and semantic granularity. The
results are shown by the F1 scores for fine-grained
texts which are higher in the setting of fine-grained
semantic relations. Conversely, F1 scores for coarse-
grained texts are predominantly higher in the experi-
mental setting of coarse-grained semantic topics such
as SE and TR settings.

Due to time and budget constraints, the research
is limited to the initial module of textual similarity
detection, focusing on retrieving bilingual texts having
length less than 1,500 words as its training data. The
identification, the alignment of the semantically pas-
sages, and the computation of similarity percentages
for longer texts will be pursued in future work.

ACKNOWLEDGEMENT

The research was supported by a grant from
UKDW-MMU Joint Research Grant UKDW-RU23,
MMUE/230033. The authors are indebted to both
institutions which provided a grant to assist with the
research

AUTHOR CONTRIBUTION

Writing—original draft, L. D. K.; Methodology and
model, L. D. K.; UI design, A. W. M.; Experiment
scenario, H. S. C.; Data labeling and experiment eval-
uation, K. W. N. and P. N. All authors have read and
agreed to the published version of the manuscript.

REFERENCES

[1] K. J. Ottenstein, “An algorithmic approach to
the detection and prevention of plagiarism,” ACM
SIGCSE Bulletin, vol. 8, pp. 3041, 1976.

[2] L. D. Krisnawati, “Plagiarism detection for
Indonesian texts,” PhD Thesis, Faculty for
Languages and Literatures, Ludwig-Maximilian
University, 2016. [Online]. Available: https:
/fedoc.ub.uni-muenchen.de/19823/

[3] L. D. Krisnawati, J. F. Lim, and G. Virginia,
“Penggunaan pemodelan topik dalam sistem temu
kembali dokumen termirip,” Jurnal Linguistik
Komputasional, vol. 6, no. 3, pp. 1-10, 2023.

[4] W. X. Zhao, J. Liu, R. Ren, and J. R. Wen, “Dense
text retrieval based on pretrained language mod-
els: A survey,” ACM Transactions on Information
Systems, vol. 42, no. 2, pp. 1-60, 2024.

[5] N. C. Haryanto, L. D. Krisnawati, and A. R.
Chrismanto, “Temu kembali dokumen sumber
rujukan dalam sistem daur ulang teks,” Jurnal
Teknologi dan Sistem Komputer, vol. 8, no. 2, pp.
140-149, 2020.

[6] J. Lin, “A proposed conceptual framework for
a representational approach to information re-
trieval,” ACM SIGIR Forum, vol. 55, no. 2, pp.
1-29, 2022.

[7] A. Yates, R. Nogueira, and J. Lin, “Pretrained
transformers for text ranking: BERT and beyond,”
in Proceedings of the 14" ACM International
Conference on Web Search and Data Mining.
Virtual Event Israel: Association for Computing
Machinery, March 8-12, 2021, pp. 1154-1156.

[8] T. Mikolov, I. Sutskever, K. Chen, G. S. Cor-
rado, and J. Dean, “Distributed representations
of words and phrases and their compositionality,”
in Advances in Neural Information Processing
Systems 26 (NIPS 2013), 2013, pp. 3111-3119.

[9] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu,
S. Edunov, D. Chen, and W. T. Yih, “Dense
passage retrieval for open-domain question an-
swering,” in Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Pro-
cessing. Online: Association for Computational
Linguistics, Nov. 2020, pp. 6769-6781.

[10] A. Mundher, K. Khater, and L. M. Ganeem,
“Adopting text similarity methods and cloud com-

193

https://edoc.ub.uni-muenchen.de/19823/
https://edoc.ub.uni-muenchen.de/19823/

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

puting to build a college chatbot model,” Journal
of Education and Science, vol. 30, no. 1, pp. 117-
125, 2021.

L. Gienapp, W. Kircheis, B. Sievers, B. Stein,
and M. Potthast, “A large dataset of scientific
text reuse in open-access publications,” Scientific
Data, vol. 10, pp. 1-11, 2023.

N. Ghasemi and S. Momtazi, “Neural text sim-
ilarity of user reviews for improving collabora-
tive filtering recommender systems,” Electrononic
Commerce Research and Appllications, vol. 45,
2021.

O. Karnalim, S. Budi, H. Toba, and M. Joy,
“Source code plagiarism detection in academia
with information retrieval: Dataset and the obser-
vation,” Informatics in Education, vol. 18, no. 2,
pp. 321-344, 2019.

M. Chen and Y. Dong, “Design of exercise grad-
ing system based on text similarity computing,”’
Mobile Information Systems, vol. 2022, no. 1, pp.
1-7, 2022.

M. R. R. Susanto, H. Thamrin, and N. A.
Verdikha, “Performance of text similarity algo-
rithms for essay answer scoring in online ex-
aminations,” Jurnal Teknologi Informasi (JUTIF),
vol. 4, no. 6, pp. 1515 — 1521, 2023.

M. Oppermann, R. Kincaid, and T. Munzner,
“VizCommender: Computing text-based similar-
ity in visualization repositories for content-based
recommendations,” IEEE Transactions on Visual-
ization and Computer Graphics, vol. 27, no. 2, p.
495-505, 2021.

J. Guo, Y. Cai, Y. Fan, F. Sun, R. Zhang, and
X. Cheng, “Semantic models for the first-stage
retrieval: A comprehensive review,” ACM Trans-
actions on Information Systems (TOIS), vol. 40,
no. 4, pp. 1-42, 2022.

P. Nie, Y. Zhang, X. Geng, A. Ramamurthy,
L. Song, and D. Jiang, “DC-BERT: Decoupling
question and document for efficient contextual
encoding,” in Proceedings of the 43" Interna-
tional ACM SIGIR Conference on Research and
Development in Information Retrieval, Virtual
Event China, July 25-30, 2020, pp. 1829-1832.
J. Pennington, R. Socher, and C. D. Manning,
“GloVe: Global vectors for word representation,”
2014.

P. Bojanowski, E. Grave, A. Joulin, and
T. Mikolov, “Enriching word vectors with sub-
word information,” Transactions of the Associ-
ation for Computational Linguistics, vol. 5, pp.
135-146, 2017.

J. P. Sanjanasri, V. K. Menon, K. P. Soman,

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

194

S. Rajendran, and A. Wolk, “Generation of cross-
lingual word vectors for low-resourced languages
using deep learning and topological metrics in a
data-efficient way,” Electronics, vol. 10, no. 12,
pp- 1-23, 2021.

S. Ruder, I. Vuli¢, and A. Sggaard, “A survey of
cross-lingual word embedding models,” Journal
of Artificial Intelligence Research, vol. 65, pp.
569-630, 2019.

M. Niyogi, K. Ghosh, and A. Bhattacharya,
“Learning multilingual embeddings for cross-
lingual information retrieval in the presence
of topically aligned corpora,” 2018. [Online].
Available: https://arxiv.org/abs/1804.04475

Y. Yang, D. Cer, A. Ahmad, M. Guo, J. Law,
N. Constant, G. H. Abrego, S. Yuan, C. Tar,
Y. H. Sung, B. Strope, and R. Kurzweil, “Mul-
tilingual universal sentence encoder for seman-
tic retrieval,” in Proceedings of the 58" Annual
Meeting of the Association for Computational
Linguistics: System Demonstrations. Online:
Association for Computational Linguistics, Jul.
2020, pp. 87-94.

Q. Chen, B. Zhao, H. Wang, M. Li, C. Liu, Z. Li,
M. Yang, and J. Wang, “SPANN: Highly-efficient
billion-scale approximate nearest neighborhood
search,” Advances in Neural Information Process-
ing Systems, vol. 34, pp. 5199-5212, 2021.

J. Johnson, M. Douze, and H. Jégou, “Billion-
scale similarity search with GPUs,” IEEE Trans-
actions on Big Data, vol. 7, no. 3, pp. 535-547,
2019.

Y. Arifin, S. M. Isa, L. A. Wulandari, and E. Ab-
durachman, “Developing a bilingual model of
word embedding for detecting Indonesian English
plagiarism,” Journal of Theoretical and Applied
Information Technology, vol. 99, no. 17, pp.
4388-4348, 2021.

N. R. Ramadhanti and S. Mariyah, “Document
similarity detection using Indonesian language
Word2Vec model,” in 2019 3@ International Con-
ference on Informatics and Computational Sci-
ences (ICICoS). Semarang, Indonesia: IEEE,
Oct. 29-30, 2019.

A. A. P. Ratna, P. D. Purnamasari, B. A. Adhi,
F. A. Ekadiyanto, M. Salman, M. Mardiyah, and
D. J. Winata, “Cross-language plagiarism detec-
tion system using latent semantic analysis and
learning vector quantization,” Algorithms, vol. 10,
no. 2, pp. 1-14, 2018.

D. Cer, Y. Yang, S. Y. Kong, N. Hua, N. Limtiaco,
R. S. John, N. Constant, M. Guajardo-Cespedes,
S. Yuan, C. Tar, B. Strope, and R. Kurzweil,

https://arxiv.org/abs/1804.04475

Cite this article as: L. D. Krisnawati, A. W. Mahastama, S. C. Haw, K. W. Ng, and P. Naveen,
“Indonesian-English Textual Similarity Detection Using Universal Sentence Encoder (USE) and Facebook Al
Similarity Search (FAISS)”, CommlIT Journal 18(2), 183-195, 2024.

“Universal sentence encoder for English,” in Pro-
ceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, Brussel, Belgium, Nov. 2018,
pp. 169-174.

[31] J. Briggs, “FAISS: The missing manual.”
[Online]. Available: https://www.pinecone.io/
learn/series/faiss

195

https://www.pinecone.io/learn/series/faiss
https://www.pinecone.io/learn/series/faiss

	Introduction
	Related Works

	Research Method
	Dataset Building
	 System Architecture
	Preprocessing Phase
	Bilingual Embedding Construction
	Indexing with Facebook AI Similarity Search (FAISS)
	Evaluation Metrics

	Results and Discussion
	Testing Document Creation
	Experiment Results

	Conclusion

