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Abstract—Leaf temperature can indicate
photosynthetic rates, leaf water status, and stomata
conductance. Leaf temperature can be measured using
thermal resistance sensors, thermocouple devices,
infrared thermometers, or infrared thermal imaging
devices. Additionally, measuring leaf temperature using
a thermal camera is simple and efficient. Therefore,
the research proposes a leaf temperature measurement
method using AMG8833, a low-resolution (64 pixels)
thermal camera. The proposed system adopts an image
segmentation technique to extract the leaf area from a
thermal image. The leaf temperature is then calculated
by averaging the temperature values on the leaf area.
The proposed system aims to utilize a low-cost and
low-resolution thermal camera for measuring the leaf
temperature. The proposed approach is evaluated using
real images of the Dieffenbachia plant, a popular
ornamental plant that can be easily planted. In the
experiments, fourteen segmentation methods consisting
of eight thresholding techniques and six clustering
techniques are evaluated. The experimental findings
on the Dieffenbachia plant indicate that the most
accurate leaf temperature measurements are obtained
using local thresholding with an absolute error of
0.0109 and k-means clustering with an absolute error
of 0.0134. The proposed method provides a simple,
effective, and low-cost leaf temperature measurement
system compared to the existing systems which employ
high-cost commercial thermal cameras and complex
measurement methods.
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Resolution Thermal Camera, Thresholding Techniques,
Clustering Techniques

Received: Oct. 20, 2023; received in revised form: Feb. 28, 2024;
accepted: Feb. 28, 2024; available online: April 29, 2024.
*Corresponding Author

I. INTRODUCTION

LEAF temperature provides information on plant
metabolism [1, 2] and water-use efficiency [3,

4]. Hence, it affects the photosynthetic response of
plants [5]. Moreover, leaf temperature varies depending
on plant physiology, ambient air temperature, wind,
and solar irradiation. Leaf temperature can be mea-
sured using thermal resistance sensors, thermocouple
devices, infrared thermometers, or infrared thermal
imaging devices.

Thermal resistance is a high-precision and simple
leaf temperature measurement device. However, the
resistance is highly affected by environmental noise.
Meanwhile, a thermocouple is a simple, high-precision
leaf temperature measurement device. However, it has
a long response time. It is also affected by the leaf
environment. Furthermore, because both devices must
be installed at the leaf surface, they are infeasible for
measuring numerous leaves [6].

Next, an infrared thermometer measures leaf temper-
ature without contact by detecting the infrared radiation
emitted by the leaves, which is then converted into
temperature readings. This device is known for its
high accuracy and sensitivity, but its performance can
be influenced by the distance from the target and the
surrounding environmental temperature [6]. Similar to
infrared thermometers, infrared thermal imaging uses
infrared radiation. However, the emitted infrared radia-
tion is converted into a thermal image rather than being
converted into temperature. It displays the temperature
distribution in the spatial area of the object under
observation. The main drawbacks of infrared thermal
imaging are its high cost and low precision [6].
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TABLE I
LEAF SEGMENTATION PERFORMANCE OF VISIBLE, INFRARED,

AND THERMAL IMAGES [7].

Images Recall Precision F1 Score

Visible 0.934 0.751 0.794
Infrared 0.868 0.575 0.599
Thermal 0.926 0.494 0.394

Previous research compares leaf segmentation tech-
niques to visible, infrared, and thermal images [7]. The
thermal images perform the worst, as listed in Table I.
However, since the leaf temperature measurement con-
siders the average values of the pixels in a segmented
image [6], it suggests that thermal images can be used
effectively.

Leaf temperature measurements using a thermal
camera can be divided into three categories according
to the measurement area: a) spot measurement, b) a
few leaves of the plant, and c) large leaf area. The
research deals with the second category, in which
the leaf temperature is calculated using a thermal
camera whose pixels belong to the detected leaf. In
previous research, a thermal camera is used to measure
the canopy temperatures of horticultural plants for
irrigation scheduling [8]. Moreover, thermal imaging
systems are used to detect plant diseases [9]. A precise
leaf thermal-sensing method has also been developed
for smart greenhouse farming [10].

Leaf-temperature measurements using thermal cam-
eras typically employ hand-type, platform-mounted, or
embedded cameras. Hand-type thermal cameras are
medium- and high-cost cameras and display devices
attached to handheld instruments [11, 12]. Meanwhile,
platform-mounted thermal cameras offer medium reso-
lution at a high cost [13, 14]. These cameras are affixed
to a platform or vehicle, while the display device is po-
sitioned separately. Then, embedded thermal cameras
have a low resolution and are inexpensive. The camera
module should be interfaced with an embedded system
for access and visualization [15–17].

Several studies have explored thermal cameras.
For example, FLIR Vue Pro R is used to measure
the grapevine leaf temperature. The Red Green Blue
(RGB) camera simultaneously captures the leaves.
Then, image-processing techniques are employed to
extract the leaf area from the RGB image. Then, the
average temperature in the corresponding leaf area in
the thermal image is computed to calculate The Crop
Water Stress Index (CWSI) [14]. Next, an embedded
thermal camera FLIR Lepton 3.5 and an RGB Rasp-
berry Pi camera are connected to a Raspberry Pi 4
Model B to measure crop canopy temperature. Leaf
area is detected from the RGB image using a segmenta-

tion technique. The corresponding pixels in the thermal
image are used to calculate leaf temperature [15].
A similar system has also been developed, in which
RGB thermal images and minimum and maximum leaf
temperatures are sent to the web [16]. Moreover, a
low-cost thermal sensor, MLX90620, is connected to
an Arduino MEGA 2560 to measure the olive tree
canopy temperature. The device measured the canopy
temperature at a distance of 1 m over a measurement
area of 75 cm × 10 cm [17].

Clustering is a method of grouping objects according
to their similarity within a group. Agglomerative clus-
tering starts with the points as individual clusters [18].
Subsequently, in each iteration, it merges two closed
clusters based on cluster proximity. In the Agglomer-
ative Ward method, cluster proximity is defined based
on the squared error that occurs when two clusters are
merged. In average agglomeration, cluster proximity is
defined as the average distance of pairwise points in
different clusters.

Balanced iterative reduction and clustering using
hierarchies (Birch) is a clustering technique based
on Clustering Features (CF) and CF trees [18]. The
algorithm comprises four main phases. The first phase
involves loading data into memory by building a CF
tree. In the second phase, a smaller CF tree is built.
Global Agglomerative clustering is performed in the
third phase. The fourth phase refines the clusters ob-
tained in the previous phase.

The mixture model assumes that the clusters have
different Gaussian distributions [18]. The parame-
ters of the mixture models are estimated using the
Expectation-Maximization (EM) algorithm. The prob-
ability of each object belonging to each distribution is
calculated during the expectation step. The parameters
are updated to maximize the expected likelihood in the
maximization step.

K-means clustering is a simple and widely used
method. It begins with K points as the initial cen-
troids [18]. In each iteration, each point is assigned
a closed centroid. The centroid is updated according
to the points belonging to the cluster.

Spectral clustering is a method that defines clusters
based on a similarity graph. The algorithm begins by
creating a similarity graph for the objects to clus-
ter [18]. It then creates the k-first eigenvectors of the
Laplacian graph to define a feature vector. Finally, the
k-means algorithm is applied to find k-clusters from
the features.

The main challenge is determining the leaf area
detected from the image. Existing systems typically use
a combination of RGB and thermal cameras [14, 15]
or manual selection using image software tools [19].
In the proposed system, rather than using an RGB
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camera or manual selection, the researchers propose
using a thermal image directly for leaf area detection
by applying leaf segmentation techniques based on
thresholding and clustering. A low-cost thermal camera
(AMG8833) is used. This camera is a suitable thermal
image sensor module for interfacing embedded systems
for real-time applications such as people counting [20],
occupancy detection [21], and personal thermal com-
fort modeling [22]. Therefore, the proposed thermal
camera system offers an affordable real-time leaf tem-
perature monitoring system.

The main contributions of the research are as fol-
lows. First, the researchers propose a simple and ef-
fective method for calculating leaf temperature using a
low-resolution thermal camera. Second, they compare
several segmentation techniques, namely thresholding
and k-means clustering methods, for segmenting leaf
objects using a thermal camera. Last, the proposed
system provides a low-cost device for real-time moni-
toring of leaves.

II. RESEARCH METHOD

A. Thermal Image Data Acquisition

Data collection is conducted over five days. Then,
data from the measurement unit are sent to the cloud-
Supervisory Control and Data Acquisition (SCADA)
system every minute. Data are downloaded as Comma-
Separated Values (CSV) files for further analysis. Be-
cause the thermal measurement instrument is installed
outdoors, wireless communication (Wi-Fi) is employed
to communicate between the instrument and the cloud-
SCADA device.

The leaf temperature measurement instrument is
shown in Fig. 1. The left picture shows the hardware
unit consisting of AMG8833 as the thermal sensor
unit, Raspberry Pi Zero W as the processing unit,
an air temperature sensor, and a wireless communi-
cation unit. Meanwhile, the right picture shows the
arrangement of leaf temperature measurements where
the Dieffenbachia planted in a pot is the object of leaf
measurement.

The AMG8833 is a low-cost thermal camera mod-
ule with 64 infrared sensor arrays [23]. The array
comprises eight columns and eight rows. This sensor
measures the temperature of an object by measuring its
thermal emission in the infrared spectrum. The points
or pixels in the sensor array represent the temperatures
of the detected object. The AMG8833 can measure the
temperature between 0 and 80 ◦C with an accuracy of
± 2.5 ◦C. The module has a viewing angle of 600. It
supports an Inter-Integrated Circuit (I2C) communica-
tion protocol for interfacing microcontroller systems.
The price of AMG8833 is approximately US$41.

Fig. 1. Leaf temperature measurement instrument.

Raspberry Pi Zero W is a single-board computer
suitable for embedded applications [24]. It has a 1 GHz
single-core ARMv6 CPU (BCM2835) and 512MB of
RAM. The price of the Raspberry Pi Zero W is approx-
imately US$ 25. This small and affordable computer
system is used to perform a real-time implementation
of image segmentation techniques to measure leaf
temperature.

In addition to the thermal camera, the DHT22
module and air temperature and humidity sensors are
employed to measure the ambient temperature and hu-
midity. The DHT22 has an operating range temperature
of -40 to 80 ◦C with an accuracy of ± 0.5 ◦C. Air tem-
perature provides valuable information for analyzing
leaf temperatures.

B. Leaf Temperature Measurement Method

In a preliminary experiment, the collected thermal
images show that the temperature of the leaf pixels
is lower than that of the background. Based on this
assumption, the researchers propose a method for mea-
suring leaf temperature. A flowchart of the proposed
leaf-temperature measurement method is shown in
Fig. 2. It reads an 8×8 pixel thermal image from an
AMG8833 thermal camera. It is noteworthy that the
pixel value represents the temperature of the captured
object. The next step is image segmentation, wherein
an image is segmented into two groups: foreground and
background. As described previously, the researchers
consider the foreground to be a leaf object. There-
fore, the leaf temperature can be calculated from the
foreground pixels. After segmentation, the mean pixel
value for each group is calculated. Because the mean
minimum temperature represents the leaf object, it is
the leaf temperature.
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Fig. 2. Flowchart of proposed leaf temperature measurement.

The previous discussion clarifies that the accu-
racy of the proposed leaf temperature measurement
method depends on the effectiveness of the segmen-
tation techniques used to extract the foreground. Thus,
in the research, the researchers evaluate two image-
segmentation approaches: thresholding and clustering.
The thresholding techniques used are Isodata, Li,
Local, Mean, Minimum, Otsu, Triangle, and Yen.
The clustering algorithms used are Ward Agglomera-
tive, Average Agglomerative, Birch, Gaussian Mixture
Model, K-Means, and Spectral.

In the thresholding technique, a threshold is used to
separate the foreground and background in an image.
In the research, the threshold is automatically defined
using a specific algorithm as follows. Let the means of
the foreground (mf (T )) and background (mb(T )) be
defined in Eqs. (1) and (2), respectively. It has pf(g) as
the probability mass function, g as the image intensity
(g = 0, . . . , 255), and T as the threshold. Then, the
Cumulative Distribution Function (CDF) is defined in
Eq. (3).

mf (T ) =

T∑
g=0

g × pf(g), (1)

mb (T ) =

255∑
g=T+1

g × pf(g), (2)

cdf (g) =

g∑
i=0

pf(i). (3)

The foreground (σ2
f (T )) and background variances

(σ2
b (T )) are expressed in Eqs. (4) and (5), respectively.

Based on Eqs. (1) to (5), the optimal threshold of
the thresholding techniques is defined as follows. The
optimal threshold (Topt) of Isodata thresholding is
defined in Eq. (6) [7].

σf
2 (T ) =

T∑
g=0

[g −mf (T )]
2 × pf(g), (4)

σb
2 (T ) =

255∑
g=T+1

[g −mb(T )]
2 × pf(g), (5)

Topt = lim
n→∝

mf (Tn) +mb(Tn)

2
. (6)

Then, Li thresholding defines Topt as expressed in
Eqs. (7) and (8) [7]. In local thresholding, the optimal
threshold at pixels (x, y) and Topt(x, y) is defined in
Eq. (9) [7]. It shows mwxw(x, y) as the mean value
over window size w of pixel (x, y) and C as a constant.

Topt = argmin

(

T∑
g=0

g × pf(g)× log
g

mf (T )

+

255∑
g=T+1

g × pf(g)× log
g

mb(T )
), (7)

∑
g⩽T

g =
∑
g≤T

mf (T ) and
∑
g≥T

g =
∑
g≥T

mb(T ), (8)

Topt(x, y) = mw×w(x, y)− C. (9)
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Fig. 3. Predefined leaf area for calculation of the leaf temperature: (a) Original thermal image and (b) Predefined leaf area in the 8×8
pixels of the thermal image.

Mean thresholding defines the optimal threshold
Topt as the integer part of Eq. (10) [7]. The yg de-
notes the number of pixels with intensity g. Minimum
thresholding defines an optimal threshold Topt when
Eq. (11) is satisfied [7]. The optimal threshold Topt of
Otsu thresholding is shown in Eq. (12) [7]. Triangle
thresholding defines the optimal threshold Topt based
on the triangular property of the histogram. Then,
Yen thresholding defines the optimal threshold Topt as
expressed in Eqs. (13)–(15) [7]. ∑255

g=0 g × yg∑255
g=0 yg

, (10)

yTopt > yTopt−1 and yTopt ⩽ yTopt+1, (11)
Topt = argmax

{cdf(T ) (1− cdf(T )) (mf (T )−mb(T ))
2

cdf(T )σ2
f (T ) + (1− cdf(T ))σ2

b (T )
}, (12)

Topt = argmax{Cb(T ) + Cf (T )}, (13)

Cb(T ) = −log{
T∑

g=0

(
p(g)

cdf(T )

)2

}, (14)

Cf (T ) = −log{
255∑

g=T+1

(
p(g)

1− cdf(T )

)2

}. (15)

Next, to measure the performance of the threshold-
ing and clustering techniques, the researchers calculate
the errors between the leaf temperature measurements,
which are computed using the proposed method in Fig.
2, and the temperature measurements based on the
predefined leaf area in the image. The predefined leaf
area is manually determined by observing the thermal
images, as illustrated in Fig. 3. Figure 3(a) shows the
original thermal image, and the blue area in Fig. 3(b)

is the predefined leaf area.
The measurement error (meas err) and absolute

measurement error (abs err) are expressed using
Eqs. (16) and (17), respectively. It consists of meas
and meas def as the leaf temperature measurements
obtained using the proposed algorithm and the leaf
temperature measurements based on the predefined leaf
area, respectively.

meas err =
meas−meas def

meas def
, (16)

abs err =
|meas−meas def |

meas def
. (17)

III. RESULTS AND DISCUSSION

The proposed leaf-temperature measurement tech-
niques are evaluated using the collected thermal image
dataset described in the previous section. The dataset
contains 4,668 thermal images captured every minute
during the day and night for five days. The proposed
algorithm is implemented using Python and Scikit-
Learn library [25].

Figure 4 shows examples of the segmentation results
for a thermal image. Figure 4(a) shows a thermal image
captured at 21:35. The segmented images using the
Agglomerative Ward clustering, K-means clustering,
and Otsu thresholding are shown in Figs. 4(b)–(d), re-
spectively. The white pixels in Figs. 4(b)–(d) represent
the lower-temperature class (or foreground), whereas
the black pixels represent the higher-temperature class
(or background). They show that the segmented images
of the Agglomerative Ward (Fig. 4(b)) and K-Means
clustering (Fig. 4(c)) are the same. However, they
differ from the segmented image of Otsu thresholding
(Fig. 4(d)).
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Fig. 4. Example of segmentation results: (a) Thermal image, (b) Agglomerative Ward clustering, (c) K-means clustering, and (d) Otsu
thresholding.

Fig. 5. Measurement errors of thresholding techniques in the daytime.

According to the algorithm described previously, the
leaf temperature is calculated by averaging the temper-
ature values of the white pixels. Since the Figs. 4(b)
and (c) are the same, the leaf temperatures of both
images are also the same. From the calculation using
the proposed method, the leaf temperature is 25.84 ◦C.
Meanwhile, the leaf temperature obtained by the pro-
posed method in Fig. 4(d) is 25.72 ◦C. This result
shows that, although the segmented images obtained
by the different segmentation techniques differ, the
calculated leaf temperatures are almost the same. Thus,
the proposed leaf temperature measurement method

effectively measures the leaf temperature from thermal
images.

A. Comparison Results of Thresholding Techniques

The measurement errors for leaf temperature using
thresholding techniques during day and night are il-
lustrated in Figs. 5–7. The error (olive bar) is the
average of the measurement errors calculated using
Eq. (16). Then, absolute error (abs error) (orange
bar) is the average of the absolute measurement errors
calculated using Eq. (17). Figure 5 shows that trian-
gle thresholding achieves the lowest error of 0.0002
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Fig. 6. Measurement errors of thresholding techniques at nighttime.

Fig. 7. Measurement errors of thresholding techniques in the day and nighttime.

and abs error of 0.0096. Then, Fig. 6 shows that
local thresholding has the lowest error of -0.0059 and
abs error of 0.0075. Additionally, Fig. 7 shows that
local thresholding obtains the lowest error of 0.0023
and abs error of 0.0109.

Figures 5 and 6 show that the leaf temperature mea-
surement performance differs for day and night. Trian-
gle thresholding achieves the best performance during
the day, whereas local thresholding achieves the best
performance during the night. Over the entire period,
encompassing both day and night, as demonstrated in
Fig. 7, local thresholding exhibits the most effective
performance. Interestingly, the lowest abs error in
the day and night is higher than that in the day and
night. This result means that no particular thresholding
technique achieves the best performance during the day
and night.

Figures 8 and 9 depict the temperature measurement
profiles obtained using the thresholding techniques for
five days and one day, respectively. They show that

all thresholding techniques have similar behavior. In
the sense compared to the reference, the values of
measured leaf temperature are almost the same from
07:00 to 09:00, higher from 09:00 to 17:00, and
lower from 17:00 to 07:00. The results show that in
the morning (07:00–09:00), the temperatures of the
extracted leaf objects are similar. Thus, the measured
leaf temperatures are similar to those in reference.
During the daytime (09:00–17:00), the temperatures
of the objects in the background tend to be high.
Therefore, when parts of the background are extracted
as leaf objects, the measured leaf temperatures are
higher than those of the reference. In contrast, the
temperatures of the objects in the background are low
during the night and early morning (17:00–07:00).
Therefore, when parts of the background are extracted
as leaf objects, the measured leaf temperatures are
lower than those of the reference.
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Fig. 8. Temperature measurement profiles using thresholding techniques during five days.

Fig. 9. Temperature measurement profiles using thresholding techniques during the day.

B. Comparison Results of Clustering Techniques

The errors in leaf temperature measurements using
clustering techniques for day and night periods are
presented in Figs. 10–12. The error (blue bar) is the
average of the measurement errors calculated using
Eq. (16). Meanwhile, abs error (red bar) is the av-
erage of the absolute measurement errors calculated
using Eq. (17).

Figure 10 shows that Agglomerative Ward clustering
achieves the lowest error of 0.0061. Then, the lowest
abs error of 0.0135 is achieved by Agglomerative
Ward And K-Means clustering. Figure 11 shows that
the Birch clustering achieves the lowest error and
abs error of -0.0102 and 0.0125, respectively. Then,
Fig. 12 shows that Birch clustering has the lowest error
of 0.0004, and K-Means achieves the lowest abs error
of 0.0134.

Similar to the thresholding techniques, these results
show that leaf temperature measurement performances
are different during the day and night. Moreover,
no particular thresholding technique achieves the best
performance in day and night. Throughout the entire
period, covering both day and night and considering
the minimal errors, K-Means clustering demonstrates
the best performance.

Figures 13 and 14 depict the temperature measure-
ment profiles obtained using the clustering techniques
for five days and a single day, respectively. The profiles
exhibit behavior similar to that of the thresholding
techniques discussed previously. For example, com-
pared to the reference, the values of measured leaf
temperature are almost the same from 07:00 to 09:00,
higher from 09:00 to 17:00, and lower from 17:00 to
07:00.
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Fig. 10. Measurement errors of clustering techniques in the daytime.

Fig. 11. Measurement errors of clustering techniques at nighttime.

Fig. 12. Measurement errors of clustering techniques in the day and nighttime.
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Fig. 13. Temperature measurement profiles using clustering techniques during five days.

Fig. 14. Temperature measurement profiles using clustering techniques during the day.

TABLE II
COMPARISON TO EXISTING SYSTEMS.

References Thermal Camera (Resolution) Leaf Temperature Measurement

Method Effectiveness

[14] FLIR Vue Pro R (640×512 pixels) Combined with RGB camera for leaf
area detection

High cost, complex measurement

[15] FLIR Lepton 3.5 (160×120 pixels) Combined with RGB camera for leaf
area detection

High cost, complex measurement

[17] MLX90620 (16×4 pixels) Leaf area measurement defined by the
user manually

Low cost, manual measurement

Proposed Model AMG8833 (8×8 pixels) Leaf area detected by the thermal cam-
era automatically

Low cost, automatic measurement

C. Comparison to Existing Systems

Table II shows a comparison of the existing systems.
It shows that the proposed system is superior in two
respects. First, it uses a low-cost and low-resolution
thermal camera. Second, it provides efficient leaf tem-
perature measurements using a single thermal camera

for leaf area detection and temperature calculation.

IV. CONCLUSION

In conclusion, leaf temperature can be used to as-
sess the health of a plant. Measuring or monitoring
leaf temperatures is an effective method in precision
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agriculture. Automatic leaf measurement systems using
thermal cameras have recently become a challenging
and interesting research topic.

In the research, a method for measuring leaf tem-
perature using a thermal camera is developed. A low-
resolution thermal camera is used to capture images
of the leaves. Because the pixel values of the captured
thermal image represent the temperature of the objects,
the leaf temperature can be calculated by extracting
the leaf area from the thermal image. Several im-
age segmentation methods based on thresholding and
clustering techniques have been used to extract leaf
areas. The results show that most techniques achieve a
low measurement error. However, local thresholding
achieves the lowest error for the thresholding tech-
niques, and k-means clustering has the lowest error
for the clustering techniques.

In the future, the research can be extended to
address more complex plants and environments. The
algorithm and measurement instruments can also be
improved accordingly. Furthermore, a real-time leaf
temperature monitoring system can be implemented.
Leaf temperature monitoring is an important part of
the leaf monitoring system that can be used to monitor
the plant’s growth.
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low-cost device based on thermal infrared sensors
for olive tree canopy temperature measurement
and water status monitoring,” Remote Sensing,
vol. 12, no. 4, pp. 1–20, 2020.

[18] P. N. Tan, M. Steinbach, A. Karpatne, and V. Ku-
mar, Introduction to data mining (Second edi-
tion). Pearson, 2019.

[19] E. Kokin, M. Pennar, V. Palge, and K. Jürjenson,
“Strawberry leaf surface temperature dynamics
measured by thermal camera in night frost con-
ditions,” Agronomy Research, vol. 16, no. 1, pp.
122–133, 2018.

[20] M. Mejia-Herrera, J. S. Botero-Valencia,
D. Betancur-Vásquez, and E. A. Moncada-
Acevedo, “Low-cost system for analysis
pedestrian flow from an aerial view using near-
infrared, microwave, and temperature sensors,”
HardwareX, vol. 13, pp. 1–14, 2023.

[21] C. Perra, A. Kumar, M. Losito, P. Pirino,
M. Moradpour, and G. Gatto, “Monitoring indoor
people presence in buildings using low-cost in-
frared sensor array in doorways,” Sensors, vol. 21,
no. 12, pp. 1–19, 2021.

[22] S. Lu and E. Cochran Hameen, “An interactive
task conditioning system featuring personal com-
fort models and non-intrusive sensing techniques:
A field study in Shanghai,” Technologies, vol. 9,
no. 4, pp. 1–17, 2021.

[23] Panasonic Industry, “Grid-EYE® infrared
array sensor.” [Online]. Available: https:
//na.industrial.panasonic.com/products/sensors/
sensors-automotive-industrial-applications/
lineup/grid-eye-infrared-array-sensor

[24] Raspberry Pi, “Raspberry Pi Zero W.” [Online].
Available: https://www.raspberrypi.com/products/
raspberry-pi-zero-w/

[25] F. Pedregosa, G. Varoquaux, A. Gramfort,

V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapean, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Ma-
chine learning in python,” The Journal of Ma-
chine Learning research, vol. 12, pp. 2825–2830,
2011.

88

https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/lineup/grid-eye-infrared-array-sensor
https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/lineup/grid-eye-infrared-array-sensor
https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/lineup/grid-eye-infrared-array-sensor
https://na.industrial.panasonic.com/products/sensors/sensors-automotive-industrial-applications/lineup/grid-eye-infrared-array-sensor
https://www.raspberrypi.com/products/raspberry-pi-zero-w/
https://www.raspberrypi.com/products/raspberry-pi-zero-w/

	Introduction
	Research Method
	Thermal Image Data Acquisition
	Leaf Temperature Measurement Method

	Results and Discussion
	Comparison Results of Thresholding Techniques
	Comparison Results of Clustering Techniques
	Comparison to Existing Systems

	Conclusion

