Structural Time Series Model using Hamiltonian Monte Carlo for Rice Price

Authors

  • Rifdatun Ni'mah Institut Teknologi Telkom Surabaya

DOI:

https://doi.org/10.21512/emacsjournal.v5i3.9903

Keywords:

Structural, Time Series, Hamiltonian, Rice Price

Abstract

Although forecasts of future events are simply uncertain, predicting is one of the most important aspects of future planning. Accurate rice price predictions tend to be helpful for wholesalers, producers, and farmers to develop plans and strategies to reduce the risks that can be faced. Structural time series models are the most plausible alternative for long-term forecasting. This paper proposes an alternate method for modeling average rice prices using structural time series along with Bayesian parameter inference via Hamiltonian Monte Carlo (HMC). The model has been built using the monthly average wholesale rice price from January 2010 to December 2019. For working out both structural time series and HMC, the TensorFlow Probability Library was used. Linear trend, seasonal, and autoregressive components were combined as an additive model to the structural time model. The proposed Hamiltonian parameter produces an optimal acceptance rate. Their trace plot was used to diagnose the convergence of their chain. One of the predictive accuracy of models was assessed using the mean absolute percent error (MAPE). Through both single and multiple chain iterations, the prediction accuracy of a year-ahead is highly accurate, with MAPE less than 2%. Long-term iteration draws during Hamiltonian Monte Carlo should be considered when attempting to achieve more convergence.

Dimensions

Plum Analytics

References

Almarashi, A. M., & Khan, K. (2020). Bayesian Structural Time Series. Nanoscience and Nanotechnology Letters, 12(1), 54–61. https://doi.org/10.1166/nnl.2020.3083

AL-Moders, A. H., & Kadhim, T. H. (2021). Bayesian Structural Time Series for Forecasting Oil Prices. Ibn AL- Haitham Journal For Pure and Applied Sciences, 34(2), 100–107. https://doi.org/10.30526/34.2.2631

Anandyani, A. R., Astutik, D. K. A., Bariroh, N., & Indrasetianigsih, A. (2021). Prediksi Rata-Rata Harga Beras yang Dijual oleh Pedagang Besar (Grosir) Menggunakan Metode Arima Box Jenkins. Teknosains: Media Informasi Sains dan Teknologi, 15(2), 151. https://doi.org/10.24252/teknosains.v15i2.17721

Aryani, D. (2021). Instrumen Pengendalian Harga Beras di Indonesia: Waktu Efektif yang Dibutuhkan. Jurnal Pangan, 30(2). https://doi.org/10.33964/jp.v30i2.538

Betancourt, M. (2017). A Conceptual Introduction to Hamiltonian Monte Carlo. https://doi.org/10.48550/ARXIV.1701.02434

Cordeiro, C. E. Z., Stutz, L. T., Knupp, D. C., & Matt, C. F. T. (2022). Generalized Integral Transform and Hamiltonian Monte Carlo for Bayesian structural damage identification. Applied Mathematical Modelling, 104, 243–258. https://doi.org/10.1016/j.apm.2021.11.026

Fajari, D. A., Abyantara, M. F., & Lingga, H. A. (2021). Peramalan Rata-Rata Harga Beras pada Tingkat Perdagangan Besar Atau Grosir Indonesia dengan Metode Sarima (Seasonal Arima). Jurnal Agribisnis Terpadu, 14(1), 88. https://doi.org/10.33512/jat.v14i1.11460

Feroze, N. (2020). Forecasting the patterns of COVID-19 and causal impacts of lockdown in top five affected countries using Bayesian Structural Time Series Models. Chaos, Solitons & Fractals, 140, 110196. https://doi.org/10.1016/j.chaos.2020.110196

Gentle, J. E. (2009). Computational statistics. Springer.

Kramer, A., Calderhead, B., & Radde, N. (2014). Hamiltonian Monte Carlo methods for efficient parameter estimation in steady state dynamical systems. BMC Bioinformatics, 15(1), 253. https://doi.org/10.1186/1471-2105-15-253

Nafi’iyah, N., & Khudori, M. (2022). Rice Price Prediction System Based on Rice Quality and Milling Level using Multilayer Perceptron. Jurnal Informatika Universitas Pamulang, 7(1), 39–43. https://doi.org/10.32493/informatika.v7i1.15326

Natasya, Musdalifah, S., & Andri. (2021). Prediksi Harga Beras Di Tingkat Perdagangan Besar Indonesia Menggunakan Algoritma Backpropagation. Jurnal Ilmiah Matematika Dan Terapan, 18(2), 148–159. https://doi.org/10.22487/2540766X.2021.v18.i2.15688

Neal, R. M. (2011). MCMC using Hamiltonian dynamics. https://doi.org/10.1201/b10905

Ohyver, M., & Pudjihastuti, H. (2018). Arima Model for Forecasting the Price of Medium Quality Rice to Anticipate Price Fluctuations. Procedia Computer Science, 135, 707–711. https://doi.org/10.1016/j.procs.2018.08.215

Ramadhani, F., Sukiyono, K., & Suryanty, M. (2020). Forecasting of Paddy Grain and Rice’s Price: An ARIMA (Autoregressive Integrated Moving Average) Model Application. SOCA: Jurnal Sosial, Ekonomi Pertanian, 14(2), 224. https://doi.org/10.24843/SOCA.2020.v14.i02.p04

Sanjaya, F. I., & Heksaputra, D. (2020). Prediksi Rerata Harga Beras Tingkat Grosir Indonesia dengan Long Short Term Memory. JATISI (Jurnal Teknik Informatika dan Sistem Informasi), 7(2), 163–174. https://doi.org/10.35957/jatisi.v7i2.388

Shidiq, B. G. A., Furqon, M. T., & Muflikhah, L. (2022). Prediksi Harga Beras menggunakan Metode Least Square. Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, 6(3), 1149–1154.

Sulpaiyah, S., Bahri, S., & Harsyiah, L. (2022). Peramalan Harga Beras dengan Metode Double Exponential Smoothing dan Fuzzy Time Series (Study Kasus: Harga Beras di Kota Mataram). Eigen Mathematics Journal, 58–69. https://doi.org/10.29303/emj.v5i2.123.

Downloads

Published

2023-10-02

Issue

Section

Articles
Abstract 305  .
PDF downloaded 264  .