Fractional Generating Function from The Square Root of Two with A-B Goen Numbers

Authors

  • Stephanus Ivan Goenawan Atma Jaya Catholic University

DOI:

https://doi.org/10.21512/emacsjournal.v4i1.8073

Keywords:

Numbers, Functions, Square Root of Two, Irrational Numbers

Abstract

The square root of two is an irrational number that cannot be written as a fraction of the numerator and denominator. By using the generating function of A-B Goen, from the resulting set of numbers, the sequence of A-B Goen numbers can be obtained by selecting integer numbers. The A Goen numbers are generated from the generator function which have integer numbers, while the B Goen numbers are obtained from the sequence numbers. In this study, through the generating function of A-B Goen, it can be proven that the division between the A Goen number and the B Goen number in an infinite sequence will result the value of the square root of two.

 

Dimensions

Plum Analytics

Author Biography

Stephanus Ivan Goenawan, Atma Jaya Catholic University

Department of Industrial Engineering

References

Goenawan, Stephanus Ivan. (2020). Comparison Simulation Analysis Of The Gradual Summation Of A Function With Recognition Of Direct Extrapolation Via IN Series. IJASST Univ. Sanata Dharma, Yogyakarta.

Goenawan, Stephanus Ivan. (Januari 2020). Order Theory I And II As Foundations For Finding Relationship Between Formulas, Engineering, Mathematics, and Computer Science (EMACS) Journal, Vol. 2 No. 1. hal 1 – 4, p-ISSN 1410-2765.

Goenawan, Stephanus Ivan. (2021). Fungsi Pembangkit Bilangan A-B Goen, Berguna Secara Komputasi Untuk Mencari Pecahan Pembilang dan Penyebut Pada Bilangan Irasional Akar Dari Dua. HKI: EC00202135535, 27 Juli 2021., Link Channel AtmaJaya: https://youtu.be/D7ue-knyPBs

Gel’fand, Izrael M.; Shen, Alexander. (1993). Algebra (3rd ed.). Birkhäuser. p. 120. ISBN 0-8176-3677-3.

Lord, Nick. (November 2008). “Maths bite: irrational powers of irrational numbers can be rational”, Mathematical Gazette 92. p. 534.

Marshall, Ash J., and Tan, Yiren. (March 2012). “A rational number of the form aa with a irrational”, Mathematical Gazette 96. pp. 106-109.

Mitchell, Douglas W. (November 2003). “Using Pythagorean triples to generate square roots of I2”, Mathematical Gazette 87. 499–500.

Katz, V.J. 1995. “Ideas of Calculus in Islam and India.” Mathematics Magazine (Mathe-matical Association of America), 68(3):163–174.

Krantz, Steven George (2006). Calculus: Single Variable, Volume 1. Springer Science & Business Media. p. 248. ISBN 978-1-931914-59-8.

McQuarrie, Donald A. (2003). Mathematical Methods for Scientists and Engineers, University Science Books. ISBN 978-1-891389-24-5

Salas, Saturnino L.; Hille, Einar; Etgen, Garret J. (2007). Calculus: One and Several Variables (10th ed.). Wiley. ISBN 978-0-471-69804-3.

Stewart, James (2012). Calculus: Early Transcendentals, 7th ed., Brooks Cole Cengage Learning. ISBN 978-0-538-497 90-9

Thomas, George B., Maurice D. Weir, Joel Hass, Frank R. Giordano (2008), Calculus, 11th ed., Addison-Wesley. ISBN 0-321-48987-X

Zill, Dennis G.; Wright, Scott; Wright, Warren S. (2009). Calculus: Early Transcenden-tals (3 ed.). Jones & Bartlett Learning. p. xxvii. ISBN 978-0-7637-59957.

Downloads

Published

2022-02-05

Issue

Section

Articles
Abstract 211  .
PDF downloaded 217  .