WiFi Signal Strength Degradation Over Different Building Materials


  • Aileen Bina Nusantara University
  • Alexander Dennis Suwardi Bina Nusantara University
  • Fernando Prawiranata Bina Nusantara University




wifi, signal, strength, propagation, material


Wireless Fidelity (WiFi) signals experience propagation through air and material in a building. This propagation causes signal decreasing signal strength. This study aims to determine materials in buildings that cause significant signal strength loss so in the future building design could factor in signal strength by using material that doesn't affect signal strength significantly. The testing of signal strength will be done by observing signal strength through different materials. Signal strength will be recorded by using a mobile app. Materials that majorly decrease signal strength are plastics, with the least affecting materials are hollow plywood wall. The use of plastics in a building affects significantly on signal loss and should be replaced if possible with hollow plywood walls.


Plum Analytics

Author Biographies

Aileen, Bina Nusantara University

Computer Science Departement, School of Computer Science

Alexander Dennis Suwardi, Bina Nusantara University

Computer Science Departement, School of Computer Science

Fernando Prawiranata, Bina Nusantara University

Computer Science Departement, School of Computer Science


Brinkhoff, J., & Hornbuckle, J. (2018). Characterization of WiFi signal range for agricultural WSNs. 2017 23rd Asia-Pacific Conference on Communications: Bridging the Metropolitan and the Remote, APCC 2017. IEEE. doi:10.23919/APCC.2017.8304043

Damodaran, N., Haruni, E., Kokhkharova, M., & Schäfer, J. (2020). Device free human activity and fall recognition using WiFi channel state information (CSI). CCF Transactions on Pervasive Computing and Interaction, 2(1), 1-17. doi:10.1007/s42486-020-00027-1

Depatla, S., & Mostofi, Y. (2017). Crowd counting through walls using WiFi. arXiv.

Dhere, P., Chilveri, P., Vatti, R., Iyer, V., & Jagdale, K. (2018). Wireless Signal Strength Analysis in a Home Network. 2018 International Conference on Current Trends towards Converging Technologies (ICCTCT) (pp. 1-5). IEEE. doi:10.1109/ICCTCT.2018.8550931

Din, Z. U., & Bernold, L. E. (2017). Experimental study of signal behavior for wireless communication in construction. Construction Innovation, 475-491. doi:10.1108/CI-11-2016-0061

Golubeva, T., Zaitsev, Y., Konshin, S., & Duisenbek, I. (2018). A Study on the Wi-Fi Radio Signal Attenuation in Various Construction Materials (Obstacles). 2018 Tenth International Conference on Ubiquitous and Future Networks (ICUFN) (pp. 718-723). IEEE. doi:10.1109/ICUFN.2018.8436785

Gorade, S., Vatti, R., Kaurwad, V., Bhakre, S., & Kadam, R. (2018). Enhancement of Signal Strength of Single Antenna Wi-Fi Routers. (pp. 1-3). IEEE. doi:10.1109/ICCTCT.2018.8551077

Gu, Y., Ren, F., & Li, J. (2016). PAWS: Passive Human Activity Recognition Based on WiFi Ambient Signals. IEEE Internet of Things Journal, 796-805. doi:10.1109/JIOT.2015.2511805

Henry, P., & Luo, H. (2002). WiFi: what's next? IEEE Communications Magazine, 40(12), 66-72. doi:10.1109/MCOM.2002.1106162

Katre, S. R., & Rojatkar, D. V. (2017). Home Automation: Past, Present and Future. International Research Journal of Engineering and Technology.

Lee, H., Ahn, C., Choi, N., Kim, T., & Lee, H. (2019). The Effects of Housing Environments on the Performance of Activity-Recognition Systems Using Wi-Fi Channel State Information: An Exploratory Study. Sensors, 19(5), 983. doi:10.3390/s19050983

Mathisen, A., Krogh Sorensen, S., Stisen, A., Blunck, H., & Gronbaek, K. (2016). A comparative analysis of Indoor WiFi Positioning at a large building complex. 2016 International Conference on Indoor Positioning and Indoor Navigation (IPIN), (pp. 1-8). doi:10.1109/IPIN.2016.7743666

Mei, X., Wu, H., Saeed, N., Ma, T., Xian, J., & Chen, Y. (2020). An absorption mitigation technique for received signal strength-based target localization in underwater wireless sensor networks. Sensors (Switzerland), 4698. doi:10.3390/s20174698

Musa, A., & Paul, B. S. (2019). Impact of household construction materials on 4G signal. 2019 IEEE International Smart Cities Conference (ISC2) (pp. 73-78). IEEE. doi:10.1109/ISC246665.2019.9071777

Own, C. M., Hou, J., & Tao, W. (2019). Signal Fuse Learning Method with Dual Bands WiFi Signal Measurements in Indoor Positioning. IEEE Access, 7, 131805-131817. doi:10.1109/ACCESS.2019.2940054

PAVLÍK, M. (2019). Compare of shielding effectiveness for building materials. PRZEGLĄD ELEKTROTECHNICZNY, 1(5), 139-142. doi:10.15199/48.2019.05.33

Rath, H. K., Timmadasari, S., Panigrahi, B., & Simha, A. (2017). Realistic indoor path loss modeling for regular WiFi operations in India. arXiv.

Suherman, Fahmi, Al-Azzawi, W., Al-Akaidi, M., Sinulingga, E. P., & Mubarakah, N. (2018). Radio-Friendly Building for Efficient Signal Distribution. 2018 IEEE International Conference on Communication, Networks and Satellite, Comnetsat 2018 - Proceedings, (pp. 60-63). doi:10.1109/COMNETSAT.2018.8684092

Suherman, S. (2018). WiFi-Friendly Building to Enable WiFi Signal Indoor. Bulletin of Electrical Engineering and Informatics, 264-271. doi:10.11591/eei.v7i2.871

Suherman, S., Mubarakah, N., Sagala, R. S., & Prayitno, H. (2018). Wifi-friendly building, enabling wifi signal indoor: An initial study. IOP Conference Series: Earth and Environmental Science, 12-22. doi:10.1088/1755-1315/126/1/012022

Thewan, T., Seksan, C., Pramot, S., Ismail, A., & Terashima, K. (2019). Comparing WiFi RSS Filtering for Wireless Robot Location System. Procedia Manufacturing, 143-150. doi:10.1016/j.promfg.2019.02.021

UmaMaheswararao, M., & Kadaru, B. B. (n.d.). Seeing Through Walls Using Wi-Vi.

Valadares, D. C., Gomes, De Arajo, J. M., Rgis, F., Spohn, M. A., Perkusich, A., . . . Melcher, E. U. (2020). 802.11g signal strength evaluation in an industrial environment. Internet of Things, 100-163. doi:10.1016/j.iot.2020.100163

van Engelen, J. E., van Lier, J. J., Takes, F. W., & Trautmann, H. (2019). Accurate WiFi-Based Indoor Positioning with Continuous Location Sampling. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 524-540). doi:10.1007/978-3-030-10997-4_32

Wang, C., Liu, J., Chen, Y., Liu, H., & Wang, Y. (2018). Towards In-baggage Suspicious Object Detection Using Commodity WiFi. 2018 IEEE Conference on Communications and Network Security (CNS) (pp. 1-9). IEEE. doi:10.1109/CNS.2018.8433142

Wu, Y., Wang, J., Lai, S., Zhu, X., & Gu, W. (2019). A transparent and flexible microwave absorber covering the whole WiFi waveband. AIP Advances. doi:10.1063/1.5083102






Abstract 488  .
PDF downloaded 700  .