Framework Prediksi Serapan Bekerja Alumni Berbasis Pembelajaran Mesin
DOI:
https://doi.org/10.21512/emacsjournal.v2i1.6251Keywords:
Framework prediksi, serapan bekerja, alumni, pembelajaran mesin, klastering, klasifikasiAbstract
Menentukan serapan lulusan di dunia industri yang dicetak oleh perguruan tinggi merupakan sebuah usaha yang harus dilakukan dalam rangka untuk dapat melihat ke efektifkan kurikulum akademik yang diberikan pada saat dibangku kuliah. Karakteristik serta proses yang dilakukan untuk mendapatkan prediksi dan pemetaan ini memerlukan analisis data yang kompleks. Sebuah pendekatan pembelajaran mesin dengan framework prediksi dapat diterapkan untuk mendapatkan pola, prediksi dan pemetaan serapan lulusan di dunia kerja. Selain itu tentunya akan didapat sebuah pola jenis mahasiswa dengan karakteristik akademik seperti apa yang cepat diserap di dunia industri. Artikel ini mencoba menjawab untuk mengembangkan sebuah pendekatan prediksi berbasis pembelajaran mesin untuk menentukan serapan lulusan di dunia industri.Plum Analytics
References
Ardiyansyah, & Rahayuningsih, P. A. (2018). Analisis Perbandingan Algoritma Klasifikasi Data Mining Untuk Dataset Blogger Dengan Rapid Miner. Journal Khatulistiwa Inform, VI(1), 20–28.
Arifin, M. F., & Firianah, D. (2018). Penerapan Algoritma Klasifikasi C4. 5 dalam Rekomendasi Penerimaan Mitra Penjualan Studi Kasus: PT Atria Artha Persada. IncomTech, Jurnal Telekomunikasi Dan Komputer, 8(2), 87–102.
Arifin, M. F., & Fitrianah, D. (2018). Rekomendasi Penerimaan Mitra Penjualan Studi Kasus : PT Atria Artha Persada.
Chien, C. F., & Chen, L. F. (2008). Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry. Expert Systems with Applications, 34(1), 280–290. https://doi.org/10.1016/j.eswa.2006.09.003
Durairaj, M., & Vijitha, C. (2014). Educational Data mining for Prediction of Student Performance Using Clustering Algorithms. International Journal of Computer Science and Information Technologies, 5(4), 5987–5991. Retrieved from https://pdfs.semanticscholar.org/892b/0182c44c34a2ae68daec819eaec301c3bd9c.pdf
Márquez-Vera, C., Cano, A., Romero, C., Noaman, A. Y. M., Mousa Fardoun, H., & Ventura, S. (2016). Early dropout prediction using data mining: A case study with high school students. Expert Systems, 33(1), 107–124. https://doi.org/10.1111/exsy.12135
Triyansyah, D., & Fitrianah, D. (2018). Analisis Data Mining Menggunakan Algoritma K-Means Clustering Untuk Menentukan Strategi Marketing. IncomTech, Jurnal Telekomunikasi Dan Komputer, 8(3), 163–182.
Wong, T. T. (2015). Performance Evaluation of Classification Algorithm by K-Fold and Leave-One-Out Cross Validation. Pattern Recognition, 48(9), 2839–2846.
Wong, T. T., & Yang, N. Y. (2017). Dependency Analysis of Accuracy Estimates in K-Fold Cross. IEEE Transactions on Knowledge and Data Engineering, 29(11), 2417–2427.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: Creative Commons Attribution-Share Alike (CC BY-SA)