Order Theory I and II As Foundations for Finding Relationship Between Formulas


  • Stephanus Ivan Goenawan Atma Jaya Catholic University




Order Theory, Function, Function Basis.


Order theory is generated through the process of induction logic from solving several mathematical functions so that it can be formulated in general the pattern of regularity. If there are function and associates each other is organized and interconnected, then the constants will also be organized and interconnected. Similarly, if there are function and associates that are mutually regulated and the constants that make them organized and interrelated, then the function basis and associates will also have interconnected properties.

Plum Analytics

Author Biography

Stephanus Ivan Goenawan, Atma Jaya Catholic University

Department of Industrial Engineering


Anton,H. (1989). Calculus 3th. John Willey & Sons

Abramowitz, Milton; Stegun, Irene Ann, eds. (1983) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York: United States Department of Commerce, National Bureau of Standards; Dover Publications. pp. 332, 773. ISBN 978-0-486-61272-0.

Arfken, George B.; Weber, Hans J. (2005). Mathematical Methods for Physicists. Elsevier Academic Press. ISBN 0-12-059876-0.

Bayin, S. S. (2006). Mathematical Methods in Science and Engineering. Wiley. ch. 2. ISBN 978-0-470-04142-0.

Belousov, S. L. (1962). Tables of Normalized Associated Legendre Polynomials. Mathematical Tables. 18. Pergamon Press. ISBN 978-0-08-009723-7.

Courant, Richard; Hilbert, David (1953). Methods of Mathematical Physics. 1. New York, NY: Interscience. ISBN 978-0-471-50447-4.

Dunster, T. M. (2010), “Legendre and Related Functions”, in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

El Attar, Refaat (2009). Legendre Polynomials and Functions. CreateSpace. ISBN 978-1-4414-9012-4.

Goenawan, St. Ivan. (2002). Deret Garis Bertingkat dalam Teori Keteraturan, Metris. Vol.3, No.3 Jakarta, Unika Atma Jaya, p.50-57.

Goenawan, St. Ivan. (2003). Deret Bertingkat Berderajat Satu dalam Teori Keteraturan, Metris. Vol.4, No.1 Jakarta, Unika Atma Jaya, p.50-56.

Jerome,E. (1983). .Intermediate Algebra for College Students. Pwr Publishers.






Abstract 122  .
PDF downloaded 98  .