Low-Resolution Face Recognition: A Review of Methods and Data

Authors

  • Yesun Utomo Binus University
  • Kelvin

DOI:

https://doi.org/10.21512/emacsjournal.v7i3.14082

Keywords:

Deep Learning, Face Recognition, low-resolution face recognition

Abstract

This paper provides a review of previous studies in Low-Resolution Face Recognition (LRFR), specifically focusing on cross-resolution Face Recognition (FR) methods. While state-of-the-art deep learning FR systems achieve high accuracy on high-resolution (HR) images, they are generally unsuitable for low-resolution (LR) images frequently encountered in applications like surveillance systems, where faces often have low pixel counts due to capture conditions. Cross-resolution FR, which compares an HR image with an LR image, presents a significant challenge due to the distinct visual properties of images at different resolutions. The paper discusses two primary approaches to address this problem: Super-resolution (SR), which is a transformative method that aims to construct HR images from LR ones, and Unified Feature Space (UFS), a non-transformative method that maps facial features from varying resolutions into a shared feature space. This work summarizes both SR and UFS methods. Based on the review, the paper concludes that non-transformative (UFS) methods are more suitable for future directions. This recommendation is driven by their lower computational power requirements, proven effectiveness in real-world implementations such as mobile devices and drones, and alignment with current technological trends. The paper also emphasizes the need for further research using real or natural LR face images to identify degradation patterns and compare results between real and artificially generated LR images.

Dimensions

References

Alansari, M., Alnuaimi, K., Alansari, S., Javed, S., Shoufan, A., Zweiri, Y., & Werghi, N. (2024). EfficientFaceV2S: A Lightweight Model and a Benchmarking Approach for Drone-Captured Face Recognition. https://ssrn.com/abstract=4698437

Alansari, M., Hay, O. A., Javed, S., Shoufan, A., Zweiri, Y., & Werghi, N. (2023). GhostFaceNets: Lightweight Face Recognition Model From Cheap Operations. IEEE Access, 11, 35429–35446. https://doi.org/10.1109/ACCESS.2023.3266068

Bansal, A., Nanduri, A., Castillo, C., Ranjan, R., & Chellappa, R. (2016). UMDFaces: An Annotated Face Dataset for Training Deep Networks. http://arxiv.org/abs/1611.01484

Bayramli, B., Ali, U., Qi, T., & Lu, H. (2019). FH-GAN: Face Hallucination and Recognition using Generative Adversarial Network. http://arxiv.org/abs/1905.06537

Benavente, R. (1998). The AR face database. https://www.researchgate.net/publication/243651904

Cao, Q., Shen, L., Xie, W., Parkhi, O. M., & Zisserman, A. (2017). VGGFace2: A dataset for recognising faces across pose and age. http://arxiv.org/abs/1710.08092

Chen, B.-C., Chen, C.-S., & Hsu, W. H. (2015). Face Recognition and Retrieval Using Cross-Age Reference Coding With Cross-Age Celebrity Dataset. IEEE Transactions on Multimedia, 17(6), 804–815. https://doi.org/10.1109/TMM.2015.2420374

Chen, C., Li, X., Yang, L., Lin, X., Zhang, L., & Wong, K.-Y. K. (2021). Progressive Semantic-Aware Style Transformation for Blind Face Restoration. http://arxiv.org/abs/2009.08709

Cheng, F., Lu, T., Wang, Y., & Zhang, Y. (2021). Face Super-Resolution Through Dual-Identity Constraint. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME51207.2021.9428360

Cheng, Z., Zhu, X., & Gong, S. (2018). Low-Resolution Face Recognition. http://arxiv.org/abs/1811.08965

Dogan, B., Gu, S., & Timofte, R. (2019). Exemplar Guided Face Image Super-Resolution without Facial Landmarks. http://arxiv.org/abs/1906.07078

Duta, I. C., Liu, L., Zhu, F., & Shao, L. (2020). Improved Residual Networks for Image and Video Recognition. http://arxiv.org/abs/2004.04989

Ge, S., Zhao, S., Li, C., & Li, J. (2018). Low-resolution Face Recognition in the Wild via Selective Knowledge Distillation. https://doi.org/10.1109/TIP.2018.2883743

Gómez-Silva, M. J., Armingol, J. M., & de la Escalera, A. (2020). Triplet Permutation Method for Deep Learning of Single-Shot Person Re-Identification. http://arxiv.org/abs/2003.08303

Grgic, M., Delac, K., & Grgic, S. (2011). SCface - Surveillance cameras face database. Multimedia Tools and Applications, 51(3), 863–879. https://doi.org/10.1007/s11042-009-0417-2

Grm, K., Dobrišek, S., Scheirer, W. J., & Štruc, V. (2020). Face hallucination using cascaded super-resolution and identity priors. http://arxiv.org/abs/1805.10938

Hsu, H.-J., & Chen, K.-T. (2017). DroneFace: An Open Dataset for Drone Research. Proceedings of the 8th ACM on Multimedia Systems Conference. https://api.semanticscholar.org/CorpusID:26235272

Hu, X., Ren, W., LaMaster, J., Cao, X., Li, X., Li, Z., Menze, B., & Liu, W. (2021). Face Super-Resolution Guided by 3D Facial Priors. http://arxiv.org/abs/2007.09454

Huang, G. B., Ramesh, M., Berg, T., & Learned-Miller, E. (2008). Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. http://vis-www.cs.umass.edu/lfw/.

Huang, H., He, R., Sun, Z., & Tan, T. (2019). Wavelet Domain Generative Adversarial Network for Multi-scale Face Hallucination. International Journal of Computer Vision, 127(6), 763–784. https://doi.org/10.1007/s11263-019-01154-8

Huang, X., & Belongie, S. (2017). Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization. http://arxiv.org/abs/1703.06868

Jiang, J., Wang, C., Liu, X., & Ma, J. (2021). Deep Learning-based Face Super-Resolution: A Survey. http://arxiv.org/abs/2101.03749

Kim, J., Li, G., Yun, I., Jung, C., & Kim, J. (2020). Edge and Identity Preserving Network for Face Super-Resolution. https://doi.org/10.1016/j.neucom.2021.03.048

Knoche, M., Elkadeem, M., Hormann, S., & Rigoll, G. (2023). Octuplet Loss: Make Face Recognition Robust to Image Resolution. 2023 IEEE 17th International Conference on Automatic Face and Gesture Recognition, FG 2023. https://doi.org/10.1109/FG57933.2023.10042669

Knoche, M., Hörmann, S., & Rigoll, G. (2021). Susceptibility to Image Resolution in Face Recognition and Trainings Strategies. https://doi.org/10.4230/LITES.8.1.1

Lai, S.-C., & Lam, K.-M. (2021). Deep Siamese network for low-resolution face recognition. 2021 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), 1444–1449.

Li, J., Bare, B., Zhou, S., Yan, B., & Li, K. (2021). Organ-Branched CNN for Robust Face Super-Resolution. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME51207.2021.9428152

Li, M., Zhang, Z., Yu, J., & Chen, C. W. (2021). Learning Face Image Super-Resolution Through Facial Semantic Attribute Transformation and Self-Attentive Structure Enhancement. IEEE Transactions on Multimedia, 23, 468–483. https://doi.org/10.1109/TMM.2020.2984092

Li, P., Prieto, L., Mery, D., & Flynn, P. (2018). On Low-Resolution Face Recognition in the Wild: Comparisons and New Techniques. https://doi.org/10.1109/TIFS.2018.2890812

Li, X., Li, W., Ren, D., Zhang, H., Wang, M., & Zuo, W. (2020). Enhanced Blind Face Restoration with Multi-Exemplar Images and Adaptive Spatial Feature Fusion. CVPR, 2706–2715. https://github.com/csxmli2016/ASFFNet.

Li, X., Liu, M., Ye, Y., Zuo, W., Lin, L., & Yang, R. (2018). Learning Warped Guidance for Blind Face Restoration. http://arxiv.org/abs/1804.04829

Lu, Z., Jiang, X., & Kot, A. (2018). Deep Coupled ResNet for Low-Resolution Face Recognition. IEEE Signal Processing Letters, 25(4), 526–530. https://doi.org/10.1109/LSP.2018.2810121

Massoli, F. V., Amato, G., & Falchi, F. (2020). Cross-Resolution Learning for Face Recognition. https://doi.org/10.1016/j.imavis.2020.103927

Mudunuri, S. P., Sanyal, S., & Biswas, S. (2018). GenLR-Net: Deep framework for very low resolution face and object recognition with generalization to unseen categories. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, 602–611.

Nech, A., & Kemelmacher-Shlizerman, I. (2017). Level Playing Field for Million Scale Face Recognition. http://arxiv.org/abs/1705.00393

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). MobileNetV2: Inverted Residuals and Linear Bottlenecks. http://arxiv.org/abs/1801.04381

Sapkota, A., & Boult, T. E. (2013). Large scale unconstrained open set face database. 2013 IEEE Sixth International Conference on Biometrics: Theory, Applications and Systems (BTAS), 1–8. https://doi.org/10.1109/BTAS.2013.6712756

Schaefer, S., Mcphail, T., & Warren, J. (2006). Image Deformation Using Moving Least Squares. ACM SIGGRAPH.

Sun, J., Wenming, Y., Shen, Y., & Liao, Q. (2020). Classifier shared deep network with multi-hierarchy loss for low resolution face recognition. Signal Processing: Image Communication, 82, 115766. https://doi.org/10.1016/j.image.2019.115766

Talreja, V., Taherkhani, F., Valenti, M. C., & Nasrabadi, N. M. (2019). Attribute-Guided Coupled GAN for Cross-Resolution Face Recognition. http://arxiv.org/abs/1908.01790

Terhörst, P., Ihlefeld, M., Huber, M., Damer, N., Kirchbuchner, F., Raja, K., & Kuijper, A. (2021). QMagFace: Simple and Accurate Quality-Aware Face Recognition. http://arxiv.org/abs/2111.13475

Wang, C., Jiang, J., & Liu, X. (2021). Heatmap-Aware Pyramid Face Hallucination. 2021 IEEE International Conference on Multimedia and Expo (ICME), 1–6. https://doi.org/10.1109/ICME51207.2021.9428256

Wang, K., Oramas, J., & Tuytelaars, T. (2020). Multiple Exemplars-based Hallucinationfor Face Super-resolution and Editing. http://arxiv.org/abs/2009.07827

Wolf, L., Hassner, T., & Maoz, I. (2011). Face recognition in unconstrained videos with matched background similarity. CVPR 2011, 529–534. https://doi.org/10.1109/CVPR.2011.5995566

Yin, Y., Robinson, J. P., Zhang, Y., & Fu, Y. (2020). Joint Super-Resolution and Alignment of Tiny Faces. http://arxiv.org/abs/1911.08566

Yu, X., Zhang, L., & Xie, W. (2021). Semantic-Driven Face Hallucination Based on Residual Network. IEEE Transactions on Biometrics, Behavior, and Identity Science, 3(2), 214–228. https://doi.org/10.1109/TBIOM.2021.3051268

Zangeneh, E., Rahmati, M., & Mohsenzadeh, Y. (2020). Low Resolution Face Recognition Using a Two-Branch Deep Convolutional Neural Network Architecture. http://arxiv.org/abs/1706.06247

Zeng, D., Chen, H., & Zhao, Q. (2016). Towards resolution invariant face recognition in uncontrolled scenarios. 2016 International Conference on Biometrics (ICB), 1–8. https://doi.org/10.1109/ICB.2016.7550087

Zha, J., & Chao, H. (2019). TCN: Transferable Coupled Network for Cross-Resolution Face Recognition. ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 3302–3306. https://doi.org/10.1109/ICASSP.2019.8682384

Zhao, X. (2021). Homogeneous Low-Resolution Face Recognition Method based Correlation Features. http://arxiv.org/abs/2111.13175

Downloads

Published

2025-09-30

How to Cite

Utomo, Y., & Kelvin. (2025). Low-Resolution Face Recognition: A Review of Methods and Data. Engineering, MAthematics and Computer Science Journal (EMACS), 7(3), 343–352. https://doi.org/10.21512/emacsjournal.v7i3.14082
Abstract 0  .
PDF downloaded 0  .