Wearable Sensors for Health Monitoring: Technologies, Applications, Challenges, and Future Perspectives

Authors

  • Syauqi Abdurrahman Abrori Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v7i2.13765

Keywords:

wearable sensors, personalized healthcare, sensor integration, remote monitoring, digital health system

Abstract

This article presents the state of the art and future outlook for wearable sensors for health monitoring, with emphasis on their roles in tracking physiological, biochemical, motion, and environmental parameters. Wearable sensors have moved beyond activity monitoring to facilitate clinical applications like chronic disease management, remote monitoring, and mental health evaluation. Four sensors are presented, with the sensing principle, formats, and actual-world application. System architectural elements like data acquisition, wireless communication, on-device and cloud processing, and user interface are addressed. The latest advancements like multi-modal sensor fusion, self-sustaining platforms, integration of machine learning, and skin-conformable electronics are also outlined. Wearable technology holds promise and is plagued with accuracy, battery life, privacy of data, and compatibility with health information systems. These hindrances need to be overcome if broader clinical integration and global accessibility are to take place. Avenues for development include energy-autonomous sensors, personalized feedback systems, and digital twin integration, which have promising potential for making early intervention, preventive care, and decentralized healthcare delivery possible. This overview provides a general background to researchers, developers, and clinicians striving for the next generation of digital health solutions.

Dimensions

Plum Analytics

Author Biography

Syauqi Abdurrahman Abrori, Bina Nusantara University

Automotive & Robotics Program, Computer Engineering Department, BINUS ASO School of Engineering

References

Ahsan, M., Teay, S. H., Sayem, A. S. M., & Albarbar, A. (2022). Smart Clothing Framework for Health Monitoring Applications. Signals 2022, Vol. 3, Pages 113-145, 3(1), 113–145. https://doi.org/10.3390/SIGNALS3010009

Ali, A., Ahmed, S. M., Sayed, M. S., & Shalaby, A. (2022). Deep learning-based Human Body Communication baseband transceiver for WBAN IEEE 802.15.6. Engineering Applications of Artificial Intelligence, 115, 105169. https://doi.org/10.1016/J.ENGAPPAI.2022.105169

Ali, A., Wei, Y., Tyson, J., Akerman, H., Jackson, A. I. R., Lane, R., Spencer, D., & White, N. M. (2024). Enhancing the response of a wearable sensor for improved respiratory rate (RR) monitoring. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3509676

Alimbayeva, Z., Alimbayev, C., Ozhikenov, K., Bayanbay, N., & Ozhikenova, A. (2024). Wearable ECG Device and Machine Learning for Heart Monitoring. Sensors 2024, Vol. 24, Page 4201, 24(13), 4201. https://doi.org/10.3390/S24134201

Allen, J. (2007). Photoplethysmography and its application in clinical physiological measurement. Physiological Measurement, 28(3). https://doi.org/10.1088/0967-3334/28/3/R01,

Ba, N., Yue, W., Cao, C., Wu, W., & Cheng, P. (2024). Advances in Wearable Smart Chemical Sensors for Health Monitoring. Applied Sciences 2024, Vol. 14, Page 11199, 14(23), 11199. https://doi.org/10.3390/APP142311199

Bakhshandeh, F., Zheng, H., Barra, N. G., Sadeghzadeh, S., Ausri, I., Sen, P., Keyvani, F., Rahman, F., Quadrilatero, J., Liu, J., Schertzer, J. D., Soleymani, L., & Poudineh, M. (2024). Wearable Aptalyzer Integrates Microneedle and Electrochemical Sensing for In Vivo Monitoring of Glucose and Lactate in Live Animals. Advanced Materials, 36(35), 2313743. https://doi.org/10.1002/ADMA.202313743;WEBSITE:WEBSITE:ADVANCED;CTYPE:STRING:JOURNAL

Betti, S., Lova, R. M., Rovini, E., Acerbi, G., Santarelli, L., Cabiati, M., Ry, S. Del, & Cavallo, F. (2018). Evaluation of an integrated system of wearable physiological sensors for stress monitoring in working environments by using biological markers. IEEE Transactions on Biomedical Engineering, 65(8), 1748–1758. https://doi.org/10.1109/TBME.2017.2764507

Biswas, A., Mukherjee, S., Maji, A., Manna, A., & Sarkar, S. (2024). Combining Gyroscope and Electromyogram Analysis for the Detection of Resting Tremor and Muscle Activity in Parkinson’s Disease. International Journal of Innovative Science and Research Technology (IJISRT), 1436–1441. https://doi.org/10.38124/IJISRT/IJISRT24AUG995

Charlton, P. H., Allen, J., Bailón, R., Baker, S., Behar, J. A., Chen, F., Clifford, G. D., Clifton, D. A., Davies, H. J., Ding, C., Ding, X., Dunn, J., Elgendi, M., Ferdoushi, M., Franklin, D., Gil, E., Hassan, M. F., Hernesniemi, J., Hu, X., … Zhu, T. (2023). The 2023 wearable photoplethysmography roadmap. Physiological Measurement, 44(11), 111001. https://doi.org/10.1088/1361-6579/ACEAD2

Deng, Z., Guo, L., Chen, X., & Wu, W. (2023). Smart Wearable Systems for Health Monitoring. Sensors 2023, Vol. 23, Page 2479, 23(5), 2479. https://doi.org/10.3390/S23052479

Ikharo, B. A., & Aliu, D. (2023). Challenges Associated with Wearable Internet-of-Things (IoTs) Monitoring Systems for E-Health. FUOYE Journal of Engineering and Technology, 8(4). https://doi.org/10.46792/FUOYEJET.V8I4.1099

Ivanov, M., Markova, V., & Ganchev, T. (2020). An Overview of Network Architectures and Technology for Wearable Sensor-based Health Monitoring Systems. Proceedings of the International Conference on Biomedical Innovations and Applications, BIA 2020, 81–84. https://doi.org/10.1109/BIA50171.2020.9244286

Jafleh, E. A., Alnaqbi, F. A., Almaeeni, H. A., Faqeeh, S., Alzaabi, M. A., Zaman, K. Al, Jafleh, E. A., Alnaqbi, F., Almaeeni, H., Faqeeh, S., Alzaabi, M., & Zaman, K. Al. (2024). The Role of Wearable Devices in Chronic Disease Monitoring and Patient Care: A Comprehensive Review. Cureus, 16(9). https://doi.org/10.7759/CUREUS.68921

Jakachira, R., Jakachira, R., Yan, W., Burrow, J. A., Toussaint, K. C., & Toussaint, K. C. (2024). Dual-Wavelength, Polarization-Sensitive Wearable Photoplethysmographic Sensor on Diverse Skin Tones. Frontiers in Optics + Laser Science 2024 (FiO, LS) (2024), Paper JW4A.65, JW4A.65. https://doi.org/10.1364/FIO.2024.JW4A.65

Javaid, S., Zeadally, S., Fahim, H., & He, B. (2022). Medical Sensors and Their Integration in Wireless Body Area Networks for Pervasive Healthcare Delivery: A Review. IEEE Sensors Journal, 22(5), 3860–3877. https://doi.org/10.1109/JSEN.2022.3141064

Joyce, D., De Brún, A., Symmons, S. M., Fox, R., & McAuliffe, E. (2023). Remote patient monitoring for COVID-19 patients: comparisons and framework for reporting. BMC Health Services Research, 23(1), 1–11. https://doi.org/10.1186/S12913-023-09526-0/TABLES/3

Kajzar, M. (2024). Wearable Devices for Training and Patient Monitoring: A Comprehensive Review. Quality in Sport, 29, 55667. https://doi.org/10.12775/QS.2024.29.55667

Kumar, M. (2024a). Wearable Sensors: Applications and Challenges. Innovations in Science and Technology: Shaping a Sustainable Future (Vol. 1), 98–106. https://doi.org/10.9734/BPI/MONO/978-81-973809-6-9/CH9

Kumar, M. (2024b). Wearable Sensors: Applications and Challenges. Innovations in Science and Technology: Shaping a Sustainable Future (Vol. 1), 98–106. https://doi.org/10.9734/BPI/MONO/978-81-973809-6-9/CH9

Li, S., Wang, Y., Wu, Y., Asghar, W., Xia, X., Liu, C., Bai, X., Shang, J., Liu, Y., & Li, R. W. (2025). Piezo-Capacitive Flexible Pressure Sensor with Magnetically Self-Assembled Microneedle Array. ACS Sensors. https://doi.org/10.1021/ACSSENSORS.4C02895/SUPPL_FILE/SE4C02895_SI_001.PDF

Li, Z., Li, H., & Gianchandani, Y. B. (2024). A Disposable Sensor for PM2.5 and PM10 Based on Wireless Magnetoelastic Resonators. Proceedings of IEEE Sensors. https://doi.org/10.1109/SENSORS60989.2024.10785131

Linh, V. T. N., Han, S., Koh, E., Kim, S., Jung, H. S., & Koo, J. (2025). Advances in wearable electronics for monitoring human organs: Bridging external and internal health assessments. Biomaterials, 314, 122865. https://doi.org/10.1016/J.BIOMATERIALS.2024.122865

Lins, G. H. A., Camelo, E. M. A., Lins, C. S., Montenegro, M. L. V., Rodrigues, W. de M., Júnior, E. A. C., Oliveira, F. H. C. de, & Dutra, R. A. F. (2024). Wearable sensors for cardiological monitoring in the SUS: regulatory challenges and impacts on Brazilian Public Health. Caderno Pedagógico, 21(12), e10336–e10336. https://doi.org/10.54033/CADPEDV21N12-066

Özçağdavul, M., Araştırma Görevlisi, R., Bilişim Sistemleri Bölümü, Y., Fakültesi, İ., Yıldırım Beyazıt Üniversitesi, A., Ror, T., Author, C., & Sorumlu Yazar, İ. (2024). General Data Protection Regulation Compliance and Privacy Protection in Wearable Health Devices: Challenges and Solutions. Artuklu Health, 10, 29–37. https://doi.org/10.58252/ARTUKLUHEALTH.1566573

Palanisamy, P., Padmanabhan, A., Ramasamy, A., & Subramaniam, S. (2023). Remote Patient Activity Monitoring System by Integrating IoT Sensors and Artificial Intelligence Techniques. Sensors 2023, Vol. 23, Page 5869, 23(13), 5869. https://doi.org/10.3390/S23135869

Pandit, P., Crewther, B., Cook, C., Punyadeera, C., & Pandey, A. K. (2024). Sensing methods for stress biomarker detection in human saliva: a new frontier for wearable electronics and biosensing. Materials Advances, 5(13), 5339–5350. https://doi.org/10.1039/D3MA00937H

Rodrigues, E., Lima, D., Barbosa, P., Gonzaga, K., Guerra, R. O., Pimentel, M., Barbosa, H., & Maciel, Á. (2022). HRV Monitoring Using Commercial Wearable Devices as a Health Indicator for Older Persons during the Pandemic. Sensors 2022, Vol. 22, Page 2001, 22(5), 2001. https://doi.org/10.3390/S22052001

Roostaei, N., & Hamidi, S. M. (2025). Plasmonic smart contact lens based on etalon nanostructure for tear glucose sensing. Scientific Reports, 15(1), 1–9. https://doi.org/10.1038/S41598-025-99624-2;SUBJMETA=2282,57,631,692,699,700;KWRD=DISEASES,HEALTH+CARE,NANOSCALE+BIOPHYSICS

Shin, J., Song, J. W., Flavin, M. T., Cho, S., Li, S., Tan, A., Pyun, K. R., Huang, A. G., Wang, H., Jeong, S., Madsen, K. E., Trueb, J., Kim, M., Nguyen, K., Yang, A., Hsu, Y., Sung, W., Lee, J., Phyo, S., … Rogers, J. A. (2025). A non-contact wearable device for monitoring epidermal molecular flux. Nature, 640(8058), 375–383. https://doi.org/10.1038/S41586-025-08825-2;TECHMETA=10,120,9;SUBJMETA=139,166,639,692,700,985;KWRD=BIOMEDICAL+ENGINEERING,DIAGNOSIS

Singh, B., Kaunert, C., Raghav, A., Jermsittiparsert, K., & Ravesangar, K. (1 C.E.). Adaptability of Wearable Sensors in Data Assimilation and Real-Time Monitoring in Health Gateways: Enhancing Fitness and Wellness in Physical and Mental Healthcare. Https://Services.Igi-Global.Com/Resolvedoi/Resolve.Aspx?Doi=10.4018/979-8-3693-6190-0.Ch020, 477–502. https://doi.org/10.4018/979-8-3693-6190-0.CH020

Srikrishnarka, P., Haapasalo, J., Hinestroza, J. P., Sun, Z., & Nonappa. (2024). Wearable Sensors for Physiological Condition and Activity Monitoring. Small Science, 4(7), 2300358. https://doi.org/10.1002/SMSC.202300358

Sun, J., Dai, W., Guo, Q., Gao, Y., Chen, J., Chen, J. L., Mao, G., Sun, H., & Peng, Y. K. (2025). Self-powered wearable electrochemical sensor based on composite conductive hydrogel medium for detection of lactate in human sweat. Biosensors and Bioelectronics, 277, 117303. https://doi.org/10.1016/J.BIOS.2025.117303

Tamura, T., Maeda, Y., Sekine, M., & Yoshida, M. (2014). Wearable Photoplethysmographic Sensors—Past and Present. Electronics 2014, Vol. 3, Pages 282-302, 3(2), 282–302. https://doi.org/10.3390/ELECTRONICS3020282

Wang, L., Tian, S., & Zhu, R. (2023). A new method of continuous blood pressure monitoring using multichannel sensing signals on the wrist. Microsystems and Nanoengineering, 9(1), 1–10. https://doi.org/10.1038/S41378-023-00590-4;SUBJMETA=166,301,639,987;KWRD=ELECTRICAL+AND+ELECTRONIC+ENGINEERING,MATERIALS+SCIENCE

Weightman, A., Cooper, G., Dawes, H., Bradbury, K., Rahulamathavan, Y., Guarducci, S., Jayousi, S., Caputo, S., & Mucchi, L. (2025). Key Fundamentals and Examples of Sensors for Human Health: Wearable, Non-Continuous, and Non-Contact Monitoring Devices. Sensors 2025, Vol. 25, Page 556, 25(2), 556. https://doi.org/10.3390/S25020556

Xiao, X., Yin, J., Xu, J., Tat, T., & Chen, J. (2024). Advances in Machine Learning for Wearable Sensors. ACS Nano, 18(34), 22734–22751. https://doi.org/10.1021/ACSNANO.4C05851/ASSET/IMAGES/MEDIUM/NN4C05851_0007.GIF

Xu, W., Cai, Y., Gao, S., Hou, S., Yang, Y., Duan, Y., Fu, Q., Chen, F., & Wu, J. (2021). New understanding of miniaturized VOCs monitoring device: PID-type sensors performance evaluations in ambient air. Sensors and Actuators, B: Chemical, 330. https://doi.org/10.1016/J.SNB.2020.129285

Xue, Z., Gai, Y. S., Wu, Y., liu, Z., & Li, Z. (2024). Wearable mechanical and electrochemical sensors for real-time health monitoring. Communications Materials, 5(1), 1–7. https://doi.org/10.1038/S43246-024-00658-2;TECHMETA=10,9;SUBJMETA=1005,1009,301,639,692,700,784;KWRD=QUALITY+OF+LIFE,SENSORS+AND+BIOSENSORS

Zhang, Y., Wang, H., Cui, J., He, T., Qiu, G., Xu, Y., & Zhang, J. (2024). An ultraviolet photodetector based on conductive hydrogenated TiO2 film prepared by radio frequency atmospheric pressure plasma. Journal of Physics D: Applied Physics, 57(38), 385201. https://doi.org/10.1088/1361-6463/AD584B

Zovko, K., Šerić, L., Perković, T., Belani, H., & Šolić, P. (2023). IoT and health monitoring wearable devices as enabling technologies for sustainable enhancement of life quality in smart environments. Journal of Cleaner Production, 413, 137506. https://doi.org/10.1016/J.JCLEPRO.2023.137506

Downloads

Published

2025-05-31

How to Cite

Abrori, S. A. (2025). Wearable Sensors for Health Monitoring: Technologies, Applications, Challenges, and Future Perspectives. Engineering, MAthematics and Computer Science Journal (EMACS), 7(2), 229–239. https://doi.org/10.21512/emacsjournal.v7i2.13765

Issue

Section

Articles
Abstract 24  .
PDF downloaded 5  .