Unlocking Pharma Market Segmentation for Strategic Growth Through Advanced Data Intelligence

Authors

  • Alfi Purwaningrum Telkom University
  • Amalia Nur Alifah Telkom University
  • Dwi Bagus Dermawan Telkom University
  • Galuh Andini Telkom University

DOI:

https://doi.org/10.21512/emacsjournal.v7i1.12199

Keywords:

Clustering, Customer Profiling, Elbow, K-Means, Pharmaceutical Market, Segmentation

Abstract

Business competition compels companies to understand customer characteristics in order to maintain and enhance their competitiveness, especially in the pharmaceutical industry, which involves various customer segments such as hospitals, pharmacies, patients, and end consumers with diverse needs. Customer segmentation becomes crucial in developing effective strategies, with K-Means algorithm being one of the commonly used methods due to its simplicity and efficiency in clustering large datasets. This study combines the K-Means Clustering algorithm with the elbow method to determine the optimal number of clusters in segmenting the customer profiles of a pharmaceutical company. The analysis results reveal two main clusters: the first cluster is dominated by hospitals with higher medication purchase volumes and longer delivery distances, ranging from 8 to 131 km, while the second cluster is dominated by pharmacies with smaller purchase volumes and shorter delivery distances. These findings enable the pharmaceutical company to better understand customer characteristics and design more effective strategies to compete in the market. It is recommended that the company adjusts its marketing strategies and products based on the needs of each cluster, enhances customer relationships through loyalty programs, and optimizes distribution routes to improve operational efficiency.

Dimensions

Plum Analytics

Author Biographies

Alfi Purwaningrum, Telkom University

Departement of Data Science

Amalia Nur Alifah, Telkom University

Departement of Data Science

Dwi Bagus Dermawan, Telkom University

Departement of Data Science

Galuh Andini, Telkom University

Departement of Data Science

References

Alifah, A. N., Fadhilah, H. N., & Sianipar, T. M. (2022). Klasterisasi KabupatenKota di Jawa Barat Berdasarkan Tingkat Kenyamanan dengan Metode K-Means Clustering. PROSIDING SEMINAR NASIONAL SAINS DATA, 2(1), 30–38.

Febriani, A., & Putri, S. A. (2020). Segmentasi Konsumen Berdasarkan Model Recency, Frequency, Monetary dengan Metode K-Means. JIEMS (Journal of Industrial Engineering and Management Systems), 13(2). https://doi.org/10.30813/jiems.v13i2.2274

Febrianty, E., Awalina, L., & Rahayu, W. I. (2023). Optimalisasi Strategi Pemasaran dengan Segmentasi Pelanggan Menggunakan Penerapan K-Means Clustering pada Transaksi Online Retail Optimizing Marketing Strategies with Customer Segmentation Using K-Means Clustering on Online Retail Transactions. Jurnal Teknologi Dan Informasi (JATI), 13. https://doi.org/10.34010/jati.v13i2

Ika Murpratiwi, S., Gusti Agung Indrawan, I., & Aranta, A. (2021). ANALISIS PEMILIHAN CLUSTER OPTIMAL DALAM SEGMENTASI PELANGGAN TOKO RETAIL. Jurnal Pendidikan Teknologi Dan Kejuruan, 18(2).

Januzaj, Y., Beqiri, E., & Luma, A. (2023). Determining the Optimal Number of Clusters using Silhouette Score as a Data Mining Technique. International Journal of Online & Biomedical Engineering, 19(4).

Khairati, A. F., Adlina, A. A., Hertono, G. F., & Handari, B. D. (2019). Kajian Indeks Validitas pada Algoritma K-Means Enhanced dan K-Means MMCA. PRISMA. Prosiding Seminar Nasional Matematika, 2, 161–170. https://journal.unnes.ac.id/sju/index.php/prisma/

Naghizadeh, A., & Metaxas, D. N. (2020). Condensed silhouette: An optimized filtering process for cluster selection in K-means. Procedia Computer Science, 176, 205–214. https://doi.org/10.1016/j.procs.2020.08.022

Pratamawati, M. H. S., Hidayat, T., Ibrahim, M., & Hartatik, S. (2021). Hubungan Minat Belajar dengan Prestasi Belajar Matematika Siswa di Sekolah Dasar. Jurnal Basicedu, 5(5), 3270–3278. https://doi.org/10.31004/basicedu.v5i5.1331

Ramadhan, A. G. (2023). How to cite: Ade Guntur Ramadhan (2023) Data Mining Untuk Segmentasi Pelanggan dengan Algoritma K-Means: Studi Kasus pada Data Pelanggan di Toko Retail DATA MINING UNTUK SEGMENTASI PELANGGAN DENGAN ALGORITMA K-MEANS: STUDI KASUS PADA DATA PELANGGAN DI TOKO RETAIL. 8(10). https://doi.org/10.36418/syntax-literate.v6i6

Sholeh, M., & Aeni, K. (2023). PERBANDINGAN EVALUASI METODE DAVIES BOULDIN, ELBOW DAN SILHOUETTE PADA MODEL CLUSTERING DENGAN MENGGUNAKAN ALGORITMA K MEANS. https://archive.ics.uci.edu/ml/datasets/Trave

Suharti, P. H., Suryandari, A. S., & Amalia, R. N. (2022a). ANALISIS KINERJA MODUL PENGENDALI TEKANAN UDARA PCT-14 BERBASIS PLC DENGAN BERBAGAI METODA TUNING. Sebatik, 26(2), 420–427. https://doi.org/10.46984/sebatik.v26i2.2134

Suharti, P. H., Suryandari, A. S., & Amalia, R. N. (2022b). ANALISIS KINERJA MODUL PENGENDALI TEKANAN UDARA PCT-14 BERBASIS PLC DENGAN BERBAGAI METODA TUNING. Sebatik, 26(2), 420–427. https://doi.org/10.46984/sebatik.v26i2.2134

Syahira, N., & Arianto, D. B. (2024). PREDIKSI TINGKAT KUALITAS UDARA DENGAN PENDEKATAN ALGORITMA K-NEAREST NEIGHBOR. Jurnal Ilmiah Informatika Komputer, 29(1), 45–59. https://doi.org/10.35760/ik.2024.v29i1.10069

Wibowo, A., Handoko, A. R., & Korespondensi, P. (2020). SEGMENTASI PELANGGAN RITEL PRODUK FARMASI OBAT MENGGUNAKAN METODE DATA MINING KLASTERISASI DENGAN ANALISIS RECENCY FREQUENCY MONETARY (RFM) TERMODIFIKASI SEGMENTATION OF CUSTOMERS OF DRUG PHARMACEUTICAL PRODUCT RETAIL USING CLASTERIZATION MINING DATA METHOD USING MODIFIED MONETARY RECENCY FREQUENCY (RFM) ANALYSIS. 7(3). https://doi.org/10.25126/jtiik.202072925

Wicaksana, R. S., Heksaputra, D., Syah, T. A., & Nur’aini, F. F. (2023). Pendekatan K-Means Clustering Metode Elbow Pada Analisis Motivasi Pengunjung Festival Halal JHF#2. Jurnal Ilmiah Ekonomi Islam, 9(3), 4162. https://doi.org/10.29040/jiei.v9i3.10591

Yuan, C., & Yang, H. (2019). Research on K-Value Selection Method of K-Means Clustering Algorithm. J, 2(2), 226–235. https://doi.org/10.3390/j2020016

Downloads

Published

2025-01-31
Abstract 19  .
PDF downloaded 17  .