Research on The Empirical Analysis of Bitcoin and Gasoline Return

Authors

  • Asysta Amalia Pasaribu Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v7i1.12042

Keywords:

Return, Autocorrelation Function (ACF), Bitcoin, Gasoline, Leptokurtic Distribution

Abstract

Investment is an activity that is popular nowadays. Profitable investments are the hope of every investor. By investing. investors expect the invested assets to generate returns and to obtain profits for future life In investment studies. the most frequently discussed topic is the fluctuations. whether increases or decreases. of an asset's price (stocks). The risk of investment is loss in financial. The fluctuations of stock prices represent risks in the investment field. One measure used to determine gains and losses from stock prices is the return. To know return from data. we may use the compound return formula. Returns have empirical facts that require several tests. In this study. the empirical facts of returns are that the returns are not autocorrelated (autocorrelation function) and that the returns are leptokurtic distributed (thick-tailed distribution). We use the price data of Bitcoin (BTC) and Gasoline (UGA) from January 1. 2019. to December 31. 2023. The main of purpose of this research is to show empirical analysis of the Bitcoin and Gasoline return data. The results of the empirical analysis show that the return of stock price for Bitcoin (BTC) and Gasoline (UGA) meet the empirical properties of returns so that they can capture a good volatility model.

Dimensions

Plum Analytics

Author Biography

Asysta Amalia Pasaribu, Bina Nusantara University

Statistics Department, School of Computer Science

References

Arum. P. R.. & Amri. S. (2024). Pemodelan Seasonal Autoregressive Integrated Moving Average (SARIMA) untuk Meramalkan Volume Angkutan Barang Kereta Api di Pulau Jawa Tahun 2021: Memberikan prediksi volume angkutan barang kereta api di pulau jawa untuk masa mendatang. Journal Of Data Insights. 2(1). 26-35.

Budianti. L.. Janatin. J.. Avicenna. M. Y.. Putri. A. K.. & Darmawan. G. (2024). Pemodelan SARIMA dengan Pendekatan ARCH/GARCH untuk Meramalkan Penjualan Ritel Barang Elektronik. Innovative: Journal Of Social Science Research. 4(1). 1037-1051.

Bondarenko. O.. & Muravyev. D. (2023). Market return around the clock: A puzzle. Journal of Financial and Quantitative Analysis. 58(3). 939-967.

Dangi. V. (2023). An Econometric Study on Volatility Clusters. Dynamic Risk Return Relationship. and Asymmetry in Bitcoin Returns. Business Perspectives and Research. 22785337231208300.

Louarn. P.. Fedorov. A.. Prech. L.. Owen. C. J.. D’Amicis. R.. Bruno. R.. ... & Bale. S. D. (2024). Skewness and kurtosis of solar wind proton distribution functions: The normal inverse-Gaussian model and its implications. Astronomy & Astrophysics. 682. A44.

Sihombing. E. I.. Suhendra. C. D.. & Marini. L. F. (2024). Analisis Data Time Series Untuk Prediksi Harga Komoditas Pangan Menggunakan Autoregressive Integrated Moving Average. KLIK: Kajian Ilmiah Informatika dan Komputer. 4(6). 2711-2720.

Suharmanto, B., & Ernawati, I. (2023, December). Uji Performa Prediksi Metode Autoregressive Fractionally Integrated Moving Averages Dan Long Short-Term Memory Dengan Data Saham Dua Perusahaan Bank. In Prosiding Seminar Nasional Mahasiswa Bidang Ilmu Komputer dan Aplikasinya (Vol. 4, No. 2, pp. 450-460).

Syuhada. K.. Wibisono. A.. Hakim. A.. & Addini. F. (2021). Covid-19 risk data during lockdown-like policy in Indonesia. Data in Brief. 35. 106801.

Wang. C. (2021). Different GARCH models analysis of returns and volatility in Bitcoin. Data Science in Finance and Economics. 1(1). 37-59.

Weiß. C. H. (2024). The Mollified (Discrete) Uniform Distribution and its Applications. arXiv preprint arXiv:2403.00383.

Wicaksono, A., Farizan Gibran, A., Irmansyah, D., & Aji, H. (2021). Ukuran Penyebaran Data (Kemiringan Dan Keruncingan). Jurnal Ukuran Penyebaran Data (Kemiringan & Keruncingan), 1–6.

Zhichao, G. (2023). Research on the Augmented Dickey-Fuller Test for Predicting Stock Prices and Returns. In Proceedings of the 7th International Conference on Economic Management and Green Development (pp. 2754-1169).

Downloads

Published

2025-01-31
Abstract 12  .
PDF downloaded 10  .