Forecasting Poverty Ratios in Indonesia: A Time Series Modeling Approach
DOI:
https://doi.org/10.21512/emacsjournal.v6i3.11968Keywords:
Poverty, Naïve Model, Double Moving Average, Double Exponential Smoothing, ARIMA, Time Series Regression, Neural NetworkAbstract
Poverty is one of the main problems still faced by Indonesia today. To help find the right solution, an annual prediction of the poverty rate in Indonesia is needed. This study uses data on the 'Ratio of the Number of Poor People in Indonesia per year from 1998 to 2023' obtained from data.worldbank.org. The prediction methods used in this study include the Naïve Model, Double Moving Average, Double Exponential Smoothing, ARIMA, Time Series Regression, and Neural Network, with a total of 26 models. Of the 26 models, only 19 models passed the model comparison stage. Based on the evaluation results using the RMSE, MAE, MAPE, and MDAE metrics, it was concluded that the NNETAR Neural Network model showed the best performance among the six methods used to predict the poverty ratio in Indonesia.
Plum Analytics
References
Menanti Pemerintah ”Buka-bukaan” Data Kemiskinan yang Sebenarnya.pdf. (n.d.).
Aspriyani, R., & Istikaanah, N. (2023). Analisis time series untuk memprediksi jumlah penduduk miskin di Cilacap. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika, 12(2), 61–75. https://doi.org/10.33387/dpi.v12i2.6707
Badan Pusat Statistik Indonesia. (2023). Profil Kemiskinan di Indonesia Maret 2023. Badan Pusat Statistik, 57, 1–8. https://www.bps.go.id/pressrelease/2018/07/16/1483/persentase-penduduk-miskin-maret-2018-turun-menjadi-9-82-persen.html
Catur Putri, S. R., & Junaedi, L. (2022). Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku. Jurnal Ilmu Komputer Dan Bisnis, 13(1), 164–173. https://doi.org/10.47927/jikb.v13i1.293
Dhakal, C., & Dhakal, C. P. (2017). A Naïve Approach for Comparing a Forecast Model. International Journal of Thesis Projects and Dissertations (IJTPD), 5(1), 1–3. https://www.researchgate.net/publication/326972994
Fauzi, A. (2015). Peramalan Menggunakan Model Arima Pada Harga Saham Telkom Dan Lippo. 80. http://repository.its.ac.id/52163/
Hafiz, M., & Kurniadi, A. P. (2024). Pengaruh Jumlah Penduduk Dan Pengangguran Terhadap Tingkat Kemiskinan Di Sumatera Barat. JEBI (Jurnal Ekonomi Dan Bisnis Islam), 8(2), 20–27. https://doi.org/10.15548/jebi.v8i2.864
Hilman Winnos, Richashanty Septima, & Husna Gemasih. (2022). Perbandingan Metode Regresi Linier Berganda dan Autoregressive Integrated Moving Average (ARIMA) Untuk Prediksi Saham PT. BSI, Tbk. Ocean Engineering : Jurnal Ilmu Teknik Dan Teknologi Maritim, 1(4), 15–23. https://doi.org/10.58192/ocean.v1i4.350
Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764
Layakana, M., & Iskandar, S. (2020). Penerapan Metode Double Moving Average dan Double Eksponential Smoothing dalam Meramalkan Jumlah Produksi Crude Palm Oil (CPO) Pada PT. Perkebunan Nusantara IV Unit Dolok Sinumbah. Karismatika, 6(1), 44–53.
Najib, A. (2022). Penerapan Metode Double Moving Average dan Double Exponential Smoothing Pada Peramalan Jumlah Penjualan Batik Bakaran Kajinesia.
Ningtiyas, S. R., Masyarakat, F. K., & Airlangga, U. (2018). APLIKASI METODE DOUBLE EXPONENTIAL SMOOTHING HOLT DAN ARIMA UNTUK MERAMALKAN VOLUNTARY COUNSELING AND TESTING ( VCT ) ODHA Perencanaan yang efektif dan efisien memerlukan alat bantu peramalan yang baik . Peramalan dapat digunakan untuk melihat kejadian at. December, 156–168. https://doi.org/10.20473/ijph.vl13il.2018.156-168
Ruspriyanty, D. I., Sofro, A., & Oktaviarina, A. (2018). Peramalan Persewaan Kaset Video Dengan Menggunakan Moving Average. Jurnal Ilmiah Matematika, 6(2), 75–80.
Trisnawati, O., & Prastuti, M. (2022). Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network. Jurnal Sains Dan Seni ITS, 11(1). https://doi.org/10.12962/j23373520.v11i1.63165
Vania Grace Sianturi, M. Syafii, & Ahmad Albar Tanjung. (2021). Analisis Determinasi Kemiskinan di Indonesia Studi Kasus (2016-2019). Jurnal Samudra Ekonomika, 5(2), 125–133. https://doi.org/10.33059/jse.v5i2.4270
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Engineering, MAthematics and Computer Science Journal (EMACS)
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Authors who publish with this journal agree to the following terms:
a. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License - Share Alike that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
b. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
c. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work.
USER RIGHTS
All articles published Open Access will be immediately and permanently free for everyone to read and download. We are continuously working with our author communities to select the best choice of license options, currently being defined for this journal as follows: Creative Commons Attribution-Share Alike (CC BY-SA)