Forecasting Poverty Ratios in Indonesia: A Time Series Modeling Approach

Authors

  • Muhammad Fadlan Hidayat Bina Nusantara University
  • Diva Nabila Henryka Bina Nusantara University
  • Lovina Anabelle Citra Bina Nusantara Univeristy
  • Syarifah Diana Permai Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v6i3.11968

Keywords:

Poverty, Naïve Model, Double Moving Average, Double Exponential Smoothing, ARIMA, Time Series Regression, Neural Network

Abstract

Poverty is one of the main problems still faced by Indonesia today. To help find the right solution, an annual prediction of the poverty rate in Indonesia is needed. This study uses data on the 'Ratio of the Number of Poor People in Indonesia per year from 1998 to 2023' obtained from data.worldbank.org. The prediction methods used in this study include the Naïve Model, Double Moving Average, Double Exponential Smoothing, ARIMA, Time Series Regression, and Neural Network, with a total of 26 models. Of the 26 models, only 19 models passed the model comparison stage. Based on the evaluation results using the RMSE, MAE, MAPE, and MDAE metrics, it was concluded that the NNETAR Neural Network model showed the best performance among the six methods used to predict the poverty ratio in Indonesia.

 

Dimensions

Plum Analytics

Author Biographies

Muhammad Fadlan Hidayat, Bina Nusantara University

Computer Science Department, School of Computer Science

Diva Nabila Henryka, Bina Nusantara University

Statistics Department, School of Computer Science

Lovina Anabelle Citra, Bina Nusantara Univeristy

Statistics Department, School of Computer Science

Syarifah Diana Permai, Bina Nusantara University

Statistics Department, School of Computer Science

References

Menanti Pemerintah ”Buka-bukaan” Data Kemiskinan yang Sebenarnya.pdf. (n.d.).

Aspriyani, R., & Istikaanah, N. (2023). Analisis time series untuk memprediksi jumlah penduduk miskin di Cilacap. Delta-Pi: Jurnal Matematika Dan Pendidikan Matematika, 12(2), 61–75. https://doi.org/10.33387/dpi.v12i2.6707

Badan Pusat Statistik Indonesia. (2023). Profil Kemiskinan di Indonesia Maret 2023. Badan Pusat Statistik, 57, 1–8. https://www.bps.go.id/pressrelease/2018/07/16/1483/persentase-penduduk-miskin-maret-2018-turun-menjadi-9-82-persen.html

Catur Putri, S. R., & Junaedi, L. (2022). Penerapan Metode Peramalan Autoregressive Integrated Moving Average Pada Sistem Informasi Pengendalian Persedian Bahan Baku. Jurnal Ilmu Komputer Dan Bisnis, 13(1), 164–173. https://doi.org/10.47927/jikb.v13i1.293

Dhakal, C., & Dhakal, C. P. (2017). A Naïve Approach for Comparing a Forecast Model. International Journal of Thesis Projects and Dissertations (IJTPD), 5(1), 1–3. https://www.researchgate.net/publication/326972994

Fauzi, A. (2015). Peramalan Menggunakan Model Arima Pada Harga Saham Telkom Dan Lippo. 80. http://repository.its.ac.id/52163/

Hafiz, M., & Kurniadi, A. P. (2024). Pengaruh Jumlah Penduduk Dan Pengangguran Terhadap Tingkat Kemiskinan Di Sumatera Barat. JEBI (Jurnal Ekonomi Dan Bisnis Islam), 8(2), 20–27. https://doi.org/10.15548/jebi.v8i2.864

Hilman Winnos, Richashanty Septima, & Husna Gemasih. (2022). Perbandingan Metode Regresi Linier Berganda dan Autoregressive Integrated Moving Average (ARIMA) Untuk Prediksi Saham PT. BSI, Tbk. Ocean Engineering : Jurnal Ilmu Teknik Dan Teknologi Maritim, 1(4), 15–23. https://doi.org/10.58192/ocean.v1i4.350

Kumila, A., Sholihah, B., Evizia, E., Safitri, N., & Fitri, S. (2019). Perbandingan Metode Moving Average dan Metode Naïve Dalam Peramalan Data Kemiskinan. JTAM | Jurnal Teori Dan Aplikasi Matematika, 3(1), 65. https://doi.org/10.31764/jtam.v3i1.764

Layakana, M., & Iskandar, S. (2020). Penerapan Metode Double Moving Average dan Double Eksponential Smoothing dalam Meramalkan Jumlah Produksi Crude Palm Oil (CPO) Pada PT. Perkebunan Nusantara IV Unit Dolok Sinumbah. Karismatika, 6(1), 44–53.

Najib, A. (2022). Penerapan Metode Double Moving Average dan Double Exponential Smoothing Pada Peramalan Jumlah Penjualan Batik Bakaran Kajinesia.

Ningtiyas, S. R., Masyarakat, F. K., & Airlangga, U. (2018). APLIKASI METODE DOUBLE EXPONENTIAL SMOOTHING HOLT DAN ARIMA UNTUK MERAMALKAN VOLUNTARY COUNSELING AND TESTING ( VCT ) ODHA Perencanaan yang efektif dan efisien memerlukan alat bantu peramalan yang baik . Peramalan dapat digunakan untuk melihat kejadian at. December, 156–168. https://doi.org/10.20473/ijph.vl13il.2018.156-168

Ruspriyanty, D. I., Sofro, A., & Oktaviarina, A. (2018). Peramalan Persewaan Kaset Video Dengan Menggunakan Moving Average. Jurnal Ilmiah Matematika, 6(2), 75–80.

Trisnawati, O., & Prastuti, M. (2022). Peramalan Curah Hujan di Stasiun Juanda Menggunakan Metode ARIMA Box-Jenkins dan Radial Basis Function Neural Network. Jurnal Sains Dan Seni ITS, 11(1). https://doi.org/10.12962/j23373520.v11i1.63165

Vania Grace Sianturi, M. Syafii, & Ahmad Albar Tanjung. (2021). Analisis Determinasi Kemiskinan di Indonesia Studi Kasus (2016-2019). Jurnal Samudra Ekonomika, 5(2), 125–133. https://doi.org/10.33059/jse.v5i2.4270

Downloads

Published

2024-09-30

Issue

Section

Articles
Abstract 80  .
PDF downloaded 71  .