Efficient Computation of Number Fractions from the Square Root of Two Using the A-B Goen Number Function Via the Ivan Newton (in) Series

Authors

  • Stephanus Ivan Goenawan

DOI:

https://doi.org/10.21512/emacsjournal.v6i3.11575

Keywords:

Numbers, Functions, Square Root of Two, Irrational Numbers

Abstract

The square root number of two is an irrational number. If it is an irrational number, the result cannot be written as a fraction of the numerator and denominator. Fractions that approach the square root value of two have a correlation with Goen's A-B numbers. The regularity of the A-B Goen number sequence can be formulated into the A-B Goen function which is built from the Ivan Newton series. In this research, it can be proven that the A-B Goen function from the Ivan Newton (IN) series is computationally more effective and efficient when compared to the A-B Goen generating function in producing A-B Goen numbers which in infinite sequence will approach the square root value of two.

Dimensions

Plum Analytics

References

Goenawan, Stephanus Ivan. (2020). Comparison Simulation Analysis Of The Gradual Summation Of A Function With Recognition Of Direct Extrapolation Via IN Series. IJASST Univ. Sanata Dharma, Yogyakarta.

Goenawan, Stephanus Ivan. (Januari 2022). Fractional Generating Function from The Square Root of Two with A-B Goen Numbers, Engineering, Mathematics, and Computer Science (EMACS) Journal, Vol. 4 No. 1. hal 11 – 14, e-ISSN: 2686-2573.

Goenawan, Stephanus Ivan. (Januari 2021). Order Theory I And II As Foundations For Finding Relationship Between Formulas, Engineering, Mathematics, and Computer Science (EMACS) Journal, Vol. 2 No. 1. hal 1 – 4, p-ISSN 1410-2765.

Gel'fand, Izrael M.; Shen, Alexander. (2023). Algebra (8rd ed.). Birkhäuser. p. 120. ISBN 0-8176-3677-3.

Lord, Nick. (November 2008). "Maths bite: irrational powers of irrational numbers can be rational", Mathematical Gazette 92. p. 534.

Marshall, Ash J., and Tan, Yiren. (March 2012). "A rational number of the form aa with a irrational", Mathematical Gazette 96. pp. 106-109.

Mitchell, Douglas W. (November 2003). "Using Pythagorean triples to generate square roots of I2", Mathematical Gazette 87. 499–500.

Krantz, Steven George (2006). Calculus: Single Variable, Volume 1. Springer Science & Business Media. p. 248. ISBN 978-1-931914-59-8.

McQuarrie, Donald A. (2003). Mathematical Methods for Scientists and Engineers, University Science Books. ISBN 978-1-891389-24-5

Salas, Saturnino L.; Hille, Einar; Etgen, Garret J. (2007). Calculus: One and Several Variables (10th ed.). Wiley. ISBN 978-0-471-69804-3.

Stewart, James (2012). Calculus: Early Transcendentals, 7th ed., Brooks Cole Cengage Learning. ISBN 978-0-538-497 90-9

Thomas, George B., Maurice D. Weir, Joel Hass, Frank R. Giordano (2008), Calculus, 11th ed., Addison-Wesley. ISBN 0-321-48987-X

Zill, Dennis G.; Wright, Scott; Wright, Warren S. (2009). Calculus: Early Transcenden-tals (3 ed.). Jones & Bartlett Learning. p. xxvii. ISBN 978-0-7637-59957.

Downloads

Published

2024-09-30

Issue

Section

Articles
Abstract 52  .
PDF downloaded 23  .