Overview of Text Based Personality Prediction Using Deep Learning

Authors

  • Kelvin Kelvin Bina Nusantara University
  • Yesun Utomo Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v6i2.11550

Keywords:

Text-Based Personality Prediction, Myers-Briggs Type Indicator, Big Five Personality Model, Natural Language Processing, Systematic Review

Abstract

Text-Based Personality Prediction (TBPP) has garnered increasing attention in recent years, particularly within the frameworks of the Myers-Briggs Type Indicator and the Big Five Personality Model. This study presents a comprehensive systematic review of TBPP methodologies, focusing specifically on research published since 2017. Leveraging Google Scholar, a meticulous selection process was employed to identify and analyze papers meeting relevance criteria. The selected studies were analyzed for research design, data collection methods, preprocessing techniques, and modeling approaches. Notably, the study identifies prevalent Natural Language Processing methods utilized in TBPP, such as Recurrent Neural Networks, Convolutional Neural Networks, Long Short-Term Memory networks, ensemble methods, and pre-trained models like BERT. Results indicate that combining knowledge graphs with Bi-LSTM models achieved the highest accuracy for Big Five traits at 71.5%, while a BERT-CNN-RNN ensemble reached 85% accuracy for MBTI. The synthesized findings offer valuable insights into the current landscape of TBPP, with the aim of informing both researchers and practitioners. Furthermore, the study provides recommendations for future research directions, emphasizing the importance of refining methodologies and addressing challenges to foster continued innovation in personality prediction within the TBPP domain.

Dimensions

Plum Analytics

Author Biographies

Kelvin Kelvin, Bina Nusantara University

Computer Science Department, School of Computer Science

Yesun Utomo, Bina Nusantara University

Computer Science Department, School of Computer Science

References

Amirhosseini, M. H., & Kazemian, H. (2020). Machine learning approach to personality type prediction based on the Myers–Briggs type indicator®. Multimodal Technologies and Interaction, 4(1). https://doi.org/10.3390/mti4010009

Chowanda, A., Suhartono, D., Andangsari, E. W., & bin Zamli, K. Z. (2022). MACHINE LEARNING ALGORITHMS EXPLORATION FOR PREDICTING PERSONALITY FROM TEXT. ICIC Express Letters, 16(2), 117–125. https://doi.org/10.24507/icicel.16.02.117

Christian, H., Suhartono, D., Chowanda, A., & Zamli, K. Z. (2021). Text based personality prediction from multiple social media data sources using pre-trained language model and model averaging. Journal of Big Data, 8(1). https://doi.org/10.1186/s40537-021-00459-1

Cui, B., & Qi, C. (2017). Survey analysis of machine learning methods for natural language processing for MBTI Personality Type Prediction. Final Report Stanford University.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding. NAACL HLT 2019 - 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference, 1(Mlm), 4171–4186.

El-Demerdash, K., El-Khoribi, R. A., Ismail Shoman, M. A., & Abdou, S. (2022). Deep learning based fusion strategies for personality prediction. Egyptian Informatics Journal, 23(1), 47–53. https://doi.org/10.1016/J.EIJ.2021.05.004

Ergu, I., Isik, Z., & Yankayis, I. (2019). Predicting Personality with Twitter Data and Machine Learning Models. 2019 Innovations in Intelligent Systems and Applications Conference (ASYU), 1–5. https://doi.org/10.1109/ASYU48272.2019.8946355

Hernandez, R. K., & Scott, I. (2017). Predicting Myers-Briggs type indicator with text. 31st Conference on Neural Information Processing Systems (NIPS 2017).

Jeremy, N. H., & Suhartono, D. (2021). Automatic personality prediction from Indonesian user on twitter using word embedding and neural networks. Procedia Computer Science, 179(2020), 416–422. https://doi.org/10.1016/j.procs.2021.01.024

Jolly, M. (2018). Myers-Briggs Personality Type Dataset (MBTI) dataset. Https://Www.Kaggle.Com/Datasets/Datasnaek/Mbti-Type/Discussion/164511.

Keh, S. S., & Cheng, I.-T. (2019). Myers-Briggs Personality Classification and Personality-Specific Language Generation Using Pre-trained Language Models. http://arxiv.org/abs/1907.06333

Kelvin, Edbert, I. S., & Suhartono, D. (2023). UTILIZING INDOBERT IN PREDICTING PERSONALITY FROM TWITTER POSTS USING BAHASA INDONESIA. ICIC Express Letters, 17(1), 123–130. https://doi.org/10.24507/icicel.17.01.123

Kerz, E., Qiao, Y., Zanwar, S., & Wiechmann, D. (2022). Pushing on Personality Detection from Verbal Behavior: A Transformer Meets Text Contours of Psycholinguistic Features. http://arxiv.org/abs/2204.04629

Khan, A. S., Ahmad, H., Asghar, M. Z., Saddozai, F. K., Arif, A., & Khalid, H. A. (2020). Personality classification from online text using machine learning approach. International Journal of Advanced Computer Science and Applications, 11(3), 460–476. https://doi.org/10.14569/ijacsa.2020.0110358

Kumar, A., Beniwal, R., & Jain, D. (2023). Personality Detection using Kernel-based Ensemble Model for leveraging Social Psychology in Online Networks. ACM Transactions on Asian and Low-Resource Language Information Processing. https://doi.org/10.1145/3571584

Leonardi, S., Monti, D., Rizzo, G., & Morisio, M. (2020). Multilingual transformer-based personality traits estimation. Information (Switzerland), 11(4), 1–21. https://doi.org/10.3390/info11040179

Lucky, H., Zain Nabiilah, G., Jeremy, N. H., & Suhartono, D. (2023). A Three-Order Ensemble Model for User-level Big Five Personality Prediction on Twitter Dataset. Original Research Paper International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023(2), 283–292. www.ijisae.org

Majumder, N., Poria, S., Gelbukh, A., & Cambria, E. (2017). Deep Learning-Based Document Modeling for Personality Detection from Text. IEEE Intelligent Systems, 32(2), 74–79. https://doi.org/10.1109/MIS.2017.23

Marouf, A. Al, Hasan, Md. K., & Mahmud, H. (2020). Comparative Analysis of Feature Selection Algorithms for Computational Personality Prediction From Social Media. IEEE Transactions on Computational Social Systems, 7(3), 587–599. https://doi.org/10.1109/TCSS.2020.2966910

Nisha, K., Kulsum, U., Rahman, S., Hossain, M., Chakraborty, P., & Choudhury, T. (2021). A Comparative Analysis of Machine Learning Approaches in Personality Prediction Using MBTI. 13–23. https://doi.org/10.1007/978-981-16-2543-5_2

Ong, V., Rahmanto, A. D. S., Williem, W., Suhartono, D., Nugroho, A. E., Andangsari, E. W., & Suprayogi, M. N. (2017). Personality prediction based on Twitter information in Bahasa Indonesia. Proceedings of the 2017 Federated Conference on Computer Science and Information Systems, FedCSIS 2017, October, 367–372. https://doi.org/10.15439/2017F359

Qin, X., Liu, Z., Liu, Y., Liu, S., Yang, B., Yin, L., Liu, M., & Zheng, W. (2022). User OCEAN Personality Model Construction Method Using a BP Neural Network. Electronics (Switzerland), 11(19). https://doi.org/10.3390/electronics11193022

Ramezani, M., Feizi-Derakhshi, M. R., & Balafar, M. A. (2022). Knowledge Graph-Enabled Text-Based Automatic Personality Prediction. Computational Intelligence and Neuroscience, 2022. https://doi.org/10.1155/2022/3732351

Ramezani, M., Feizi-Derakhshi, M.-R., Balafar, M.-A., Asgari-Chenaghlu, M., Feizi-Derakhshi, A.-R., Nikzad-Khasmakhi, N., Ranjbar-Khadivi, M., Jahanbakhsh-Nagadeh, Z., Zafarani-Moattar, E., & Rahkar-Farshi, T. (2022). Automatic Personality Prediction; an Enhanced Method Using Ensemble Modeling. https://doi.org/10.1007/s00521-022-07444-6

Ren, Z., Shen, Q., Diao, X., & Xu, H. (2021). A sentiment-aware deep learning approach for personality detection from text. Information Processing & Management, 58(3), 102532. https://doi.org/10.1016/J.IPM.2021.102532

Ryan, G., Katarina, P., & Suhartono, D. (2023). MBTI Personality Prediction Using Machine Learning and SMOTE for Balancing Data Based on Statement Sentences. Information, 14(4). https://doi.org/10.3390/info14040217

Stachl, C., Au, Q., Schoedel, R., Gosling, S. D., Harari, G. M., Buschek, D., Theres, S., Olkel, V. ¨, Schuwerk, T., Oldemeier, M., Ullmann, T., Hussmann, H., Bischl, B., & Uhner, M. B. ¨. (2020). Predicting personality from patterns of behavior collected with smartphones. https://doi.org/10.1073/pnas.1920484117/-/DCSupplemental.y

Storey, D. (2018). Myers Briggs Personality Tags on Reddit Data. https://doi.org/10.5281/ZENODO.1482951

Suhartono, D. (2021). Personality Modelling of Indonesian Twitter Users with XGBoost Based on the Five Factor Model. International Journal of Intelligent Engineering and Systems, 14(2), 248–261. https://doi.org/10.22266/ijies2021.0430.22

Sun, X., Liu, B., Cao, J., Luo, J., & Shen, X. (2018). Who Am I? Personality Detection Based on Deep Learning for Texts. 2018 IEEE International Conference on Communications (ICC), 1–6. https://doi.org/10.1109/ICC.2018.8422105

Tadesse, M. M., Lin, H., Xu, B., & Yang, L. (2018). Personality Predictions Based on User Behavior on the Facebook Social Media Platform. IEEE Access, 6, 61959–61969. https://doi.org/10.1109/ACCESS.2018.2876502

Tandera, T., Hendro, Suhartono, D., Wongso, R., & Prasetio, Y. L. (2017). Personality Prediction System from Facebook Users. Procedia Computer Science, 116, 604–611. https://doi.org/10.1016/j.procs.2017.10.016

Tighe, E., Aran, O., & Cheng, C. (2020). Exploring Neural Network Approaches in Automatic Personality Recognition of Filipino Twitter Users. March. https://www.researchgate.net/publication/343189230

Xue, D., Wu, L., Hong, Z., Guo, S., Gao, L., Wu, Z., Zhong, X., & Sun, J. (2018). Deep learning-based personality recognition from text posts of online social networks. Applied Intelligence, 48(11), 4232–4246. https://doi.org/10.1007/s10489-018-1212-4

Yang, K., Lau, R. Y. K., & Abbasi, A. (2023). Getting Personal: A Deep Learning Artifact for Text-Based Measurement of Personality. Information Systems Research, 34(1), 194–222. https://doi.org/10.1287/isre.2022.1111

Downloads

Published

2024-05-31

Issue

Section

Articles
Abstract 349  .
PDF downloaded 284  .