Comparing CNN Architecture for Indonesian Speciality Cuisine Classification

Authors

  • Ajeng Wulandari Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v6i1.11076

Keywords:

Padang Cuisines, Food Recognition, Pre-Trained Model

Abstract

Indonesia's diverse and flavorful cuisine is a hidden gem, reflecting the nation's rich history and cultural tapestry. However, many of these culinary treasures remain undiscovered by a wider audience despite the popularity of beef rendang. This study represents a fascinating blend of technology and gastronomy, using smart computers to unravel the secrets of Indonesian flavors. This research employs one of the most popular neural networks methods called Convolutional Neural Network (CNN) to shine a light on many citizens' favorite regional specialty cuisine which is Padang cuisine from West Sumatra, Indonesia. Gathering a collection of 993 images from 9 various dishes, the machine is trained to automatically recognize these unique culinary delights. Among several different Convolutional Neural Network models trained and tested, DenseNet-201 emerged as the top performer, showcasing remarkable accuracy, precision, recall and f1-score higher than 0.90. By harnessing the power of advanced neural networks, we not only gain insights into the intricacies of the region's culinary traditions but also pave the way for a deeper appreciation and understanding of the cultural significance embedded in every bite. Beyond this research technological achievements, it also emphasizes the importance of preserving and promoting Indonesia's diverse culinary heritage and rich tapestry of global food heritage.

Dimensions

Plum Analytics

Author Biography

Ajeng Wulandari, Bina Nusantara University

Computer Science Department, School of Computer Science

References

Afifa, L. (2023, December 13). Indonesia Ranks 6th Among Countries With Best Cuisine; TasteAtlas 2023. Tempo. https://en.tempo.co/read/1809003/indonesia-ranks-6th-among-countries-with-best-cuisine-tasteatlas-2023

Afrinanto, F. F. (2022). Padang Cuisine (Indonesian Food Image Dataset) (Version 1) [Image]. https://doi.org/10.34740/KAGGLE/DSV/4053613

Bossard, L., Guillaumin, M., & Van Gool, L. (2014). Food-101 – Mining Discriminative Components with Random Forests. In D. Fleet, T. Pajdla, B. Schiele, & T. Tuytelaars (Eds.), Computer Vision – ECCV 2014 (Vol. 8694, pp. 446–461). Springer International Publishing. https://doi.org/10.1007/978-3-319-10599-4_29

Chen, J., & Ngo, C. (2016). Deep-based Ingredient Recognition for Cooking Recipe Retrieval. Proceedings of the 24th ACM International Conference on Multimedia, 32–41. https://doi.org/10.1145/2964284.2964315

Cheung, T. (2017, July 12). World’s 50 best foods: Reader’s choice | CNN. Your Pick: World’s 50 Best Foods. https://edition.cnn.com/travel/article/world-best-foods-readers-choice/index.html

Ciocca, G., Napoletano, P., & Schettini, R. (2015). Food Recognition and Leftover Estimation for Daily Diet Monitoring. In V. Murino, E. Puppo, D. Sona, M. Cristani, & C. Sansone (Eds.), New Trends in Image Analysis and Processing—ICIAP 2015 Workshops (Vol. 9281, pp. 334–341). Springer International Publishing. https://doi.org/10.1007/978-3-319-23222-5_41

Ciocca, G., Napoletano, P., & Schettini, R. (2017). Learning CNN-based Features for Retrieval of Food Images. In S. Battiato, G. M. Farinella, M. Leo, & G. Gallo (Eds.), New Trends in Image Analysis and Processing – ICIAP 2017 (Vol. 10590, pp. 426–434). Springer International Publishing. https://doi.org/10.1007/978-3-319-70742-6_41

Fahira, P. K., Rahmadhani, Z. P., Mursanto, P., Wibisono, A., & Wisesa, H. A. (2020). Classical Machine Learning Classification for Javanese Traditional Food Image. 2020 4th International Conference on Informatics and Computational Sciences (ICICoS), 1–5. https://doi.org/10.1109/ICICoS51170.2020.9299039

Fahira, P. K., Wibisono, A., Wisesa, H. A., Rahmadhani, Z. P., Mursanto, P., & Nurhadiyatna, A. (2019). Sumatra Traditional Food Image Classification Using Classical Machine Learning. 2019 3rd International Conference on Informatics and Computational Sciences (ICICoS), 1–5. https://doi.org/10.1109/ICICoS48119.2019.8982447

Gallo, I., Ria, G., Landro, N., & Grassa, R. L. (2020). Image and Text fusion for UPMC Food-101 using BERT and CNNs. 2020 35th International Conference on Image and Vision Computing New Zealand (IVCNZ), 1–6. https://doi.org/10.1109/IVCNZ51579.2020.9290622

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications (arXiv:1704.04861). arXiv. http://arxiv.org/abs/1704.04861

Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2018). Densely Connected Convolutional Networks (arXiv:1608.06993). arXiv. http://arxiv.org/abs/1608.06993

Ibrahim, R. (2022, June 24). Twenties: Essential Minangkabau cuisine. The Jakarta Post. https://www.thejakartapost.com/culture/2022/06/24/twenties-essential-minangkabau-cuisine.html

Konstantakopoulos, F. S., Georga, E. I., & Fotiadis, D. I. (2021). Mediterranean Food Image Recognition Using Deep Convolutional Networks. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 1740–1743. https://doi.org/10.1109/EMBC46164.2021.9630481

Kumar, A. (2023, December 4). Different Types of CNN Architectures Explained: Examples. Analytics Yogi. https://vitalflux.com/different-types-of-cnn-architectures-explained-examples/

LeCun, Y., Bottou, L., Bengio, Y., & Ha, P. (1998). Gradient-Based Learning Applied to Document Recognition.

Lee, K.-H., He, X., Zhang, L., & Yang, L. (2018). CleanNet: Transfer Learning for Scalable Image Classifier Training with Label Noise (arXiv:1711.07131). arXiv. http://arxiv.org/abs/1711.07131

Matsuda, Y., Hoashi, H., & Yanai, K. (2012). Recognition of Multiple-Food Images by Detecting Candidate Regions. 2012 IEEE International Conference on Multimedia and Expo, 25–30. https://doi.org/10.1109/ICME.2012.157

Min, W., Jiang, S., Liu, L., Rui, Y., & Jain, R. (2019). A Survey on Food Computing (arXiv:1808.07202). arXiv. http://arxiv.org/abs/1808.07202

Pepinsky, T. (2015, October 5). Why Hasn’t Indonesian Food Caught On in the US? https://tompepinsky.com/2015/10/05/why-hasnt-indonesian-food-caught-on-in-the-us/

Sahoo, D., Hao, W., Ke, S., Xiongwei, W., Le, H., Achananuparp, P., Lim, E.-P., & Hoi, S. C. H. (2019). FoodAI: Food Image Recognition via Deep Learning for Smart Food Logging. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2260–2268. https://doi.org/10.1145/3292500.3330734

Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition (arXiv:1409.1556). arXiv. http://arxiv.org/abs/1409.1556

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2015). Rethinking the Inception Architecture for Computer Vision (arXiv:1512.00567). arXiv. http://arxiv.org/abs/1512.00567

Tasnim, N., Romyull Islam, Md., & Shuvo, S. B. (2020). A Convolution Neural Network Based Classification Approach for Recognizing Traditional Foods of Bangladesh from Food Images. In A. Abraham, A. K. Cherukuri, P. Melin, & N. Gandhi (Eds.), Intelligent Systems Design and Applications (Vol. 940, pp. 844–852). Springer International Publishing. https://doi.org/10.1007/978-3-030-16657-1_79

Termritthikun, C., & Kanprachar, S. (2018). NU-ResNet: Deep Residual Networks for Thai Food Image Recognition. 10(1).

The Economist. (2022, September 1). Indonesian food is delicious but little-known. The Economist. https://www.economist.com/culture/2022/09/01/indonesian-food-is-delicious-but-little-known

Yuniar, N., Yumna, M., & Suharto. (2022, October 28). Cuisine to be gateway to tourism: Ministry. Antara News. https://en.antaranews.com/news/257465/cuisine-to-be-gateway-to-tourism-ministry

Downloads

Published

2024-01-31

Issue

Section

Articles
Abstract 205  .
PDF downloaded 160  .