Deep Transfer Learning for Sign Language Image Classification: A Bisindo Dataset Study

Authors

  • Ika Dyah Agustia Rachmawati Bina Nusantara University
  • Rezki Yunanda Bina Nusantara University
  • Muhammad Fadlan Hidayat Bina Nusantara University
  • Pandu Wicaksono Bina Nusantara University

DOI:

https://doi.org/10.21512/emacsjournal.v5i3.10621

Keywords:

BISINDO, Sign Language, Resnet50, effisienNetB1, MobileNetV4

Abstract

This study aims to identify and categorize the BISINDO sign language dataset, primarily consisting of image data. Deep learning techniques are used, with three pre-trained models: ResNet50 for training, MobileNetV4 for validation, and InceptionV3 for testing. The primary objective is to evaluate and compare the performance of each model based on the loss function derived during training. The training success rate provides a rough idea of the ResNet50 model's understanding of the BISINDO dataset, while MobileNetV4 measures validation loss to understand the model's generalization abilities. The InceptionV3-evaluated test loss serves as the ultimate litmus test for the model's performance, evaluating its ability to classify unobserved sign language images. The results of these exhaustive experiments will determine the most effective model and achieve the highest performance in sign language recognition using the BISINDO dataset.

Dimensions

Plum Analytics

Author Biographies

Ika Dyah Agustia Rachmawati, Bina Nusantara University

Cyber Security Program, Computer Science Department, School of Computer Science

Rezki Yunanda, Bina Nusantara University

Software Engineering Program, Computer Science Department, School of Computer Science

Muhammad Fadlan Hidayat, Bina Nusantara University

Computer Science Department, School of Computer Science

Pandu Wicaksono, Bina Nusantara University

Software Engineering Program, Computer Science Department, School of Computer Science

References

Alam, I. N., Kartowisastro, I. H., & Wicaksono, P. (2022). Transfer Learning Technique with EfficientNet for Facial Expression Recognition System. Revue d’Intelligence Artificielle, 36(4), 543–552. https://doi.org/10.18280/ria.360405

Arisandi, L., & Satya, B. (2022). Sistem Klarifikasi Bahasa Isyarat Indonesia (Bisindo) Dengan Menggunakan Algoritma Convolutional Neural Network. Jurnal Sistem Cerdas, 5(3), 135–146. https://doi.org/10.37396/jsc.v5i3.262

Bantupalli, K., & Xie, Y. (2019). American Sign Language Recognition using Deep Learning and Computer Vision. Proceedings - 2018 IEEE International Conference on Big Data, Big Data 2018, 4896–4899. https://doi.org/10.1109/BigData.2018.8622141

Bestari, H. (2018). Mengenal Bahasa Isyarat. Website. https://www.ypedulikasihabk.org/2018/11/09/mengenal-bahasa-isyarat/

Developer Google. (2022). Classification: Accuracy. Website. https://developers.google.com/machine-learning/crash-course/classification/accuracy

Fadlilah, U., Mahamad, A. K., & Handaga, B. (2021). The Development of Android for Indonesian Sign Language Using Tensorflow Lite and CNN: An Initial Study. Journal of Physics: Conference Series, 1858(1). https://doi.org/10.1088/1742-6596/1858/1/012085

Fauzi, M. Z., Sarno, R., & Hidayati, S. C. (2023). Recognition of Real-Time BISINDO Sign Language-to-Speech using Machine Learning Methods. International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). https://doi.org/10.1109/ICCoSITE57641.2023.10127743

Handhika, T., Zen, R. I. M., Murni, Lestari, D. P., & Sari, I. (2018). Gesture recognition for Indonesian Sign Language (BISINDO). Journal of Physics: Conference Series, 1028, 012173. https://doi.org/10.1088/1742-6596/1028/1/012173

Hasan, M. M., Srizon, A. Y., Sayeed, A., & Hasan, M. A. M. (2020). Classification of American Sign Language by Applying a Transfer Learned Deep Convolutional Neural Network. ICCIT 2020 - 23rd International Conference on Computer and Information Technology, Proceedings, 19–21. https://doi.org/10.1109/ICCIT51783.2020.9392703

Indra, D., Purnawansyah, Madenda, S., & Wibowo, E. P. (2019). Indonesian Sign Language Recognition Based on Shape of Hand Gesture. Procedia Computer Science, 161, 74–81. https://doi.org/10.1016/j.procs.2019.11.101

Khaleel, M., Ahmed, A. A., & Alsharif, A. (2023). Artificial Intelligence in Engineering. Brilliance: Research of Artificial Intelligence, 3(1), 32–42. https://doi.org/10.47709/brilliance.v3i1.2170

Li, G., Tang, H., Sun, Y., Kong, J., Jiang, G., Jiang, D., Tao, B., Xu, S., & Liu, H. (2019). Hand Gesture Recognition Based on Convolution Neural Network. Cluster Computing, 22, 2719–2729. https://doi.org/10.1007/s10586-017-1435-x

Mursita, R. A. (2015). Respon Tunarungu Terhadap Penggunaan Sistem Bahasa Isyarat Indonesa (Sibi) Dan Bahasa Isyarat Indonesia (Bisindo) Dalam Komunikasi. Inklusi, 2(2), 221. https://doi.org/10.14421/ijds.2202

Noer, A. (2021). Bahasa Isyarat Indonesia (BISINDO) Alphabets. Kaggle. https://www.kaggle.com/datasets/achmadnoer/alfabet-bisindo/data

Pusbisindo. (2023). Mengapa Belajar BISINDO? Website. https://www.pusbisindo.org/#mengapa

Susanty, M., Fadillah, R. Z., & Irawan, A. (2021). Model Penerjemah Bahasa Isyarat Indonesia (BISINDO) Menggunakan Pendekatan Transfer Learning. Petir, 15(1), 1–9. https://doi.org/10.33322/petir.v15i1.1289

Toengi, R. (2018). Application of Transfer Learning to Sign Language Recognition Using an Inflated 3D Deep Convolutional Neural Network.

Triwijoyo, B. K., Karnaen, L. Y. R., & Adil, A. (2023). An Approach for Sign Language Recognition with Deep Learning Algorithm. 9(1), 1–10. https://doi.org/10.1007/978-981-99-1435-7_1

Wadhawan, A., & Kumar, P. (2020). Deep Learning-Based Sign Language Recognition System for Static Signs. Neural Computing and Applications, 32(12), 7957–7968. https://doi.org/10.1007/s00521-019-04691-y

Yin, H., Gu, Y. H., Park, C. J., Park, J. H., & Yoo, S. J. (2020). Transfer Learning-Based Search Model for Hot Pepper Diseases and Pests. Agriculture (Switzerland), 10(10), 1–16. https://doi.org/10.3390/agriculture10100439

Downloads

Published

2023-09-30

Issue

Section

Articles
Abstract 468  .
PDF downloaded 320  .